M. TANAKA
KODAI MATH. SEM. REP.
29 (1977, 120—129

INVARIANT CLOSED GEODESICS UNDER ISOMETRIES
OF PRIME POWER ORDER

By MINORU TANAKA

§0. Introduction

Let M be a Riemannian manifold and 42 an isometry. A geodesic y: R—
M is called to be invariant under A (or A-invariant) if there exists some number
0=0 such that h(y(f))=y(t+0) for all teR. Let C°(M,h) be the topological
space of continuous curves o: [0, 1]—M satisfying 4(g(0))=a(1) with the com-
pact open topology. Two geodesics 7, 7,: R—M are called to be geometri-
cally distinct if 7,(R)#7,(R). The following is a well-known result on the ex-
istence of closed geodesics obtained by Gromoll and Meyer [3].

THEOREM. (Gromoll-Meyer). Let M be a simply connected compact Rieman-
nian manifold. If the sequence of Betti numbers for the space C°(M,1d.) 1s not
bounded, then there exist infinitely many (geometrically distinct) closed geodesics
in M.

The above theorem gives us the following problem of existence on inva-
riant geodesics under isometries.

Problem. For each fixed isometry %, are there infinitely many h-invariant
geodesics in M if the sequence of Betti numbers for the space C°(M, h) is not
bounded?

This problem was solved positively for involutive isometries by Grove [6]
and was solved positively for isometries of prime order by the author [9]. The
purpose of this paper is to show that it is also true for isometries of prime power
order. Grove claimed first that he could prove the following main theorem.
Soon after the author proved it independently and pointed out that Grove's
proof was incomplete.

MAIN THEOREM. Let M be a compact simply connected Riemannian mani-
fold and f an isometry of prime power order. Then there exist infinitely many
(geometrically distinct) f-invariant closed geodesicsin M if the sequence of Betti
numbers for the space C°(M, f) 1s not bounded.

§1. Preliminaries.

Let (M,<,>) be a compact Riemannian manifold of dimension n+1 and g
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INVARIANT CLOSED GEODESICS UNDER ISOMETRIES 121

an isometry of order s. Let £2(M, g) denote the complete Riemannian Hilbert
manifold of all absolutely continuous maps ¢: [0, 1]—M with square summable
velocity vector ¢ and with ¢(1)=g(c(0)) ([4]). Note that each element in
(M, g) can be regarded as a map of R into M by the natural manner ([8]).
The R-action on £(M, g) induced by translation of the parameter reduces to
an S'=R/sZ-action, because any element in 2(M, g) is a closed curve of period
s in M. We have the energy function E?: 2(M, g)—R defined by

Ef(0)=1/2 | :<c'(t), (t)>dt .

The function E¢ satisfies condition (C) of Palais and Smale (see [4]). Itis
also known that ¢ is a critical point of E? if and only if ¢ is a g-invariant
closed geodesic with g(c(¢))=c(t+1) [4]. A nonconstant critical point ¢, i.e.
E#(c)+0, lies always on a critical orbit, S'-c={a(c); a=S'}, which is a subma-
nifold of 2(M, g). Each element of the orbit S'-¢ is a critical point of E*.
Consider a sufficiently small tubular neighborhood 9 of S'-¢ and let E¢ denote
the restriction of the energy function E¢ to 9., the fiber over c¢. If the orbit
S'-c is an isolated critical orbit, then ¢ is an also isolated critical point of E%.
It follows from the splitting lemma of Gromoll and Meyer [2] that E¢ satisfies
condition (C) of Palais Smale (see [8]). In [2] Gromoll and Meyer defined a
local homological invariant for any isolated critical point which was already
defined by Morse [7] for finite dimensions. Let W, and W; be admissible re-
gions for the function Ef on 9, at ¢ [2]. We have a local homological in-
variant K (Eg, c) defined by

J[(Egr C):H*(Wc, WE) .
For convenience we use singular homology with a field of characteristic zero.

