
M^ KOBAYASHI AND S. TSUCHIYA
KODAI MATH. SEM. REP.
29 (1977), 103—119

HOLOMORPHIC ISOMORPHISM WHICH PRESERVES

CERTAIN HOLOMORPHIC SECTIONAL CURVATURE

BY MINORU KOBAYASHI AND SUSUMU TSUCHIYA

1. Introduction. Let (M,g) and (M, g) be two Riemannian manifolds.
Denote the corresponding sectional curvatures by K and K respectively. A
diffeomorphism / from M to M will be said to be curvature preserving if and
only if for every p^M and for every 2-plane σ in the tangent space TP(M) to
M, we have

K{σ)=K{Uσ).

It is natural to ask whether a curvature preserving diffeomorphism is isometric
or not. The answer to this question was first given by R.S. Kulkarni as fol-
lows

THEOREM ([2]). // M is an analytic Riemannian manifold with dimension
^4, then a curvature preserving diffeomorphism f: M*-*M is an isometry except
in the case that both M and M have the same constant curvature.

In the case where both of (M, g) and (M, g) are Kaehlerian manifolds, we
may expect that a holomorphic sectional curvature preserving diffeomorphism
is a isometry. Indeed he proved

THEOREM ([4]). Let M and M be connected Kaehlerian manifolds with cor-
responding holomorphic sectional curvature functions H and H respectively.
Suppose that dimM^2 and there exists a diffeomorphism f: M*->M such that
f*H=H. Then either H=H—const, or f is holomorphic or anti-holomorphic iso-
metry.

On the other hand, in our previous paper ([5]), we defined the /̂ -holomor-
phic sectional curvature and the τ-bisectional curvature and showed that the
constancy of the holomorphic sectional curvature is equivalent to that of the
^-holomorphic sectional curvature or to that of the holomorphic r-bisectional
curvature. It is then quite natural to ask whether a ^-holomorphic sectional
curvature preserving or a holomorphic r-bisectional curvature preserving dif-
feomorphism is isometric or not. Concerning this problems, we shall prove the
following two theorems. We shall define in Section 3 what are called #-holo-
morphically isocurved Kaehlerian manifolds and what are called r-bisectionally
isocurved Kaehlerian manifolds.
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THEOREM I. Let two Kaehlenan manifolds M and M be Θ-holomorphically

isocurved manιfolds(θΦ—^\ If the holomorphic sectional curvature H is not

constant, M and M are isometric.

THEOREM II. Let two Kaehlenan manifolds M and M be θ-bisectionally iso-

curved manιfolds(θφ—~\. If the holomorphic sectional curvature H is not con-

stant than M and M are isometric.

In Section 2, we recall the definition of the angle between two subspaces
and, for completeness, prove two fundamental lemmas. Section 3 will be de-
voted the preparation for the proof of above Theorems.

2. Then angle between two subspaces. Let U be an n-dimensional real
vector space with inner product < , >. Consider two arbitrary ^-dimensional
subspaces S and T. We are now going to define inductively sets

(2.1) θn={θir-,θm; Xlf»;Xm; Ylf

Xi, ",Xm and Yi, ",Ym being orthonormal respectively in 5 and T, where

Q£θ1^θ2S"'^0m^-γ. First we put

«!=inf {<(*, Y); I E S , FGΞT, XΦO, YΦO} ,

where<(Z, Y) denotes the angle between X and Y. Then we can take unit
vectors X^S and Y^T such that with <(Xi, Yi)=θx. Next, assuming that
Θm is already defined, we put

Sm={Xe:S; <X,Xt>=0, (i=l, - , m)} ,

Tm={Y^S; <r,r t>=0, (i=l,-,m)},

and define θm+1 by

θm+ι=inf {<(X, Y);

Then we can take unit vectors Xm+1^S, Fm + 1<=T such that -^(Xm+1, FT O + 1)=
θm+1. So, we have a set

Θm+ι— {θ1} "'fθm+1 Xly •••, Xm+ι Fj, •••, Fm+1} ( l ^ m ^ ^ ) .

