TESTING HYPOTHESES FOR MARKOV CHAINS WHEN
THE PARAMETER SPACE IS FINITE

By KeN-icH1 YOSHIHARA

1. Summary.

In Chernoff [2], a procedure was presented for the sequential design of experi-
ments where the problem was one of testing a hypothesis. When there were only
a finite number of states of nature and a finite number of available experiments,
the procedure was shown to be “asymptotically optimal ” as the cost of sampling
approached zero. An analogous procedure can be applied to the problem of testing
a hypothesis with respect to a Markov process, and this procedure will also be
shown to be ‘“asymptotically optimal ”.

2. Assumptions.

Let © be a parameter space which consists of finite elements. We shall test
the hypothesis fe¢H, against the alternative 0eH, where H; and H, are two non-
null disjoint subsets of ©. In what follows, we make the following assumptions.

Al. O is a finite set. H; and H; are two non-null subsets of ® and H,UH,=06
and HlnHz=¢.

A2, {Xg £=0,1,2, -} is a Markov chain with state space (¥, ) and with
stationary transition measures p,(&,-) (#€®) which satisfy the following conditions:

(@) For each 0€®, the transition measures po(§,-) satisfy Doeblin’s condition (D)
in Doob [3], and there exists only one ergodic set and the transient set is empty;

(b) For each 0¢6, the transition measures po(&,-) admit of a unique stationary
probability measure pg(-).

In what follows E,(-) will denote an expected value computed under the assump-
tion that 4 is true and that pe(-) is the initial distribution.

A3. There is a measure 1 on ¥, not necessarily finite, with respect to which
all the transition measures ps(&,-) have densities (¢, 7: 0) and the initial distribution
po(-) has a density f(& 6) for each 6. These densities satisfy the following con-
ditions:

(@) For each 6, f(&, »: 0) is measurable in & and #, and f(&: 0) is measurable
in &

(b) If 6, ¢ are in O and O+¢, then

Po{f(Xo, X1: 0)% f(Xo, X1t @) | Xo=&}>0  for almost all &.
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A 4. There exists a positive number d(<1) such that for any /€0, ) and for
any pair ¢, ¢ in ©

f(ch—ly X 0) >‘ ]
S E Sk ke T _z
s&tég o exp(t log X, Xt 9) Xi1=E}1<oo.
We remark that, by A4 (b), if 6, ¢ are in © and 0+¢, then
f(Xk—ly Xk: <P) ’

1 log - =—J(6 =
(1) Ee{ og X X' ) 10, 9)<0 k=1,2, )
where

f(ch—x, th ())

2 10, p)=Epilog =1,

( ) ( SD) 91 0g f(Xk——l, Xk: S0)

3. “ Asymptotically optimal” procedure.

Define
f(Xo: 6)
Zy(6, p)=1 .
ol ¢s=108 f(XoI SO)
AX -1, X0 0) .
Su(0, @) =log 7T j=1,2,3, -,
( (/)) g f(X]-—l, X]: ‘D) ]
Su0, ¢)= X Zi0, ¢)
and

Sp= Zn: Zj(én, 0~n)

J=0

where 6, is a maximum likelihood estimate of # under O, based on the first n+1
observations and #, is a maximum likelihood estimate of 6 under the hypothesis
alternative to 6,.

We define “ procedure A ” as follows. Stop sampling at the z-1-st observation
and select the hypothesis 8, if S,>—log ¢, where 0<c<1.

4. Bounds for E,{e t52% »} and E,{e'S® ®},
At first we shall prove the theorem which is needed later.

TuEOREM 1. For any pair 8 and ¢ in © and any >0, there exist two positive
numbers A=A(e) and B=B(e) such that, for all n(=1) and for sufficiently small
>0,

(3) Ee{e—zsn(a, ¢)}§Ae—nt[1(0, @)/ (1+e)—-0]

and
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(4) Ee{etSn(O, w)}éBent[I(ﬂ, (p)/(l—s)+0(t)].
Proof. At first we show (3). Let
R,=— Jé Zi(0, ¢).

