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ON LEVEL CURVES OF GREEN'S FUNCTIONS

BY M. S. PALLMANN

1. Let D be a general plane domain on which a Green's function g(z, z0)
with pole at z0, ZO(ΞD, exists. It is known that in a sufficiently small neighbor-
hood of the pole each level curve of g(z, z0) consists of a single analytic Jordan
curve and that, as t decreases in g(z, zo)=t, the corresponding level curves may
split up into a finite or infinite number of components. More specifically,
depending on t, each level curve consists of a single component or of a collec-
tion of components, each such component being either a closed curve or an
open arc.

The set of those level curves of g(z, z0) which contain at least one com-
ponent which is an open arc tending in at least one sense toward a critical
point of g(z, z0) is clearly countable. However, there is not much known about
the particular set of level curves of g(z, z0) which contain as components open
arcs tending instead toward irregular boundary points. The purpose of the
present paper is to prove that almost all level curves of g(z, z0) consist of com-
ponents which are closed curves, where "almost all" is understood with respect
to a natural linear measure on the set of all level curves of g(z, z0). The
specific approach taken is from the point of view of Function Theory.

2. Since Green's functions are invariant under conformal mappings it suf-
fices to concentrate in our study on a general plane domain D containing the
point at infinity and the corresponding Green's function g(z, oo) with pole

at the point at infinity. The pointset {z^D\g(z,oo)=t,(^^,-^g-^(0,0), t

some positive number and z~x+iy\ is called a level curve or the ί-level curve

for g(z, oo), even if it consists of many curves. Henceforth such a ί-level curve
will be denoted by ct. The sense on a level curve ct will be taken so that at
each point of its components a sufficiently small left-hand neighborhood at the
point meets only points z at which g(z,co)<t and a sufficiently small right-
hand neighborhood meets only points z where g(z, oo)>ί. The term Green's
line or orthogonal trajectory will be used to denote a maximal open arc on D
which is orthogonal to the level curves ct passing through each of its points.
A boundary point z0 of D for which every neighborhood contains a closed sub-
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set of dD of positive logarithmic capacity is regular if lim^(^, oo)=0 and irre-

gular if limg O, oo):=0 but lim g(z,oo)=H>0. If a boundary point of D has a
z(ΞD z<=D

neighborhood N so that Cl Nr\dD has logarithmic capacity 0 then the point is re-
movable. In fact, we do think of these boundary points as being removed. As has
been shown by Brelot and Choquet and also by Ohtsuka [3 ; Theorem 2.33] all
Green's lines issuing from the pole apart from a subfamily of infinite extremal
length terminate at points of the boundary of D with the Green's function
decreasing on them from oo to 0. Furthermore, the extremal length of the
family of Green's lines not starting at the pole is infinite. This result will be
employed in deriving the following property for the level curves of g(z, oo).

THEOREM 1. Let D be a general domain in the extended complex plane so
that D contains the point at infinity and the Green's function g(z, oo) with pole
at the point at infinity exists. Let Γ be the family of all level curves ct of
g(z, oo). Then

f |gradg |<is=2π for each ct^Γ.
Jct

Proof. Choose tn sufficiently large so that ct. is a Jordan curve. Let ct> be
any element in Γ with Q<f<t"<co. Let av be an open arc on cv which is
maximal with respect to the property that all Green's lines passing through av

also pass through ct». In this way an open arc at» on cr is determined. As
sense on open level arcs we take always the induced sense. Denote by G the
union of all open arcs which are subarcs of the Green's lines through av and
which have their endpoints on av and av. G is a simply connected domain.
Construct an exhaustion of G by a sequence {Gn}n=i of subdomains Gn with

GnaGn±1 and G=\JGn in the following manner: choose a sequence {α ί SJ^= 1

of open subarcs at, n of av with αv,π(Zα:ίSn+1 so that av— 0 άtΊn. Denote the
w = l

corresponding open subarcs on at» by at%n. Then at'= U #r,π The two Green's

lines which pass through corresponding endpoints of άtΊn and άt%n intersect G

in two open arcs γn and δn. Define Gn as the subdomain of G that is bounded

by at',n, &r,n, 7n, and δn, n—\, 2, •••. Sense dGn so that at each point of dGn

a left-hand neighborhood at this point lies in Gn but a right-hand neigh-

borhood does not meet Gn. With *dg denoting the conjugate of the dif-

ferential dg we have *dg=—ψ-dx+-$^-dy and d(*dg)=0 on ΰ—{oo}. It fol-

lows from Stokes' Theorem that f *dg=0 which yields
JdGn

(1) f *dg=( *dg.
J at'.n Jάt',n
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It can be shown straightforwardly that