For an isolated critical orbit S'-¢ we define a local homological invariant
J(E®, S'-¢) of the energy E* by

H(E#, St c)=Hy(S* W, S* W;).
In [8], we obtained the following three estimations.
(LD (B2, St-c)C I - (EE, )DIL(EE, )
Let 2 be the index of ¢ in 2(M, g). From the shifting theorem [1], we have
H i (EE, )=IUEE, ¢),

where 4} denotes the characteristic invariant which is determined by the only
degenerate part of the energy Ef. Since the dimension of the degenerate part
is not greater than 2n, dim HYE¥, ¢)=0 for 2>2n. It follows from (1.1) and

the shifting theorem that
(1'2) ‘g[k(Eg) Sl 'C)Cj[%—i(Ecg; C)@jf%—x-l(Egy C) .
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Let a<b be regular values of the energy E* such that the critical set in
(E#)"'[a, b] consists of finitely many critical orbits S'-¢?, -+, S*-¢". Then we
have the Morse inequalities

(L3) bA(2(M, ), 2*(M, ) =3, Bu(¢', 8)

Where ‘Qb(M) g)z(Eg)‘-l[O’ b]’ bk(gb(M; g); QG(M, g)):dlm Hk(‘Qb; ‘Qa) and Bk(cl)
g)=dim J,(E*, S*-c").

§ 2. Index, nullity and characteristic invariant.

For each nonzero integer m and o= 2(M, g) we define a curve o,<2(M,
g™ by on(t)=c(mt). Hence the integer m defines the iteration map m: 2(M,
g)—R(M, g™ by o—0,. Let Ac, g) (resp. v(c, g)) be the index (resp. nullity) of
a critical orbit S*-c in 2(M, g). The following theorem is essentially proved by
Gromoll and Meyer [3].

THEOREM 2.1. Let S'-c be a nonconstant critical orbit in Q(M, g) such that
St 15 an 1solated critical orbit in (M, g™ and v(c, g)=v(cn, ™) for some
nonzero integer m. Then By(c, g)=BYcn, 8™ for all k. Here BY(c, g)=dim 4}
(E%, o).

Let f be an isometry of order p% where p is prime and d is a nonnega-
tive integer. Now we will study the indexes and nullities of all the critical
orbits in 2(M, f) generated by the iteration of a critical point. If 7 is a
nonconstant f-invariant closed geodesic, then it is clearly represented by a cri-
tical point c€2(M, f), whose fundamental period is p%/m for some positive
integer m=<p?. Let p%/m,, where p% and m, are relatively prime positive in-
tegers, and choose integers n,, 2, such that myn,=14p™ k, If we set ¢(#)=
c(t/m,) for t=[0,1], that ¢ is a critical point of E/™ and the fundamental pe-
riod of the closed geodesic ¢ is p%. In what follows we set g=f". Further-
more for any integers m and r satisfying mp®-+rm,+0, ¢, 4, yrmg 18 @ critical
point of E'" and S‘~c'mpdo+mo, meZ, are all the critical orbits in £2(M, f) gene-
rated by y. Note that ¢ is fixed by 7%, Let V: be the vector space of
smooth (C*) vector fields along the geodesic ¢: R—M which are orthogonal
to ¢. A linear map L: V;—V; is defined by

LX=—X"—R(X,0)C,

where X’ denotes the covariant derivative of X along ¢ and R denotes the
curvature tensor of the Riemannian manifold M. It follows from Theorem 2.3
in [7, p. 45] that

Xem, [=3, dim (X< Vi; LX=pX, X(t+m)={3(X() for all t=R}
(G, fr)=dim {X€ Vs ; LX=0, X(t+m)=F%(X()) for all tR}.

2.1
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Here m=mp*+rm, and fx denotes the differential map of f. Let us comple-
xify V: as Bott did in [1] in case of f=id. and write it as V; again. Extend
fs, 8%, and L to C-linear maps and write them as f, g%, and L again respectively.
For a complex number @ with absolute value 1 a real number g and a nonzero
integer m, let Si{y, m, wg¥] denote the vector space of all complex vector
fields Y in V; satisfying LY =pY and Y({+m)=wgP(Y (1)) for all t=R. Recall

that we set g=/".
LEMMA 2.2. The following three equalities hold for any integers v, m with
mpot+rm,#0 and real p.
1) Sy, m, 7] =w;§89=155 Lo, 1, wg dNSLy, m, f3]
where we set M=mp*-+rm, and p®=s.
2) Sil, 1, g NS, T, f51=S:Lp, 1, ogs I ker {(f35)mm0m740—=m}
where the linear map 2% Vi— Vs 1s defind by (f22(X))(t)=r2°(X(®) for t=R.

