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ON SOME OPERATIONS IN THE BORDISM
THEORY WITH SINGULARITIES

By NOBUAKI YAGITA

§1. Introduction.

In [11], Sullivan constructed the bordism _theory with singularities. Let
S be a closed manifold. Then in this theory “W is a closed manifold with sin-
gularities of type, S” means

W=WU(cone S)x L (along boundary)

where W is a manifold with 0W=LXS and L is a closed manifold. Then we
can define a bordism operation Qs by Qs(W)=L. In this paper, we study
this operation.

Throughout this paper, let manifolds be stable almost complex manifolds.
For finite complex X the bordism group MU(S)«(X) is defined by the bordism
classes of maps from closed manifolds with singularities of type S to X.

By taking the stratification of singularities, Sullivan also defined the theory
when singularity is a set of manifolds and proved that the ordinary mod p
homology theory is the bordism theory with singularities of type (9, x;, X, ***)
ie. Ho(X; Zp)=MU(p, 11, s, ---)x(X) where x, denote 2i-dimensional ring gene-
rators of MUx(S®)=MUy. By using the Quillen’s theorem [9], we shall show
Hy(X; Zp)@)Zp[---=L ng, < 1= MU(p, v, Vs, --*)x(X) where v, denote x,i_, which are

i%pl—1

Milnor manifolds for a fixed prime p.

Let I, be the set (p, vy, -, v,) and let MU(I,) be the spectrum of the
theory MU(I,)x(—). We denote by @, the Spanier-Whitehead dual operation
of Q,;. Our main results of this paper are as follows

THEOREM 34. If yeH¥(X; Z,) then AQi(»)=Q.y) for some 2x0€Z,,.
where Q, ts the Milnor exterior operation.
THEOREM 4.1. MU(I,,)*(MU(I,,));MU*/I,:I(?MU*(MU)(@A[Q{{, -, Q7. where
MUx
! are cohomology operations which satisfies Q7(y)=Qi(y) for each finite complex
X and each element ye MU(L,)*(X).

In this paper we always assume that p is a fixed prime number, (co)ho-
mology theories are reduced theories and X is a finite complex.

Received January 29, 1976.



2 NOBUAKI YAGITA

After I had prepared this paper, Professor David C. Johnson imformed me
that Theorem 4.1 was independly proved by Morava [3],[6] and the proof of
Theorem 3.1 was improved by his suggestion. I would like to take this op-
portunity to thank him for his kindness, and also to thank Professor Seiya
Sasao very much for many suggestions and encouragements.

§ 2. Bordism theory with singularities.

In this section we define the bordism theory with singularities which is
due to Baas [17 and recall some known results.

Let S, be the set of manifolds P,, P,, ---, P, such that P, is not a zero di-
visor of MU4/(Py, -+, P,_y), 1=1, .-+, n.

DEFINITION 2.1. V is a decomposed manifold if V is a manifold and for
each sequence a=(ay, -+, a,), 0=a,<n, there exist submanifolds 9,V such that

00,V=\ 0, »V,
1Fa
0, VN0,V=0¢,, »,V for 1€a and 0, ;,V=¢ for ica.
DEFINITION 2.2. A is an S,-manifold (or manifold with singularities type

S,) if for each sequence a=(ay, -+, a,), 0=a,<n, there is a decomposed mani-
fold A(a) such that

Alp)=A4,

Ala)= A(e, 1))X P, for ica, A(a,i)=¢ for ica and if B is a permutation of «,
A(B)=sign (a, B)A(a) and the following diagram commutes

i, 5 A(a)

3;A(@)Nd; A(a) id. X twist

_a(j,i)A(a) —_ . —A(a, j, i)XP]XPg

Ala, 1, )X P,X Py

where P, denotes one point.