LEMMA 2.1. Put 0=inf {<(Z, F ) ; l e S , F e T } . Lβί Z2, X2^S and Yu Y2

be unit vectors such that <(Z X , Y1)=<£(X2f Y2)^=βt then

cos<9 /or all aXx+bXtφQ,
\ α | | ^ + 6 ^ | | ' | |aF1+^F2 |

where \\X\ denotes the angle of any vector X.
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Proof. When θ—-~, the lemma is trivial. When θφ—, we have

(2.2)
X1 Λj

^cos θ for any XjXi

since θ is the least angle between vectors in 5 and T. The inequality (2.2)
implies

x2 cos 0 «* ! , X2) cos * - < r 1 ,

Since the inequality holds for all numbers xu x2 such that x1X1

J

rx2X2Φθ> we
have

(2.3) (X^ycosβ^Y^Xz).

Exchanging Yx for F 2 in (2.2), we have

(2.4) < Z 1 , Z

Similarlly, the inequlity

for

implies

(2.5) <yl9

From (2.4) and (2.5), we have

=(Xl9 F2>

and consequently

(2.6)

Hence we have

l} F 2>+<Z 2, Y,})}

lf X2}) cos ̂ =
\\aXλΛ-bX2\\2^ '

where we have used (2.3), (2.4) and (2.6). Thus the proof is completed.

Lemma 2.1 shows that the set {X^S; there exists F e T such that
γ)={0}KJ{0} is a vector subspace of S and hence the set {θlf—,θk} is inde-
pendent of the choice of Xlf •••, Xk^S and Yu —, F Λ e T . Now we shall put
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<(S9T)=(θl9».9θm)

LEMMA 2.2. Let S, S' T and V be k-dimensional suspaces of V such that
<(S, T)=<(S', T')=(θu -", θk). Then there is an orthogonal transformation u of
V such that u(S)=S' and u(T)=T'.

Proof. Let {Xl9 •••, X'k, Ylf - , Yk} and {X[, - , X'k, Y\, •••, Y'k) be two sets
of vectors constructed in processes taken to define the angle <(S, T) and
<(S', T') respectively. Now we may assume that 0=θ1=- =θm<θm+1^ί~'^θk.
We now define Zlf ~, Zn as

Zt=Xt

1 cos σm_k+J

and take an orthonormal basis {Z2k_m+1, •••, Zn) of the orthogonal complement

to the subspace spanned by Zlf •••, Z2k_m. Similarly, for {X'u •••, X'k, Y'u •••, Y'k}

we define Zi, •••, Z'n as above. Then Z/s and Zi's are orthogonal bases of K

Denote by u the orthogonal t ransformation of V such that u(Zi)=Z't ( z = l , •••,

n).

Then we have w ( Z J = Z i (x^^) and hence u(S)=S/. Moreover, since

Ym_k+i—cosθm..k+ιXm-k+ι

we have w(FJ=F^ (i^k) and hence u(T)—T', which completes the proof.

Since lemmas 2.1 and 2.2 are established, we can call <(S, T)=(θlf •••, ̂ Λ)
the angle between 5 and T.

Concerning subspaces of a complex vector space V with complex structure
/ and Hermitian metric < , >, we have proved in [5]

THEOREM 2.3. Let S and T 2m-dimensιonal crmplex subspaces of V. Then
there are m real numbers θu~',θm such that

THEOREM 2.4. If S is a k-dimensional real subspace of V, then we have

(i) <(S9fS)=(θuθl9'"9θn9θn9-γ) for k=2m+l9

(ii) <{S9JS)=φi9θl9-9θn9θm) for k=2m.

Taking account of Theorem 2.3 we can denote <(S, T) simply by (θl9 θ2,
", θm) for complex subspaces S and T. Because of Theorem 2.4 we can denote

<S,/S) simply by {θly'"yθm) for real subspace S. If σ,σ' are /-invariant 2-
planes, then <(σ, σ/)=(«i)=^i, where tf^inf {<(X, Z0 l e σ , X'<=σ'}. If σ is
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a 2-plane, then <(σ,/(j)=(r1)=r1, where τ^inf {<(X, X'): X<Ξσ,X'tΞjσ}.