(2) f *<fe=f | g r a d e s .
Jcct',n

 Jat',n

On the other hand it is known that a level curve ct in a suitably small neigh-

borhood of the pole is mapped by the function F(z)=exp ι\ *dg, zQ^ct, onto a
Jzo

circle C sensed counterclockwise. The angle measure on C with values in
[0, 2ττ] induces a linear measure σ on the set of all subsets of ct whose images

under F are measurable with respect to the angle measure on C. In our parti-

cular situation we have I *dg=σ(άt%n), which together with (1) and (2)

results in

(3) f \gradg\ds=σ(άt%n)

for each n=l, 2, •••. By the continuity of a measure,

Furthermore, the limit of the sequence {f |gradg"|<is} exists because the
Uat',n J n=l

sequence increases monotonically and f | g r a d g | ds<σ(at.) for each n—1, 2, •••.

Thus, from (3) follows that

(4) ί
J at'

The Green's lines which do not start at the pole intersect the level curve
cv at most in a pointset of length measure 0 since they form a family of infinite
extremal length. Thus, the set of Green's lines intersecting cv and starting at
the pole intersects cv in an open dense set. This implies that cv can be decom-
posed into maximal open arcs aV}3 ("maximal" in the previous sense) so that
\Jat',j

 a s a pointset differs from ct< only by a set of length measure 0. The

union of the corresponding open arcs at%J on the level curve ct> covers cv apart
from a set of length measure 0 because the Green's lines which start at the
pole but along which g(z, oo) does not decrease to 0 intersect ct. at most in a
pointset of length measure 0. The exceptional pointset on ct. is also of σ-
measure 0. Thus,

f ί \grdidg\ds

= Σ<K«ι ,,) by (4),

= σ(ct0=2ττ.
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Since ct> was chosen arbitrarily with 0<f'<f*<oo and the equality certainly
holds for any level curve ct for which t>tff, the assertion is proved.

3. A linear measure on the family Γ of all level curves ct, 0<t<oo} is
induced in a natural way by the 1-dimensional Lebesgue measure μ on the
positive real numbers R+. Define a mapping k: Γ-^R+ by k(ct)=t and consider
the collection of all subsets E of the space Γ so that k(E) is measurable with
respect to μ. Then the set function v defined on this collection by v{E)~
μ{k(E)) is a linear measure on Γ.

The concept of module of a curve family will be employed as dealt with
by Jenkins [2] with the generalization that an element of the curve family be
permitted to consist of a finite or infinite number of curves.

THEOREM 2. Let D and g(z, oo) be as in Theorem 1. Let v be the linear
measure defined on the set of all level curves of g(z, oo). Let Γ be any v-measur-

able family of level curves of g(z,<χ>). Then Γ has module m{Γ)—-^ —v{Γ).

Proof. Suppose that Γ is such that there exist two real numbers t', t",
0<t'St"<oo, with t'=g.l. b.{t£ΞR+\ct<=Γ} and t//=l.u.b.{t^R+\ct^Γ}. In case
ct. is not a single closed curve we add just one sufficiently large t to the set,
which does not affect the module. Using the L-normalization, consider all
metrics p(z)\dz\ in which the total length of each ct^Γ is at least equal to 1.

The metric -g—\gradg\ds is clearly admissible in association with Γ by Theo-

rem 1. Let B be a bounded subdomain of D containing Γ. Define a metric on

B by

ί -9—|grad£|ds on \Jct, ct<=Γ ,

0 elsewhere.