DEFINITION 2.3. A singular S,-manifold in (X, Y) is a pair of (4, g) such
that A is an S,-manifold and for each «, g(«) is a continuous map so that the
following diagram is commutative

Y
AL(}) 2@ X 7
3, A(a) g(a,i) | &(a,1,0)

R

Aa, )X P; - Aa, i)




BORDISM THEORY WITH SINGULARITIES 3

DEFINITION 24. Let (A, g) be a singular S,-manifold in (X, Y), it bords if
there exists a singular S,-manifold (B, k) such that

doB(a)=B(a,0) O A(a),  h(a, 0)] A(a)=g(e)
h(a, 0)] B(ar, 0)—(A(a)—0,4) C Y
Now, in [1], we have

THEOREM 2.5. (Sullivan) The bordism classes of singular S,-manifolds in
(X, Y) has an abelian group structure. If we denote 1t by MU(S)x(X,Y) then
MU(S,)«(X,Y) forms a generalized homology theory.

THEOREM 2.6. (Sullivan) There 1s an MU,-module exact sequence

MU(S)LX, Y)

MU(S)u(X, ¥
" MU(S)(X, Y)

4 .

MU(S, )X, Y)

where 1 is the natural inclusion, (Ala), g(a))=(A(a, n+1), gla, n+1)), and S, ;=
(Sn) Pn+1)-
COROLLARY 2.7. MU(S)«(SY=MUx/(Py, -+, Pn)

ExAMPLE 2.8. Since the direct limit is an exact functor, lim MU(S,)«(—)

is a homology theory, especially we have MU(S.)«(S"=Z, for

Sw=(D, X1, X,, ---) and hence this is the ordinary mod p homology theory. Let
BP,(—) be the Brown-Peterson homology theory localized at p then we have
MU(S)«(X)RZpy =2 BPy(X) for Su=(-++, x,, -++.), ixp’—1.

THEOREM 2.9. (Morava, Sullivan[3] [7]) MU(S,)«(X) 1s an MUy/S,-module.

§3. Relation to H*(—; Z,).

In this section we shall consider the homology theory MU(S,, -, X;, )
s¥pr—
(—)®Z,, and denote it by BP(S,)x(—). o
LEMMA 3.1. MU(p, Vit =5 Vany xmly Tty xmk)*(X)
mjxpS-1
:’!__MU*P, (/xml’ R xmk)B;® BP<p) Uil; ) U‘Ln)*(X)
'3
Proof. Let N be Z,[---x, - JCMUy/p. By the Quillen’s decomposition

s¥7J-1
theorem [9], we have

MUD)$(X)ZMUL(XAS" Ve )=MUy @ BP(XAS"Ue?)
» BPy »
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=N Q BP{(XAS'Ne)=NQ BP(p)«(X).
Zp » Zp
For the induction argument we assume that
MU(py Vi ) vl])*(X)ENngP(p) Vi1y Yy 'U“)*(X)
Consider the Sullivan’s exact sequence (Theorem 2.6);

N@BP(P. e, Vi)x(X)
»

NQBP(P, o, Vi)x(X)

Vijer
) 1
MU(p, +, vija)5(X)

Since v,;.;-image of an N-module generator of N® BP(p, -+, v,,)x(X) is an N-
module generator or 0, ker-v,,,; and coker-v,;,, are both N-free modules and
then MU(p, -+, v,;:1)%(X) is an N-free module. By considering another Sulli-
van’s exact sequence;

MU(p, -, vij:1)x(X) MU(p, -+, ve5e)4(X)

a 3

MU, =+, Viser, Xmd)5(X)

Clearly we have ker-x,;=0 and also MU(D, -+, V141, XnD)x(X)ZMUyx/Xpn, @ MU
(D, -*v,j+0)%(X). The same consideration leads us the isomorphism o
BE(p, -+, Vays )(X)ZBPy 0 MU(D, -+, v1541)5(X)
Thus, by isomorphisms
MU, -, voye)x(X) = Nz®BP* ® MU(p, -, vej41)(X)
%N® BP(p, - vml)*(X)

the proof is completed
Specially we have

COROLLARY 3.2. Z,[-, x5, - JQH(X; Zp)=MU(p, vy, Vs, *+*)x(X)
sxpi-1

Let [A4, g1e MU(S,)x(X) for S,=(P,, --+, P,). Then we define bordism opera-
tion Qp, by Qp,[A(®), gla)]=[A(a, 1), g(a,7)]. The following lemma is clear
from the definition.