3. #-holomorphically isocurved and τ-bisectionally isocurved manifolds.

Let (M, ( ,) ,/) be a Kaehlerian manifold. A plane section σ of the tangent
space to M is called a #-holomorphic section if <^(^,Jσ)=θ. The sectional
curvature for a #-holomorphic section is called the #-holomorphic sectional
curvature for σ. For a #-holomorphic section σ, we have cosΘ=\(X, JY}\ for
any X and F forming an orthonormal basis in σ. Let σ and o ' be /-invariant
planes. The holomorphic bisectional curvature H(σ, σ') is defined by Goldberg
and Kobayashi ([1]) as

H{σ,σ')=(R{X,JX)JY,Yy,

R being the curvature tensor of M, where X is a unit vector in σ and Y is a
unit vector in σ'. H(σ, σf) is called holomorphic r-bisectional curvature for σ
and σ' if <(σ, σO^^ When the angle between σ and o' is equal to r, we have
cos τ=(X, JY) for certain unit vectors X in σ and F in σ'.

Let (M, <,>,/) be another Kaehlerian manifold. We shall say that the
two Kaehlerian manifolds M and M are θ-holomorphically isocurved if there
exists a holomorphic diffeomorphism / : M->M preserving ^-holomorphic sec-
tional curvatures. Also we shall say that M and M are τ-bisectionally isocurved
if there exists a holomorphic diffeomorphim / : M^M preserving holomorphic

τ-bisectional curvatures. We now have (A) {R{X, Ϋ)Ϋ, JQ=(||! | |2 | !Γ|[2-<f^T>2)
for #-holomorphically isocurved Kaehlerian manifolds M and M, and (B)

, XXR{X,JX)JΫ, Ϋ)=\\XnΫ\\XR(X,JX)JY, Y)
for τ-bisectionally isocurved Kaehlerian manifolds M and M, where R is the
curvature tensor of M, X, Y are orthonormal vectors tangent to M such that
<JX, F>=cos^ and X=f*X, Ϋ=f*Y.

We shall prove an algebraic lemma for later use. To do so, we consider
a unitary matrix U=(utJ)(uτj^C,ι,j = l,2). Then we have tUU=UtU—I, i.e.,

(a) I « π l 8 + I « i « l 8 = l , (W I ^ 2 1 | 2 + K 2 | 2 = l ,
(3.1)

(C) | M i i Γ + | M 2 i Γ = l , (d) MnU21 + M 1 2 U 2 2 = 0 ,

where ΰtJ is the complex conjugate of uXJ and | ΰ ι ; | is the absolute value of

uXJ. From (3.1, b) and (3.1, c) we have |MUI = | M 2 2 | , and from (3.1, a) and (3.1, c)

we have \u12\ = \u21\. Hence we can put | u n \ = \w22|— c o s ^ , |w

^<p<i--~-j and consequently we may put

Wu=cos φ β^~ l α r i l=cos φ (cos α n + V—1 sin α n ) ,

v/IΓlQri2—sin ^ (cos α 1 2 + V—1 sin a12),
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w21=sin ψ e^la21=$in φ (cos a21+ V—1 sin a21),

u22=cos φ e/ZΓloC22=cos φ (cos a22

J

Γ V—1 sin a22),

where an, a12, a21 and a22 are real numbers with an—a12—a21

J

Γa22—{2nJ

rl)π
(n integer) because of (3.1, d). Therefore we have

where

cos ψ cos alx sin ψ cos a12. . cos 9 sin α n sin φ sin α12.

sin φ cos α2 1 cos <p cos α2 2 sin ψ sin a21 cos <p sin α2 2

Thus the real representation Uf of U is given by

,A -B
U'=(

κ B A

with respect the canonical basis eujeue2 and Je2 of C2. We now put X—ex

and Y=Jex+^/l—a2 e2 (a=cosθ). Then X and F span a #-holomorphic section
and <({Z}, {F})=^, where {X} is a holomorphic plane spanned by X and JX.
Moreover, we have