Note that &(t) 1s a fixed pont of f?*° for each teR.
3 Silelesdnker (/") —a)= @ Silp, 1, g ker (4%—z)

where we set a=w™ and n=mn,+rk,.
Proof. 1f |ms|=1, then 1) is trivial because f=g=id. and Sig, 1,1d.]=

Sily, —1,1d.]. Hence we assume |7s|=2. It is obvious that Silg, M, f5]D
_69 SE[/": 1, @gxIN SE[#, i, f%]. For each YES;[,LL, m, f%] and @ with wﬁs__:l,

w™=1

we set V,(0=1/I7s| 3 @ gzt (Y(t-+q—1D). Itis easy to check that LY, =pY,,
q=
Y= X oY, and Y,eS:i{g, @, f5]. Thus it is sufficient to prove Y,eS: g, 1,

wms=1

wgx] for each w with w™=1. From the definition of Y,
Yot D=1/17s] S 0 tgwt (Y (t+a) =0/ |Tis| gl 3, 0 gt (V4 )]
—o/|7s| g (3] 0 tgat (Y (t+4—1)]
=/ || 8L 3} @ G (Y (t+q— D)+ V(14175 —1))]

because |7s| is a period of Y.
We obtain 2) from a direct computation.
We assume that |7]=2 since 3) is trivial when |n|=1. For each Ye&Sig,1,

wgxlN ker {(f2%)7—a"'} and z with z°=a’, set
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Y,=1/13] 35 2 ().

It is easy to check that Y= 3 le, and Y,eSi[y, 1, g« ker (F2%°—2).

Thus 3) is true for n+0. If n=0,
S, 1, wg«In ker {(f2°)°—a~} =Sily, 1, ogx]N ker {(F2%)° —a™'}
= @ Silu, 1, wgedN ker (2% —2)

S=a”

= @®_Silp, 1, wgdn ker (3°-2),
2'=d

since z°=1 for any z satisfying ker (f2 °—z)# {0}. Hence 3) is settled.
It follows from the above lemma that

S, m, fi1= @ Silp, 1, wgINSLp, M, fi]

@™S=1
= D Sy, 1, ogsIN ker {fp2)E— )
ms_y
=& _@ Sely, 1, wgs« 1N ker {(fgng)ﬁ_a-l}
a’=1 o™=«

= B Silp,1,, 0gN ker (f3%—2)

- @ Sip, 1, egdn ker (f27—2),
2=

since (zM)?* %=1 for any z with ker (f2%°—z)# {0}.

If we set A (@)=3 dimc{Sils, 1, wgx]N ker ( fE*—2)} and N*(w)=dimc[S:0, 1,
wgx N ker ( ,{Id"—#;)} for each complex number z, ® with |z|=|w|=1, then for
each z A°(.- ) and N*( - ) define nonnegative integer valued functions on the
unit circle, {weC; |w|=1}. It follows from (2.1) that we obtain formulas on
the indexes and nullities of the critical orbits S*-C,, ,apsrm, -

'z(c-mpdo-wmo’ M= 3 Y > A w)

apd_d0=l wmpd0+rm0=a Mg trkg—g—1
2.2)
l}(C-mpdcwrmo’ M= 3 > > N{w)
mpd_do=1 wmpd0+rm0___d mngtrEy_g—1

The functions 4? and N? have the next properties.