In order to compute the area of B in this metric decompose cv (as in the proof
of Theorem 1) into maximal open arcs at>fJ so that ct, — \Jatlj:} as well as

J

ct—\JoLt',j are both pointsets of length measure 0 on cv and cr, respectively,

with at%J on ct> corresponding to at,j3. The Green's lines passing through at,i3

and the corresponding at%J determine on each ct^Γ with t'<t<t" an open arc
atj3. For a fixed j denote the union of all these atf3 by Λ3. Since in a neigh-
borhood of at,y3 a single valued conjugate harmonic function gf is determined
up to a constant we extend a definition of a branch of gf to the domain of
flow through aVj3 with w=fj(z)=g+ιg* being conformal there. Then
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where U A3 differs from U ct only by a set of 2-dimensional Lebesgue measure

0. The right-hand side of the last equality is equal to

I

by Fubini's Theorem, where E3 is the pointset which consists of all points in
the intersection of a Green's line through aVi3 with the level arcs atfj^Aj.

But f =μ(UEj))=μ(k(Γ)) yields

f dg=v{Γ)

for each j=l, 2, •••. Also,

f dg*=\

Thus,

(5) ^

Next we will show that -g—v(Γ) is the least possible area of B in all

admissible metrics (L-normalization). Let p(z)\dz\ be any admissible metric
associated with Γ. In order to have a metric competitive for the greatest

lower bound, assume that JJ ρ2dA2<oo, that is, p^L2. Since also |grad£|eL 2

it follows from Holder's inequality that pp^^L1. Let Jj(x,y) denote the Jaco-
bian of the inverse transformation fj1: (g, gf)-»(x, y). We obtain

2πτff p(z)p*(z)dA,= \\ p{z)\gmάg\dAz

= ff p(z)\gradg\dAz
JJUAj

J J

=Σff p(z)\gτadg(z,oo)\dAz

j\w)) I grad g(fj\w), oo) \Jj{χ, y)dAu

\ gτadg(fj\w), co)\
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by Fubini's Theorem,

=lim Σ f (J Pifj\

=lim f ( Σ f tf/j

= f ( Σ f p{z)\dz\)dμ

dμ

by the Lebesgue Monotone Convergence Theorem. It follows that

2τr(T
J kcnKJ u«rί, /

= f (J p(z)ds)dμ

dμ=v{Γ).
KΓ)

Also,

Thus,

(6)

We infer from (5) and (6) that the module of the curve family Γ restricted as

at the beginning of the proof is given by m(Γ) = -π—v(Γ).

Next, let Γ be a v-measurable family of level curves without the assump-
tion that there be a greatest lower bound t' and a least upper bound t" with

for the numbers t for which c f eΓ. For n=l, 2, —, set

Clearly, Γ=\jΓn. The above proof can be applied to each Γn, n—l, 2,

thus, m(Γn)=-n^-v(Γn). Since v is a measure we have

lim v{Γn)=v{Γ).

By the continuity of the module [4], we have
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lim m(Γn)—m(Γ).

This proves the assertion.

THEOREM 3. Let D, g(z, oo), and v be as in the notation of Theorem 1 and
Theorem 2, respectively. Then with respect to the measure v almost all level
curves of g(z, oo) consist of components which are closed curves.

Proof. It will be shown that the set of level curves which contain a com-
ponent that is an open arc has v-measure 0. Let Γ' be the family of all level
curve components γt with ^ C Q , 0<f<oo, which tend in at least one sense to
the boundary of D. Since those members γt of Γ/ which oscillate toward the
boundary form a subfamily of module 0 [3, Theorem 2.12], it suffices to find
the module of the subfamily Γtr of Γ' which contains only components γt tend-
ing to exactly one point of the boundary in at least one sense. But each such
component can tend only to an irregular boundary point. The irregular boun-
dary points of D form a set of logarithmic capacity 0 as shown by Frostman
[1]. This set is therefore also of harmonic measure 0 in the absolute sense.
It follows that m(Γ")=0 [3, Theorem 2.13], thus, m(Γ')=0.

Let Z1* be the family of level curves ct of g(z, oo) so that every ct^Γ*
contains at least one γt^Γ'. Then m(Γ*)^m(Γ'). Since m(Γ')=0 we have
m(Γ*)=0, thus y(Γ*)=0.

Since there are at most countably many critical points of g(z, oo) on D, the
set of level curves containing a component tending at least in one sense to a
critical point, has also v-measure 0. This completes the proof of Theorem 3.

The result of this paper is contained in the author's doctoral dissertation
written under the guidance of Professor James A. Jenkins to whom gratitude
is due.
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