X' :=U'X=p1X+piY+p'JX+p;jY,

where

α . 1 .
Px—cos φ cos α n pSin φ sin α 2 1 , p2=—τ-$m φ cos α 2 1 ,

b b r

a . , 1 .
^!=cos ^ sm axx—i~sm Ψ c o s α 2i, p2—~jrsm ?̂ sm α 2 1 ,

g!=sin ^ (b cos α12H—i"COS a21j—a cos >̂ (sin α n—sin a22),

(3.2)

q2—cos 99 cos α2 2 -s in ω sm α 2 1 ,
0

ίu ' 1 ^ λ 1 / \

<7!=sm ψ [b sm α 1 2H—-sin α 2 1 J + a cos ?̂ (cos α n —cos α:22),

ars in^cosα 2 1 , with b=Vl—a2.

We can prove the following Lemma 3.1 by straightforward computations.

LEMMA 3.1 Let X, Y be orthonormal vectors such that (JX, Y}=a and
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X^P.X+P.Y+P'JX+P'JY, Y'^q.X+q.Y+qJX+qJY

be orthonormal in a way that (JX'', X'}—a. Then the following equations (3.3)
~(3.6) hold.

, Ϋ)Ϋ,X>

+{ρ\qi-ρ1q\)\R(X,JX)JX, X>+(PΆ-P*qdXR(Y,JΫ)JΫ, Ϋ>

, JX)JY, Y>

+2(p1q'2-pJ

ίq2+p2q[-p'2q1)(p1q[-p[q1KR(X, JX)JX,

(3.3) +2(p1q
l

2-p[q2+p2q[-pl

2q1)(p2q'2-p{

2q2KR( Y, ]Y)JY, X)

, Y)X, JX>

, Y)Y, JY>

, JY)JY, X>

, Y)X, JY>,

q'2-pA)\\ Y\\<X, Y>

(3.4) +2(ρtqι-ρ1qt+PWi-PWιXPiύ-PΊqi)]lιXKX, JY>

ά-PM}ll Y\\<X, JY>

\-p2qXX, YXX,JY>,

(R(X'JX')JY', Y'>={Pι+P?Xql+q?KR(XJX)JX, X}

+q\q i)<R{X, JY)JY, Xy+iiPΛ-PzPlXqΛ-qzqΊKRiX, Y)Y, X>

+2{Pl+P?Xq1q,+q[qd+(qί+q?XPιPz+P\P'2)<R(X,JX)JX,Y>

(3.5)

(X, Ϋ)X, JX>
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f Y)Y,JY>

, JX\ J?, Ϋ>

(3.6) +#&)} \\Y\\\X, Y>+2{(Pl+p'ί
2Xq1q'2-q2qdHql+qΊ2XPipf2

-P2PΊ)} II Ϋ\\\X, JY>+ {(Pl+P'i2

+q'i2)} \\X\\2\\

The equations (3.3) and (3.5) will be established if (R(Xf, Y')Y'', X'>, (R(X',JXf)

}Ϋ'f Ϋ/S),(R(X, Ϋ)Ϋ,X}> ...and etc. are substituted by the corresponding <R(X',

Y')Y', X'), (R(X'JX')JY', Y'y, (R{X, Y)Y, Z>...and etc.

LEMMA 3.2. // the equation

(C) D+E sin 2<p+Fco$ 2φ+G sin 4^+J?cos iψ

=(D-\-E$Ίn 2^+Fcos 2<p-\-G sin Aφ~\-H cos Aφ)(a+b sin 2φ

+ c COS 2φ-\rd sin iφ+e COS Aφ)

holds for any fo^φ^-^), then

(a) Ee+Hb+Fd+Gc=0, (b) Fe+Hc-Gb-Ed=0,
(3.7)

(c) Ge+Hd=0, (d) He-Gd=0.

Proof). Expanding the right hand side of (C) and putting the coefficients
of sin 6φ, cos 6φ, sin Sφ and cos 8^ are equal to zero, we have (3.7, a)~(3.7, d)
respectively.