LEMMA 2.3.
1) For each N*(w)=0 except for at most 2n points which will be called Poincaré
points with respect to z (see [3] or [9]).
2) For each z A*(w) 1s locally constant except possibly at Poincaré points with
respect to z (see Theorem 3.1 and 3.2 of M. Morse [7, p. 91]).
3) For each z and w,, lim A (@)= A*(w,).
@-0g
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4) For any z with ker (f2—2)={0}, 4°=0 and N*=0.
Now we state a growth estimate like Lemma 1 in [3].

LEMMA 2.4. For each integer [,0<1<p? % either Z(Empdwmo, £)=0 for all

meD,={meZ*"\J{0} ; mn,+k,=] mod p? %} or there exist positwe numbers ¢,
and a, such that

X(Emlpd(H‘mo’ f)_’z(émzpdm.moy f)g(ml_m2)el_al

for any m;=D,,1=1, 2 with m,=m,.
Proof. 1t follows from (2.2) and Lemma 2.3 that for each meD,,
2C ppagimy )= 2 > Fiw)

an_d0=1 wmpd0+m0=a
where Fé,o(w)=l 21 A(w). If FL #0 for some «, then there exist positive
2'=a”
numbers ¢, and a, such that

X Fi(o)— 3 Fh(0)=(n,—m,)ek,—ak,
o™i=a, o™2=a,
for any m,=D,, i=1,2 with m,=m,, where m;=m,p%+m, The proof of ex-
istence of such numbers ¢, and a4, is analogous to that of Lemma 1 in [3],
since the functions F}, have the same properties as the functions 4° have.
Therefore if A(C,  451m, /)#0 for some meD,, then F,=0 for some a. Set
e, =p% 3 ¢, and a,=>)d,, where 3 denotes the sum of all a, a?® %=1, sa-
24 a a
tisfying FL==0. For any m;eD,,i=1,2 with m,=m,,
Ay, [)=Almy N)=2'( T Fi(w)— I Fi(w)

o™i=a o™=

2;/{(m1"m2)53—a¢lx} =(m;—m,)e;—a,. (q.e.d.)
The next lemma is also important.

LEMMA 2.5. For each integer 1,0<I<p? %, there exist positwe ntegers k,
-, by and sequences m},1>0, j=1, -+, q, such that the numbers mik, are mutually
distinct, {mik,; 1>0, 1=1, -+, g} ={mp®+m,; me D} and for m} with (m}, p)=1,

v(C, ., » )=y, ) where v-m,=1 mod p?,
777
and for m) with (m}, p)#1,
Wy SI=HE s, =00,

Here v(c)T denotes the nullity of a critical orbit S*-c n 2 (Fix(f), 1d.) where
Fix (f) 1s the set of all points fixed by f. Note that the set Fix(f) 1s a totally
geodesic submanifold of M.

Proof. For each positive integer a and p% satisfying (¢, p*)=1 and 0<
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d,<d—d,, put P{={w; LE ) N¥(w)#0} and Qf={¢qsZ"; there exists some po-
=a

sitive integer b such. that exp (2wib/(g-p“))eP¢ and (b, ¢-p?)=1}, where a=

exp (Zma/p®). If we set Q,= d\i Q#\U {1}, then the number of the elements in
ap“ 0=

Q, is finite by Lemma 2.3. If for s<1)rne meD,,

V(Coplgrmy )= d_Zd) dZ > N¥(w)#0,
P70 =g gMP 0T MY—g gl =g L

then there exist a=exp (271a/p™) and w=exp (27ip/q) satisfying a”d'd°=1,
w™**™=g and weP¢ This implies that 7 is devided by p%, that is, Qf con-
tains G/p% for a=exp 2ria/p%). Here it is assumed that (a, p®)=1 and (5,
g)=1. For each subset ACQ,, let k(A) denote the least common multiple of
all elements in A. Choose distinct numbers £, ---, 2, such that {k,, -, k,}=
{k(A); ACQ,}. Keeping je({1, -, u} fixed, we select from the sequence mk,,
meZ*, the greatest subsequence ik, satisfying ¢ | ik, whenever ¢=@Q, and
g Yk, The numbers ik, are mutually distinct, {#; 1>0} contains 1 for each
jef{l, -, u} and {mik,; 1>0, j=1,--,u}=Z*. Choose all elements £, -k,
from the set {&,, -, k,} which satisfy {#’.k, ;1>0}\{mp%—+m,; meD}+¢ for
each 7,1=<r=<q. Then we can choose the subsequences {m{};s,, 1=r=gq, from
the sequences {},},s, which satisfy {mp®+m,; meD}={mk,,; 1<r=<q,1>0}.
Set k,=Fk,,. Note that for each j, 1=<j=<g¢, the number of the elements in {m?;
i>0} is infinite, because if m is an element of the set, then m-+k(Q,)-p? is also.
In the first place we will consider the case where (m}, p)#1. If for some a=
exp (2mit/p®)