Since, for any # (0=¢=1) and for any k(=1),
Eo{et2x@ o | X, =&}

m|( ey p
_EG{(f(Xk—thzo) !Xk-1—> =1 for all ¢

(5)

so, we can define
(6) B(n, t)=§g€p Eole'®n | Xo=£}

If n=j+k, then

Eofetn | Xg}=Ea[E,;[eXp<tRj——t 1 =>j:+lzi(a, ¢)) X o X]]

X,]
=¢(j, D¢k, 1)
Thus, ¢(n, D=4, 1)- sk, t) and if n=dm+I (0=I<d), then
(7) d(n, )y=g(md, t)-$(l, t)=[¢(d, H]™- ¢, ).
Since, by Doeblin’s condition (D) in A2 (a)

s

=FEo{e'®s Eo[exp<—t1_‘jﬁ+ RZICH so)>

g

Eﬂ{ _i_ R.| X,=E }_»_1(0, ¢)  uniformly in &,

so, for any ¢>0, there is an integer d, such that

1 . 169
7ORdor.X’o-s}g Al

Therefore, for sufficiently small #>0, we have

Eo{et®ao | Xo=6,}

Eg{ uniformly 1n &,

do
(8) §1+tdoEo{ Rq, X0=50]+¢2E9{[R%]2 eXp(tjgllzj(ﬁ, ) |>]X0=eo]

do

100, n
=1-— (1+€:) td0+t2Eg{Rd0}2 exp(tf; | Zj(ﬁ, gD) ')l X0=EO'.

Now, we evaluate

B (Ra exot 51240, 1)) Xo=to).
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Let >0 and let

Bi(xy-1)= {xk: log —‘;% =ny for fixed xk_l}

S(Zr-1, it @)

B;(xk-l)Z’wk: log f@r1, Tiz 0)

=—mny for fixed xk_ll

and
B(@k-1)=B%(ZLr-1) U B7(Lx-1)-
Then, for any #€(0, §) (0 being the one in A4)
Py{Bn(Xi-1) | Xe-1=6}
= Po{ Bi(Xs-1) | Xim1 =8} +Po{ B7(Xi-1) | Xi-1=6}
S(Xie—1, X2 6) ]‘ X,,-_1=$}

ée‘”’”Ea{exp[t log

S(Xk-1, Xi ©)
—n - S X1, Xit ©) :” _ ]
+e ntEo{exp[t loi“’wf(Xk_l, X 0) Xi1=¢
for all & Thus, by (5) and A4, there is a constant A,, such that
(9) Py{Bn(Xi—1) | Xi—1=E} <A, et for all 2 and #,

independent of &.
Let 4 be any number in (0, d) and p=e7%. Then, for any t€(0, &), pet"<1
and

Ep{exp (| Z:(0, 9) ) | Xo=£o}

(10) =z S
7=1J By._1(§0)—Bn(fo)

log ,)pa@o, dz,)
f(&o, &15 @)

log e 5 0)

exp (t ])pe(so, d5)

=§1€"t”P0{Bn-1(Xo) | Xo=6o}

=3 Ayprenn=Ki(1—pe),

independent of &.
Similarly, for suitably chosen constants K, and K, we have

an E{—Z:0, ¢) exp(t| Z:(0, ¢) ) | Xo=&0} = Ko(1—petn)*
and
12) E{| Z:(0, @) | exp(t| Z:(8, ¢) ) | Xo=6&0} = Ks(1—pe')7?,

independent of &. For brevity, let
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9i-1(H=K, (1—pe'7)— (=1, 2, 3).
Let

do—1
Ido(xdo—l)zg et1zdo-10: @], {zdf_l(ﬁ, ©)+2240-10, ¢) kZ_]l ze(0, )

do—1 2
|8 20,0 [ [ doad
and for k=1, 2, ---,dy—1
gk (Tag-r-1)= Se‘ Vo= k@ O [g_11(Tay-*) P(@ay—i-1, AZayr)