4. Proof of Theorems.

Proof of Theorem I). Putting an=——, a12=— and a22~— a in an—a
12

—a21-\-a22=(2nJrl)πf we have cos«2i—sin α: and sinα 2 1=cosα. Substituting
these into (3.2) we have
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. 1 , fl . ^ , 1 a .
Pi——/v cos φ-\—T- c o s α s i n ^ , px — 7== cos φ — sm a sin <p,

Pi——r sin a sin ̂ , £2=-7- cos a sin 9 ,

a 2 . \ . , / 1 . \
7- sin a) sin 9+a(^—ry—sin a j cos ψ,b

(4.1)
, / b , α2 \ . / 1 N

gi=^ /"o""*—<r c o s α y S l n y+fl( / o ' ~ c o s a )
c o s

2—cos a cos ̂ >—j— cos a: sin ̂ ,

Qr=—sin a cos φ-\—7- sin a sin φ , with 6=Vl—a 2 .

Substituting (4.1) into (3.3) and (3.4) and using the equations thus obtained, we
have from (A) an equation of the form (C) with coefficients E, G, H and d
given respectively by the following equations:

^ , Y)+(b2-a2)H(X)-H(Y)-2a\R(X,JX)JY, Y}

-ia\R{X, Y)X,JX)-4a(R(X, Y)Yjγy}+-^{2aK(X, Y)+aH(X)

+a(R(X,JX)JY, Yy+(R{X,JX)JX, Y}+<R(Y, JY)JY, X>

(4.2) +(l+2α2)<i?(X, Y)X, JX>+<R(X, Y)Y, JY)+2a(R(X, Y)X, JY}} sin a

, Y>-(R(X,JX)JX, Y)

-(R(YJY)JY, X}+(2a2+lKR(X, Y)X,JX)+<R(X, Y)Y,JY>

-2a(R(X,

-a2KR(X,JX)JY, Y)-4a(2b2-a2KR(X, Y)XJX)+4a<R(X, Y)YJY>

-2b\R(X, JY)JY, X}} +~^ψ {2a K{X, Y)-a(b2-a2)H(X)

(4.3) +a(R(X, JX)JY, Y)+(a2-b2KR(X, JX)JX, Y)+(R(Y, JY)JY\ X>

+(3a2-b2KR(X, Y)X,JX} + (R(X, Y)YJY)+2aζR(X, Y)XJ,Y>} sin a

^ > γ>
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-(a*-b*KR(X,JX)JX, Y}-<R(Y,JY)JY, Xy+(3a2-b*)<R(X, Y)X, JX>

+ <R(X, Y)Y,JY}~2a(R(X, Y)X,JY}} c o s α + ^ {-K(X,Y)-a2H(X)

-2a(R(X, Y)X,JXy+(R{X,JY)JY, X}} sin2α+-~ {a(R{X,JX)JX, Y)

+ <R(X, Y)XJY» cos 2cc,

+{a2-b2)(R(X,JX)JY, Yy+2a(a*-2b*KR(X, Y)X,JXy

+2a(R(X, Y)Y, JYy-b\R(X, }Y)JY, Xy) +^\y {2a K{X, Y)

+a(a2-b*)H(X)+a(R(XJX)JY, Yy+(a*-b2KR(XJX)JX, F>

+<,R(Y,JY)JY, Xy+(Sa2-b*KR(X, Y)X,JXy+(R{X, Y)Y,JYy

+ 2a<R(X, Y)X,]Yy) sin a+-η^ {2a K{X, Y)+a(a2-b2)H(X)

(4.4) +a(R{X,JX)JY, Yy-(a2-b2KR(X,JX)JX, Y>-<R(Y,JY)JY, X)

+(3α2-f>2)<i?(X, Y)XJXy+(R{X, Y)Y,JYy-2a(R(X,Y)X,JYy} cos a

+ ^~W~ WX,F)+a2#(X)+2a<i?(Z, Y)X, JXy

', JY)JY, Xy}sin2a+-a~2

b^ {a(R(X, JX)JX, F>

, F)X,/r>}cos2a,

+4a{X,JYy\\Y\\2-2b\X, f>2+2(2a2-62)<Z,yf>2}+<sina> sin a
(4.5)

+~{a\\x\\\x, ry+(x, ry<x,j?y}

Where we denote by <sin a> the coefficient of sin a and by <cos α> the coeffi-
cient of cos a.