= > NY(w)#0

z —
wmjk~7=a d=a—1

then there exist positive integers Q¢ and v satisfying exp (2niv/(g- pdl))m}kf
=exp (27it/p™). Since (v/(§-p*))mik,=t/p* mod 1, (v/q)m;k,=t mod p®. Of
course it is assumed (¢, p1)=1. The integer § devides k, because §|mjk, and
geQ,. Since ((vk;/q)m:, p*1)=1, (m}, p®)=1. Therefore
W, ,N= T 3 N«
J A

m%k 2'=1
© =

If we P} satisfies @"7*/=1, then w*=1. Thus
v, ., ,» )= X X N¥(o).
i%a wa = 2l=1
On the other hand mp?-+m, and p% are relatively prime for any integer m,
because (mpo+mo)n,=14p%-(mn,+k,). Since mik; {mp®+m,; meD} and
plm, p% is equal to 1. Thus (I, p)=1 because /=—1 mod p. Hence if we notice
that N*=0 for any z with z?*#1 we have that for each w, Nl(co):LE N*(w).

2'=1

We obtain
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Wl , )= 3 N1<w>— 5 Nw).

mjk a)«’ =1
On the other hand it follows from (2.2) that
Y= £ N'@ and ua)'= T No).

Lk
o' %=1 wfx

y(¢

5,
m.k]

Note that Fix (f) is a totally geodesic submanifold of M, and that a vector v

at a point in Fix (f) satisfies fywv=v if and only if v is tangent to Fix (f).
Next we will consider on m} with (m}, p)=1. Since m} and p? are relati-

vely prime, there exists some integer » satisfying 7-m=1 mod p% For each

2 .
a with a?*-%=1 and wePy§, if 0""*'=aqa, then w*’=a’, since (0"/)»?=1 from
the construction of {ik;}. Thus

23) W, V= 5 T 3 N0,

apd_do =1 ] —a” P

On the other hand mk, is written as mik,=m,p*+m, for some m, = D,, because
myk; € {mp*+m,; meD,}. Hence k,=(rm,)p%+rm, modp® Since [=mn,+k,
mod p* %, lr=(rm,)n,+rk, mod p?~%. Thus it follows from the formulas (2.2)
that

24) Aoy = 2 £ 3 No).
aP? 0oy o =g M=a~

Note that n'n,+rk,=(m)n,+rk, modp®% if k,=n'p%+rm, for some n’. It
follows from 4) in Lemma 2.3 that (2.3) is equal to (2.4).

Now we assume that all the critical orbits S*-¢_,, are isolated in M, 1).
.7 J

For m} with (m}, p)=1 it follows from Theorem 2.1 and the above lemma that
for all &

<c‘bkyf) B(ck];f)
For m} with (m}, p)#1, it holds that for all &

dme{(Ef'F““f) c' ) duné‘["(Ef’F"“f) ;) and

m]lz

(C Zk 3 f) dlm‘ﬂ[o(Ef‘le(f) Z .

mik
mik 5

).

777

Here 4°(E{'F*" ) denotes the characteritic invariant of ¢ in the manifold
Q2 (Fix (f),1d.). The first equality follows from Theorem 2.1 and compare the
proof of Lemma 3.6 in [6] for the second one.