Let y,=—>1%_, z(8, ¢). Then, we have

L1 (®a-1) = go(D+2¢:(DY ay-1+ Go(O)Y -1
and

I1y-1 (Zay-2) =92+ 20:(2) Se"zd”“(g’ O [—24y-1(0, 9)+Yay-2] D(Tag-2, ATay-1)

+go(l‘)Se“’d“-1“" 1 [243-1(0, 9)—2Yay-22a,-1(0, ©)+Y il P(Tay-2, dTay-1)

=00()92(D)+263(8) +20:()go(#)Y 4,21 9o(£)ga(t)
+290()9: (DY ay-2195OY -
=2g0(1)92() +291() +490) 91 ()Y a2+ Gi(DY o’ -
Proceeding inductively we obtain
1(x1) =(do—1) 98X 8)gi(#) + (do—2)(do—D)g* () gi(t)
+ 98 (DY +-2(do— D) go > (D g:(Dy:
and finally

0

Ea{ [Rq,)? exp [t % !Zk(0> SD)]]

k=1

Xo=50}
= Setlz'(a’ @1 p(, d&'l)geﬂzg(ay @1 p(x1, ds)
do 2
...Setlwo @ 1, {kz;lzk(ﬂ, gﬂ)} PXag-1, dZa,)
—S—S o171, @ (o, dx;) - Setlzda—zw, ¢)|[d0(xd0_1)[)(xd0—2, dxdo—l)

gsetwowlg(xop(xo, dxy).

Thus, we have
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do
B R exp (¢ 1 20, 1) Xo=o]

13 =do{g¢ 7 ()g2(t)+(do—1)gi*"XD)gi(D) }
=d,G(®)
independent of &, where G(¢) is defined for (0, ¢)) and is bounded.
By (8) and (13), we obtain
Ey{e'Rac| Xo=&,}

5,
él—l%ﬁ?ﬁ%+ﬁ%60)

< e-tdolI 0, /14 -0(1)]
for sufficiently small #(€(0, £)). Thus
(14) ¢(d0’ t)ée—bdo[l(ﬁ, @) /A+e-0()]
and, if n=md,+1(0=1<d,), then, by (7) and (14)

S, D=¢(1, 1) - e=tmall G @/A+d-0)]
(15)
=A™ 10, ¢)/(1+e)—0@)]

where A, is a suitable constant. Since, for any ¢ (0=¢{=1)
SXo: 9)
Ea{exp<t log—f(on ) >}§1

so, by (15), we conclude that, for any ¢>0 and for any sufficiently small #(e(0, #)),
there is a positive number A such that

Eyfetsn® ¢))

exp(t log %) } ~¢p(n, t)

SAe—nt[I(c‘i, @)/ (1+ed)-0W)]

for all x.
In the same way, we can prove the latter half of the theorem.

5. Main results.

From now on, we represent the true state of the parameter by 6, which we
assume to be in H, and all probabilities and expectations refer to 6, unless clearly
specified otherwise.

Let a(9) be the set alternative to # and

a7 1(0)= min I(0, ¢).
p€a(s)
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Then, by A3 (), I()>0 for all #eb.
We prove two lemmas.

LemmMa 1. If the stopping rule is disregarded and sampling is continued, then
there exist two constants K and b>0 such that

(18) P{T>n}=Ke™
where T is defined as the smallest integer such that 0,=0, for n=T.