However because of Lemma 3.2, we have the equations (3.7, a)~(3.7, d) con-
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taining these coefficients. These equations imply that there occur only two
cases, that is, Case 1, where d=e=0, and Case 2, where <f+e2=£θ (i.e dΦO or
eΦO).

Case 1). In this case, using (4.5), we have

(4.6) (l-6αV)||Z|r+1| Ϋ\\i+2{a*-b*)\\Xn f ||2+4α|| Ϋ\\\X, JΫ>

(4.7) αiι*ιι2+α, j? y-<χ, f >2=o,
(4.8) <X, ΫXa\\X\\2+(X, JΫ»=0.

Consequently we have <X,Y)=0, ||ΛΊI = ||y|| and(JX,Ϋ}=a\\X\\2, from which

nΫΪιn~vv~a' Therefore in Case 1 /* is conformal on the subspace spanned by

X, YJX and JY.

Case 2). In this case, (3.7, c) and (3.7, d) imply G=H=0, and this equation
implies together with (3.7, a) and (3.7, b) E=F=0. Taking account of (4.2), we
have from £=0,

(4.9) 4a*K(X, Y)+(α*-b*)H(X)+H(Y)+2αXR(XJX)JY, F>

+4α\R(X, Y)XJXy+4α(.R(X, Y)Y,JY)=0,

(4.10) 2α K(X, Y)+αH{X)+α(R(X, JX)JY, Y}+<R(X, JX)JX, Y>

+(R(Y,JY)JY, X>+(l+2α*KR(X, Y)X,JX>

+<i?(Z, Y)Y,JY}+2α(R(X, Y)X,JY}=0

and

(4.11) 2α K(X, Y)+αH(X)+α(R(X, ]X)JY, Y>-<R(X, JX)JX, Y>

+{R(YJY)]Y, X>+α+2α*KR(X, Y)X,JX}+(R(X, Y)Y,JY>

-2α<R(X,Y)X,JY}=0.

The equations (4.10) and (4.11) are equivalent respectively to

(4.10)' 2α K(X, Y)+αH(X)+α(R(X, JX)JY, F>+(l+2α2)<i?(Z, Y)X, JX>

+<R(X,Y)YJY)=0,

(4.11)' <R(X,JX)JX, Y}+(R(Y,JY)JY, X}+2α(R(X, Y)XJYy=0.

Similarly, (4.3) and G=0 imply

(4.12) 4α*K(X, Y)+{l-bαV)H{X)+H{Y)-2(2b*-α2)(R{X, JX)JY, F>

-4α(2b2-α*KR(X, Y)X,JXy+4α(R(X, Y)YJYy=0,
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(4.13) K(X, Y)+a2H(X)+2a<R(X, Y)Xy JXy-(R{X, JY)JY, Z>=0,

(4.14) a<R(X, JX)JX, Y>+<R(X, Y)X, JY>=0.

Finally, (4.4) and H=0 imply

(4.15) 2a K(X, Y)-a(b2-a2)H(X)+a<R(X, JX)JY, Y)

+(3a*-b*KR(X, Y)X,JX}+(R(X, Y)Y,JY>=0,

(4.16) (a*-b*KR(X,JX)JX, Y>+<R(Y,JY)JY, X>+2a(R(X, Y)X,JY>=0.

Using the equalities (4.10)'~(4.16) obtained above, we are now going to
derive some equations containing curvatures. First from (4.11), (4.14) and
(4.16) we have

(4.17) <R(X, JX)JX, Y>={R(Y, JY)JY, X)=<R(X, Y)X, JY>=0.

From (4.10)' and (4.15) we obtain

(4.18) aH(X)=-<R(X, Y)X, JX) .

From (4.9) and (4.12) we get

(l-3α2)//(X)-4α<i?(Z, Y)X,JX)-2<R(X,JX)JY, Y>=0.