LEMMA 3.3. QPLQP]:_QPjQPi f07" 0§1§]§n.

We denote by @p, the Spanier-Whitehead dual ([10], [12]) operation of
Qp,, especially we donote Q,, by Qi Milnor proved in [5] that the multiplica-
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tion of Steenrod algebra A, gives an isomorphism Q®®=A, where Q=4[Q,,
Qs ], Qu1=17'Q;—Q,p*", and @, denotes the Bockstein operation. Now, we
investigate a relation between @, and Q;.

THEOREM 34. If ye HX(X, Z,) then AQ((y)=Q.(y) for 2x0Z,.

Proof. We consider the following Sullivan’s exact sequence:

BP(i,)(KZp)™) e BP(3.)(KZ,)™)

Un

H(KZ,)™; Z,)

where (KZ,)™ is an m-skeleton of the Eilenberg-MacLane spectrum KZ, and
BP(B,,) denotes BP(P, -+, Vn41, Vns1, --+). For the fundamental class o< H*
(KZ)™; Zp), let 8’: (KZ,)™—S**""'BP(v,) be the map which represents do<
BP(E,,)((KZI,)’"). Let o’ be the fundamental class of H*(KZ,; Z,)=,. Since
o=1: (KZ,)"~KZ, and ¢'=1: KZ,—~KZ,, we have

Q.0=100=0"10'=(10")*0".

On the other hand, Baas-Madson proved in [2] that H*(BP(v,); Z,)=
Ap/Q.L7]. Since i*e’=7 and 6’*: A,/Q.[r]—~ A, for *<m, we have §*(c)=
Q.0 or=0. But clearly Q,>0. Thus we have Q,(0)=Q,(¢) and hence the
theorem is proved by naturality.

COROLLARY 3.5. If xe H¥(X; Z,) is representable by S,-manifold and v;& S,
fO‘I’ Sn:(p: V2, '"U]n): then th:()-

Proof. If x is representable by S,-manifold then x has no singularities of
type v, hence we have Q,x=0.

COROLLARY 3.6. Let i be the natural inclusion MU¥(X)—HX(X; Z,). If
v,x=0 for xe MU*(X) then there 1s z€ H¥(X; Z,) such that ix=Q,z.

Proof. Let x*=[A, fJ(e MU*(DX)) be the dual of x. Since v,x*=0 means
that there exists a manifold [ B, g] such that o[ B, g]=[v,x 4, f], we can give
[B, g] a v;-manifold structure such that Q,,[B, g1=[4, f].

Remark : This corollary can be proved by Sullivan’s exact sequence.

§4. The spectrum MU(p, vy, -+, Vy)-

In this section, we shall study only the case S,=(p, v,, '+, v,), and denote
it by I,. Our purpose is to prove



6 NOBUAKI YAGITA
THEOREM 4.1. MU(L)*(MUI)=MU*/I, @ MU*MU)QALQY, -, Q1].
MUx

Proof. By the induction on j, we construct MU(J,), which satisfies the
following for j<mn, h>0.

1) MUI)MUIp=MU*/1, M(EUQ* (@Igz*ql;)c*("l’“";;‘q’m iv*Qim). where
where ¢=2p", R*=MU(MU*) and MU* is a k-dimensional skeleton of MU.

(2) For h<h’ there is an inclusion

12 MUU)n G MU
and the induced map
2 MUUI)*(MU(Ipw) —> MU )*(MU())

is an epimorphism.

(3) MU+ D MUU;), O MUU,)" and MU(I,):YMU(IJ)h.