Proof. Assign a priori probability 1/s to each value of the parameter. Then
., is the value of 6 which maximizes the a posteriori probability after the n+1-st
observation. Furthermore, §,=60, if S.(0., 0)>0 for all ¢=#, Thus, to prove
Lemma 1, it suffices to show that for each 0+46,, there exist constants K and 5>0
such that

P{S.(0,, 0)=0}=Ke .
Using an inequality in Loeve [6], p. 157, we have
P{Su(0o, 0)=0} =E{e 2@ '}
for all £>0 and, from Theorem 1, for any ¢>0 and for sufficiently small #>0,
there exists K= K{(e) such that

E{e—tSn (60, } éKe—nt[I(ﬂn, 0)/(1+e)—0(t)],

so, for a sufficiently small # >0 such that ¢,€(0, #,) and b=¢, [1(0,, 0)/(1+2)—O(#:)]1>0,
we have

P{S.(0,, )=0} =Ke"
and Lemma 1 is proved.

LemMa 2. For procedure A, we have

log ¢
1(60)

where N+1 is the sample size requived to veach a decision.

(19) E(N)=—(140(1))

Proof. 1t is sufficient to show that for any given ¢>0, there exists a positive
number c*(e) such that for all c<<c*(e)

log ¢
1(00) ~

For each ¢, let N, be the smallest integer such that

(20) EWN)=—(1+¢)

Sa(0o, ¢)>—log ¢ for all n=N,,

Since N= maX,em, (max (N, T)), so

2n P{N> n}éP{rrelgx (max (N, T))>n}.
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To evaluate (21), we, at first, show that for any ¢eH, and any ¢ (0<¢'<e),
there exist two constants K,=K,(e, ¢)>0 and b,=b:(¢’, ¢) >0 such that

22) P(N,>n} =K for n>nog-—(1+e)%,
0

or, for any ¢eH, and any & >0,

(23) P{S.(6,, p)<—log ¢} =K,e~t

for n>mn,.

Let Ki=Ki(¢'/2, ¢) be the constant obtained in Theorem 1 for the above given
¢ and ¢. If n is so large that n>n,, then, for t€(0, #)

P{S.(0,, )< — log c}

nl(0,)
1+4¢’

SO0t [Uke) | F{ p-tSn(6n) )

=P{—Su(0, )+ >0

S enI 00t [k | [T ontlI 0o, @) |4/ [2-0(D)]
< K o ntlI (60 [2(1+e)2-0)],

If we take ¢,>0 so small that #¢€(0, t,) and

(K0
b=t <‘2(T6,)2‘ —O(t1)> >0

then we obtain (23), and thus (22).
On the other hand, by Lemma 1, there are two constants K, and b. such that

(24) P{T>n}=<K,e  for all n>n,.

Thus, by (21), (22) and (24)

(25) P{N>n}=2s ng{x {max [P{N,>n}, P{T>n}]}=2sKe™"
pEL12

for all n>n,, where s denotes the number of elements in H,, and K and b are
suitably chosen positive numbers.
Using (25), we have

E(N)= gOP{N>n}

= 2 PIN>n+ 5

P{N>n}
+1

=3

<n+ ¥, 2sKe™
n=no+1
A+ log ¢
1(0,)

IIA

+ Mcb
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where M and b, are two positive constants. Therefore, we obtain (20), and com-
plete the proof.

LemmMma 3. For procedure A, the probability of evvor (vejecting H.) is a=0(c).

Proof. Let An, be the set in the sample space for which we reject the hypo-
thesis 6,eH, at the n-+1-st observation and for which §,=¢eH.. Since on the set
An(py

3

 Zp, 002 3 Z0n, )=~ log ¢

J
so we have

f@ 00 11 72,01, 2,2 00 =efl@s ) 11 1@, @ )
Thus
P{A.,} =S Fe: 0")]5[1 s, 2 00N do)A(ds)-- A(dan)

ch fxo: ©) I'nI fx,-1, 2,2 @)A(dxo)A(d2:)---Adxs)
Apy 7=1

and the last integral is the probability of the set A., when ¢ is the true value of
the parameter. Therefore,

a(0)= 3, ioP{AW}g 2 c<se=0()

Ho n=
Thus we have the lemma.
Let the risk function R(f) be
(26) R(O)=7(0)a(0)+cE«N) for 0eb,

where 7(0)=0 if feH, and we accept the hypothesis H; #(6)>0 otherwise.
Combining Lemmas 2 and 3, we have the next theorem.