Substituting (4.18) into this equation, we have

(4.19) <R(XJX)JY,Y>=±^-H(X)

We have also, from (4.10) and (4.7),

a(a*-l)H(X)-<R(X, Y)X,JX}-2a(R(X,JX)JY, Y>-<R(X, Y)Y,JY>=0.

Substituting (4.15) and (4.16) into this equation, we obtain

(4.20) aH(X)=-(R{X, Y)Y,JY},

which together with (4.15), implies

(4.21) <R(X, Y)Y, JY}=<R(X, Y)X, JX> .

Substituting (4.18) and (4.19) into (4.13) we have

(4.22) K(X,Y)=^f^H(X).

Furthermore, substituting (4.18), (4.19), (4.20) and (4.22) into (4.9) we get

(4.23) H(X)=H(Y).

Finally, from (4.19), (4.22) and the first Bianchi's identity, we have

(4.24) </?(*, ]Y)JY, X}=±^
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Therefore, using (4.17), (4.18), (4.19), (4.20), (4.21), (4.22), (4.23) and (4.24) we
shall show that the holomorphic sectional curvatures are constant for any ho-
lomorphic section belonging to the subspace spanned by X, Y, JX and JY. To
prove this fact, we take an arbitrary unit vector Z such as Z=xX+yY-\-uJX
+vJY. Then, by direct calculations and taking account of (4.17), we have

H(Z)=(x2+u2)H(X)+(v2+y2)H(Y)+4(vx-uy)2K(X,Y)

+4(vxs-x2yu+xvu2-u3yKR(X, Y)X, JX}

+A(xvy2+xv3-y3u-uv2yKR(X,Y)Y,JY}

+2{x2+u2Xf+v2)(R{X,JX)JY, F>

+4(xy+uv)XR(X,JY)JY,X).

Therefore, since \\Z\\2=x2+y2+u2+v2+2(yu-xv)a=l,

H(Z)=H(X){(x2+y2+u2+v2)2-2(x2+u2Xy2+v2)

+(l+3a2Xxv-yu)2-4a(x2+y2+u2+υ2Xvx-yu)

=H(X){(l-2(yu-vx)a)2+(l+3a2Xxv-yu)2

—ia(l—2(yu—vx)aXvx—yu)+(a2—iXxv—yu)2}

=H(X).

The equation H{Z)—H{X) shows that the holomorphic sectional curvatures are
constant for any holomorphic section belonging to the subspace spanned by
X, Y, JX and JY. Here we recall that if p is a non-isotropic point of M, then
there exists an orthogonal vectors elf ~,en,Jelf ~-,Jen belonging to the tan-
gent space TP(M) such that

(see R.S. Kulkarni, [4]), where Ruij^(R(eιJet)eι,JeJ}.
If we put X=et and Y=co$ΘJeι+$in θeJf then X and Y span a ^-holomorphic
section. Since H{Z)—constant, we get H(eι)=H(eJ). On the other hand, (4.17)
implies

sintf

because of et=X, ej=—τ—β-(Y—cos ΘJX). This contradicts (*). Thus at any

non-isotropic points Case 2 does not occur.
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Since the set of non-isotropic points is dense, the given mapping / is ne-
cessary conformal because of the conclusions derived in Case 1 and Case 2.
Thus by the same argument developed in [4] we can show that / is isometric.
Therefore Theorem 1 is completely proved.

Proof of Theorem II). As in the proof of Theorem I, substituting (4.1)
into (3.5) and (3.6), and using the equations obtained, we have from (B) an
equation of the form (C). Because of Lemma 3.2, we have the equations of
the forms (3.7, a) (3.7, d). From (3.7, a) and (3.7, b) we have again only two
cases, that is, Case 1, where d=e=0 and Case 2, where d2jre2φ0 (i.e dΦO or
eΦϋ).

(Case 1). In this case, we have

a γ 4 a ,-ψ-γ,* . a(2a2-b2) ,
lml <x γ> + <2b*

+<sin α> sin α+<cos α> cos a+{—^ || A | | 4 + ^ < I / Γ > - ~ <TjΫ>

sin 2α+{^ ||X\\\XΎ>+^-<XΫXXjf>} cos 2a .