Thus we obtain

COROLLARY 2.6. Let S'-¢ be a nonconstant isolated critical orbit 1n

mpdo+mg
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Q(M, f) for each meZ*\J{0}. Then there exists some constant B such that
Bg(r‘mpd0+m0,f)§B for all keZ and meZ*\J{0}. Furthermore Bg(c'mpd0+m0,f)
=0 for all k>2n and meZ+*\J{0}.

COROLLARY 2.7. Under the hypotheses of Corollary 2.6 for the resulting
constant B, By(C,, yagsm, /) are uniformly bounded by 2B. Moreover, giwen k>2n-+1,
the number of orbits Sl-c'mpdowo such that Bk(c'ﬂdowc,f)qto 1s bounded by a
constant C which is independent of k.

Proof. From (1.2) and the above corollary Bi(C,, papsmy /)=B-2(Cppaosme /)
+Bi-2-1(Cpaosmy /) =2B where 2=2(C, pa04m,y f). For each integer [ with 0=l
<pT, if ACppagimy /)=0 for all me D, then Bu(C,, a01p, /)=0 for all meD,
and k>2n+1. If 2(0'mpdo+m0, f)#0 for some meD,, we have to estimate the
number of orbits S‘~c‘mpdo+mo,meDl, with B (Ca, )+ By 1-1(Cm, )#0, where
m=mp?o+m, Since B, /)=0 for £>2n or k<0, we need an estimate for
the number of orbits S'-ém, me D, satisfying £—2n+1)SA(Cx, f)Sk. Let ¢
and q; be the constants in Lemma 2.4. Then a number C,=(a,+2n+1)/e,+1
is an upper bound for the number of orbits S'-iz, meD,, with B,(Cm, f)+0.
Therefore the number C-——'ES;. C, is an upper bound for the number of orbits
Sl-c'mpdomo,meZ“U{O}, with By(Cnplorm,, f)#0. Here A denotes the set of
integers 0=</<p? % guch that there exists some integer meD, satisfying
l(émpdoero’ N#+0.

THEOREM 2.8. (Main theorem) Let f be an isometry of prime power order
on a compact simply connected Riemannian manifold M. If the sequence of the
Bettr numbers for the manifold Q(M, f) is not bounded, then there exist infini-
tely many geometrically distinct f-invariant closed geodesics in M.

Remark. The inclusion of 2(M, f) into C°(M, f) is a homotopy equiva-
lence [4]. For each positive integer # the k-th Betti number for C°(M, f) is
finite, because M is simply connected [8].

Proof. If there exist only finitely many f-invariant closed geodesics, then
we can find some critical poirts ¢* of E/"(1=1<7,n,€Z") such that any non-
constant critical point in £(M, f) lies on some orbits S*-(c"),,, meZ*. It follows
from the assumption that all the critical orbits in (M, f) are isolated. Choose
B* and C* for the critical point ¢* according to corollaries 2.6 and 2.7 and set
B=max {B*; 1<i=r} and C=XC. Now for any £>2n-+1 the constant C is an

=1 .
upper bound for the number of orbits S*-(c"),€82(M, f), 1=1=r, with By((¢)n,
f)#0. Hence it follows from the Morse inequalities (1.3) that we can choose
some regular value b for each fixed £>2n+1 such thatfor all regular values
d=b

bu(QU(M, f), (M, [)=0 and b,..(R%M, f), 2X(M, /)=0.
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Hence it follows from the exact sequence of homology that
b(R2(M, /)=b,(2°(M, 1)).
It also follows from (1.3) that for any regular value a with 0<a<b
bu(Q2%(M, f), 2%M, /) =2CB.

If we choose 0<a<min {E/"(c?); 1=1<r}, then Fix (f) is a strong deformation
retract of 2%M, f) (see [4]). Thus from the exact sequence

bi(Q¥(M, [), Q4(M, 1))=bx(2°(M, f), Fix (f))<2CB.
Since b, (Fix (f))=0 for all k>n+1, we derive by using the exact sequence
bu(2°(M, ), Fix (f))=b,(2°(M, f)).

Thus bu(2(M, )=b,(2(M, F)=b,(2X(M, f), Fix (f))<2CB. This contradicts
the hypothesis of the theorem.
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