THEOREM 2. For procedure A, the risk function R(0) satisfies

@7 R(o)g—(1+o(1))%§)c for all 0¢6.

LemMa 4. If peH,, P{laccept H.|0=¢}=0(—clogc), P{reject H\}=0(—clog c)
and 0<e<1, then

(28) P{S(b,, p)<—(1—¢e)log c}=0(—ctlogc)
where

Sts, 9)= % 200, 9.

Proof. As
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Pfaccept H,|0=¢}=0(—clogc),
so there is a number K such that
29 —Kclog ¢= Pf{accept H, | 0=¢}.

Let A, be the subset of the sample space for which S(6,, ¢)<—(1—¢)log ¢ and H,
is accepted at the n--1-st step. Then

P{accept H, | 0=¢}

=50 e f @, ac iz - ddo

Sz so) ﬁ f(xz_l it @)

B0) = i S Fwo: 00) 1T (oo, 22 00)A(dao)X(ds)--H(dn)
" 0o>nf<xz 1 @i 0)
= —io: S e_S(oo) [ f(xg: 00)_f{f(xz-—1, X ao)x(d.z'o)/z(d‘z‘l)...](dxn)

¢t 3 P(Au).
Combining (29) and (30), we obtain
31 % P{An}=0(—c‘log o)

and since, by assumption, P{reject H,;}=0(—clog ¢), so, using (31) we have
P{S5(6, p)<—(1—¢)log c}

g’g P{A,}+P{reject Hy} =0(—clog ¢).

LemMMA 5. If >0, then
32) P{max mm Swn(0o, ©)=n[1(0,)+€]}—0

1Sm=n ¢€H:

as n—:oo,

Proof. For any <0
P{max mm Su(bo, p)Znl[(6s) <]}

1=m=n g€

<# max P{mm Su(bo, @)= n[L(00)+e]}

1=sm=n

<7 max e—mtI(Oo) +el, E{et min ye (7, Sm 09y $d } .
1=m=n

Using Theorem 1, for sufficiently small ¢>0 (¢€(0, 9)),
Efexp [¢ min Sn(fo, )]}
9CH2
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é min E{esz(ﬂo, w)}
pEH?

< min B - g™t 6, @) 1d-e)+0()]
9€Ha

— tLI(00) [(A=e/)+0Ct
= BemLI 00 [A=e+0w)],

where 0<e’<¢/(I(6y)+¢) and B=B(¢’) is the one in Theorem 1. So we have
P{max mm Su(0o, )= nlI(0o)+<]}

1Smsn ¢cH;

SnBe—nl[I(ﬂa)+s] . max emﬂ:lw") [/=e/H+0(]
- 1=m=n

j— —nt[—e/I(8 1-¢)+0C
_nBe nt[—e/ I(f0) [ (1—¢/) O()],

and if we choose a sufficiently small number #>0 such that #e€(0, ) (¢,’ being a

number in (0, d)) and
b=t2< 11 @) . O(t2)>
then
P{max mm S0y, ©)=n[l(0,)+¢€]} =nBe .

1Sm=n  peH;
Thus, we complete the proof.
Combining Lemmas 4 and 5, we have the next theorem.

TueoreM 3. Let {Xw £=0,1,2, ---} be any Markov chain which satisfies A 2~
A4. Then any procedure, for which

(33) R(0)=0(—c log ¢) for all 0€6
satisfies
34) R(O)= —(1+o(1) ;‘zﬁ)c For all 0¢6.
Proof. Let
_ (1—e¢) log ¢
NF¥= —I(ﬂ)+6—— 0<e<L).

Since, if N=n.* and min.m Sv(0, ¢)=—(1—:<) log ¢, then
max miIl Sm(ay w)%nc* (1(0)_'_5)!