@) MUIMUI)=MU*/I, @ MUSMU)QALQ, -, Q7].

Now we consider the Sullivan’s exact sequence :
q

MU MU )n)

MUY (MU T

) i

MU 3. )(MUI)2)

First we obtain from (1)
MU MU = MU/ Ty @ MU )0)
and from (2) im*MU(,;,)*(MU(I;),)=0. Thus there exists an isomorphism:
MU(I,H)*(MUUJ))EMU*/IMM(%@* MUI*(MU(I,)) .

Then there is a map:

1=1Q1Q1: MU;) — MU(l,,,)
and we can define X({;,,) by the cofiber map

STMUL) ——> MU(L) —> X(L2»)
where r=2(p’*'—1). Since i-v;,,=0, there is a map g such that gf=i. By

the homotopy exact sequence, X(I,,,) is homotopically equivalent to MU(I,,,).
From (1) there is a map:

Vet STMUU ) —> MU, ,
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On the other hand, from (3) we may consider v,,, as a map
Vs STMUU )y — MU qo41 -
Now we define MU({;,,), by the cofiber map:
STMUU s > MUU s g1 —> MUU s
Then, from (3) and X(J;,,)=MU(l,,,), (3) holds for j+1.
Next we consider the exact sequence derived from this cofiber map:

MUL)*S™MUU)) MUY MUy g341)

Vjsre
4 s

A[U<IJ')*<A{U(IJ'+X)’L)

We want to show v, = v ,,.

From [4],[8], we have MU*(MU")=R*=MU*Q{S,0’||a|<h}, where S, is
the Landweber-Novikov operation ¢’ is the class represented by the inclusion
1: MU*~MU. Since vi0’: SSMU* — MU—-MU

Vj+1

is equivalent to o-v,,,: STMU"-S"MU—MU

Vy+1
where ¢: STMU"—S"MU is the inclusion, we have v},,0'=v,,,06 and then
it follows that

V¥1(Sa0”)=8,(v}10")= a=§+r SﬂUjH'SrU:ij'Sao' mod (p, vy, -+, ,v,) .

On the other hand, since the following diagram is commutative

STMU MU
Vjsy
3 !l
STMU(;) MU

Vit

we have v}, (1S5,0)=v,,,iS,0. If we assume that there exists a natural
MU*-module map 6,: MU*(MU,)—MU(I,)*~@p-t*++22)-D(MU(I;),) and hence
Qo +Q,0,0=0. Then we obtain v},=-v;, from equalities v},0,0=0v%.0c

:vj+1 '5]'0'.
Thus we get by (1) the isomorphism
®) MU(Ij)*(MU(Ij+1)n)EMU*/vj+1M@*MU(IJ)*(MU(I,%)

DWMUUIN*MUU Dhsqr+1) —MUI)* (MU ;)n))

Now we consider the Sullivan’s exact sequence:
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MUU MU 341)n) MUUIMMUTj4n)

j+1

MU )X MU j42)8)

Then, from (5) and i6=Q)},,, we have an isomorphism :
MU(1j+1)*(MU(1;+1)n)EMU*/IMM@* MU )*(MUI)n)@j41
MU*/I,-HM@>|< MU )*(MU(I )4 gi+1) -

This shows that (1) holds for j+1. And moreover, if we put d,,,=0"'49, where
d7! is the spliting of 0, then it is clear that d,,, satisfies the above assump-
tion.

Next, from (2) for j and exact sequences of cofiber maps for 2 and A/,
we can know that (2) holds for y+1. At the last, since we have 'l‘im‘MU(I 0¥

(MU ;41)4)=0 (4) holds for j+1 and these complet the induction. By using
the same argument, we have
COROLLARY 4.2. BP(I,)*(BP(I,))=BP*/I, BP*(BPYRA[LQY, ---, Q1.

Brx

Especially we have
COROLLARY 4.3. (Milnor)
H*(KZP H ZP)EZ:D B@* BP*(BP)RA[Q,, -+].
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