From which we get (4.6), (4.7) and (4.8). Therefore we have <A, F>=0, ||A"|| =

and <yI^>-α||A||2 and consequently pj|jffJ-=*

Case 2). In this case we have again G~H—E—F—^). Now by similar
calculations as in the proof of the Theorem I, we obtain equations (4.12), (4.13),
(4.14), (4.9), (4.10), (4.11), (4.15) and (4.16).
Therefore by the same argument as in the Theorem I we can prove Theorem
II.

Appendix. The following formula have been used in obtaining E, G, H and
d appearing in Theorem I.

b2—a2 a2 a2

+ 8 +

a(b2—a2) a a \ n

~W V 2""sin a~VΊ c o s V c o s 2ψ

Qi—p'iQi= 2^2—"2£- s i n 2(P~^tf c o s 2(P '

-p°qH-w*-2ττsin a+ύτcos a)+(^-27Tbsin a
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a \ / a2 1 1
~9~~77J)cos / s * n 2(^^~v?h^^~9~7Ύ s m a^~9~/Ύ c o s / c o s 2 ^ '

. , , , / I . 1 λ , / α a Λ o
1̂02—p20i—(̂ —9 / T s m ^ " " W T c o s / \?~7TΛ s m α ~ ^ 7 T 7 > c o s α J s l n ^^

. / 1 . . 1 \
\"~9~~7T s m α 9~~/Ύ c o s α / c o s ^ '

, , / 1 . 1 λ , / f l . fl \ .
1̂02—PzQi—y— y~7"ψ S l n ^ " " ό " / ^ c o s a)~^\"o~7Wh s m α 9~7τ7) c o s α y S 1

T S i n α " 2 V T C 0 S α ) C 0 S 2<P >

P*U-MHW-2JΊ
 s i n α +2^T c o s α)+("""έ"+27Tϊsin α

+2vτ^ c o s α ) s i n 2^+(~έ"2~ 2 v τ s i n α~2vτ c o s α ) c o s 2^'

iq'2—Pι<32+p2q'ι—p'2<li=(—/γ-b sin ̂ — 7 7 ^ 1 cos α ) sin 2^

+ ( — - / ^ sin αH—^= cos a) cos 2^,

^ γ - b sin ̂ - ^ 7 J ^ cos α) sin 2^ ,

' ' ( a2~b2 . b2-°>2 \ ' o
0102=Q^/y^ sin α + 2 V γ ^ cos αj sin 2^

—y=s- sin a-\—-.= cos a) cos 2^,

P1Q2+P2Q1+PΊ Q2+PWi=-τψSin <2+~/y c o s α >

*p*-to*=W*+(27Tbsin α + ί 7 2 6 c o s α ) s i n 2ψ~Wcos 2 c " '

8m

α(δ2-α2) ^ r :

1 .

~ V T s m α~ V T c o s α ) c o s
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—y+^rψb s i n α + r r p c o s a)sin 2^

—(-7Γ+—7y sin αH—-,-ψ cos α) cos 2φ .

The following ones have been used in obtaining E, G, H and d appearing
in Theorem II.

+ ( + i ^ i ^ ^ C 0 S
Pl+Q'ι2:= ̂ +~^rjb ( C 0 S α + s i n °^ s i n

2= 2 p - 2̂ 2 cos

a(b2-a2) a(a2-b2) . , a{a2-b2)
+ sin ^ + v γ b cos

V 2 α2 si

α) sin 2^

V 2 α2 sin a— V 2 a2 cos α) cos 2φ ,

cos 2φ ,
b2 a

s i n α "2VT^ c o s α ) s i

Γbsin α +2"7T^ c o s α ) s i n 2φ~W c o s 2^°'
2 - ^ 2 . α 2 - ^ 2 x . o

y-2b

 s i n α"~2VT^ C°S / S m φ

—~/γ s i n α +7/T C 0 S α ) C 0 S 2 ^ '

- χ + 2 V T ί s m a+2VT6 c o s a ) s m 2^

a(b2—a2) a a \

^ — V T s m a~ vτcos a ) c o s 2φ
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