1SmSng* peH
)
Py{N=n.*}
=Py{mav min Sn(0, ¢) =n*[1(0)+¢]}

1=mEng* ¢€Hz



TESTING HYPOTHESES FOR MARKOV CHAINS 149
+ Py{min Sx(, ¢)=<—(1—c¢) log c}.
pE€EH2
As, by assumption, R(0)=0(—c log ¢) for each 6€6, so lemma 4 can be applied
to each 6 and each ¢e€a(d). Thus
Py{min Sy, )= —(1—¢) log c}
9E€H?

= [?HP&{SN(e, ) =—(1—¢) log ¢} =0(—c° log ¢),
peiiy

on the other hand, by lemma 5
Py{max min Sn(0, ¢)=n [1(0)+<]}—0 (ne*—00).

1Sm=n ¢cH
Therefore,

(A=) +0(1)) log ¢

Ey(N)=n*Py{N>n*}= T0)+<
and, for all ¢ (0<e<1),

A+o(1))(1—e¢) clog ¢
I(0)+¢

R(MNz=cEy(N)=—

and thus

(1+o0@)) ¢ logec
R&)= 10
which was to be proved.

By Theorems 1 and 2, we see that procedure A 1is “asymptotically optimal”
in the sense that for any procedure to do essentially better than procedure A for
any ¢’ implies that its risk will be of a greater order of magnitude for some 6”.

6. Examples.

Now we consider two examples.

ExampLE 1. Let ¥ be the real line and let U consist of the linear Borel sets.
Let X, be arbitrarily distributed and let {X;, X3, .-} be defined recursively by
(35) Xn:a’Xn—l‘i',B‘I‘Tl/zYn

where (X,, Y3, Y3, ) is an independent sequence of random variables, the Y, each
being M0, 1) and where |a|<1. Only the Y, are observed. In this case, the
unique stationary distribution is

B 7 )
93< l—a’ 1—a? )’
Let O={(Bs, r9): 7,>0, i=1, -, m, j=1,- -, n}. If 2 is taken to be Lebesgue
measure, then the transition densities are given by
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(36) SEi-1, &2 O)= ’\/217re_(£k-a£k =22y
and stationary densities are given by
37 S 0)= \LTTZ,Z: o~ (1=a® (= /1—a2>2 /27

v 2my
The densities f(&x-1, & 0) and f(&,: 0) obviously satisfy A3 and A4. Thus, we
we can apply the above testing procedure A to this case. For the densities f(&x—1,

sk: 0)’
(Xk—an-1—31)2 (Xk—an-1—Bz)2 1 71
— —log X
211 + 272 2 %8 72

106, g0)=Ea{ —

38

2

if 0=(By, 11) and p=(Bs, 12).

ExamMPLE 2. Let the state space consists of the non-negative integers and let
the transition probabilities be
(39) Diyenr(@)=0,  pi,a(0)=1—0

for i=1, 2, ---, while pn,(@)=1. If 2G)=1 for each ieX, then the densities are just
the pi;(0). If we assume that 0<6#<1/2, then the unique stationary distribution is
given by

]. 72 71 1 }
= dlog L% 14 2 4 = (B, —B,)?
‘og Y 1+ r + Tz (B1—p2)

—20 g \*
40) 0= 55 2O=pO) - 5(15) -

Let ©={0;: 0<0;<1/2, i=1, -, I}. Then, for 0€0O, pi, 1.1(0), pi,.—1(0) and pi(0)
satisfy A2-A4, and thus we can deduce the same conclusion. In this case

S pi, H-l(ﬁ) pi: 1—1(0) }
10, )= ir 141 - iy 1-1(0 ——— = tp:(0
@, ) go{p ) log— = gy T Pom@log = oy 1240

0 1-01&
41 =10 log —+4(1—0)1 «(0
o) {0 1og 21— log 1= | 5 5.
1 0 1—-6
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