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i Introduction* Let £(**<.%)
be regular in the upper half-plane ^ > o
satisfying the condition

(l l) J°T

where C is a constant independent of fpa
We say the class of such functions A*
The following theorem concerning a func-
tion of M

p
 is well knownβ

theorem A. Let f(*>*H
lf
'/ £>o.

Then
(i) J ίx+î ) converges to & function
Aδ £~* + ° for. almost ajl x ,

is said the boundary function of
(ii) -fiχ+iyy converges to

mean with index h or

(1.2) II ftyHV J

as

in

'ĵie main arguments of Hillβ and Taxnarkln
for proving Theorem A is to transform
the theorem into the one for functions
regular in the unit circle, using a fact
due to Gabriel^ concerning subharmonic
functions. The proof of Theorem 1 in
$Z consists, on the contrary, of showing,
first, the fact (iv) and then of deducing
(i), (II) and (iii) and we do not use the
transformation of a half-plane into a
circleo Thus it gives Incidentally an
another proof for analytic case \>> x

We can also prove the theorem by
reducing to Theorem A. Indeed originally
I have proved Theorem 1 in this way.
Afterwards Mr T* Ugaeri has given the
proof written in this paper With his
permission I have given his proof

S. VerblunskyΦhas proved the
Theorem Bo Let <uu.) be a function

Such that

(iii) life***!!)* Is a non-increasing
tlon of ̂  and Tjϊs & consequence of

I D ) )\fc*+χp\ι tends to,
and

(iv) &(*>) can be represented ag &,
Poisson Integral of the boundary function

°ϋ iS. other words

The ease fz.1. is due to K Hille
and J D Tamarkin^nd the case <?</><*
was proved by the author (*}<» Analogous
results for functions regular In the unit
circle are well known (*)*

Consider the function fι*, y) harmo-
nic In y>o , such that

(1.4) J~

C being a constant independent of 3>o
When )> = i , we consider the harmonic
function satisfying (1.4) with f>«i- and
in addition satisfying the condition that

(Ic5)

where t is a given arbitrary positive
number and e is any set such* that »>(*><£

9

( 8* S(t)) , We shall denote the class
of functions having these properties, Hj

9
.

In § 2, we shall prove the analogous the-
orem for a function of H

p
 as Theorem A.

la bounded for x and tj>o .
converges to ja function -f tx > for almost
every x as y-? + o > and

U.8)

A* C# OffordC^ generalized this
theorem assuming only the fact that (1.7)
exists in some Cesaro sense for ^j>o
and +<***) Is bound in x and ^c>o)

 m

In Vβrblunsky's theorem -J-tχ,y) evi-
dently defines a harmonic function in
the upper half-plane and Is a consequence
of the well known theorem of Fatou
(transforming the half-plane into unit
clτcle)

A. C. Offord, on the other hand, has
also considered a general class of func-
tions and treated the analogous Fourier
transform problems (7).

Write

(1.9) +»M- fa £(<
and suppose that If

(1.10) i^lf



C being a constant independent of ***
and if ί>^

1
 , &*><*) satisfies (1,10)

with f> = 4- and in addition

(1.11)

for every set € such that
i s δ(«

 β
 We call the class of

such functions M
o

p
 „ Offord proved

that if £ί") e Hj , f>2: 1 , then

(1.12) ^
x
;

β
- ί - . Γ α ^ ; e "

α
V ( C

exists for almost all x and further
has Fourier transform -f-&o In t-j, oa»

(1,13)

less than ^® Since
nic, we Have, for σ < p < v

o

from which it results

is harmo-

In proving these facts, he avoids
the use of harmonic functions and mainly
uses weak convergence*

In § 4, we consider the more gene-
ral class H/

Λ
 of functions

with the condition

(1#15)
 Jj

C being a constant independent of
and γ > o , and when ^ "= *- , in addi-
tion

(Iol6) J* 14, Cx.

Z. being any set **Ct)&£, S^S(t) »
We shall prove the Pourlor trans-

form theorem concerning H ^
Λ
 »

2. xne harmonic function In a. half-
plane

 #
 We shall prove the following the-

orem,, p
Theorem !«, If ^

then
(i) +ίχ,*j) converges to a function

f ) J|§. ̂ r»^o~Tor almost all x. J"
(11; fcx.n) converges tof

( x )
 in mean

with index f> * , and hence +{%)«. u
 p
 ,

TiiΓJ ii fίX/^U tends increasingly
to ufί> >ιι as_ ij-^+o , and

(lv) ±(χ.<i) can be represented as the
Polsson Integral of •$-(*) , 5Γ.

(a 1}
 ^ > - *

where Cπ is dependent only of
Hence ^ ^ * ί ^ is bounded for <3£*jo

Now for. fixed j
e
 * we consider the

function

fw -kίJ' 3*

which is evidently a harmonic function
for — < * < « - , 3 > o

Is bounded, setting
Since

And by the known fact, $ ί̂ >i/)
ges f(κ,*o) for almost all x,
consider the function

conver-
. If we

which is clearly harmonic for y > ̂ o and
bounded in ^ < χ < « a , *j

>o
 , then

since +(*, y+ veί ~> -f-ίx̂  3 >, Ffi,y)-^o
as ^-^ + o

 #
 Thus by Fatou's theorem

F (*,«*> ~o fop ^ ̂ o ^
Then we get

(2.3)

Proof We shall first that If *«,<|
i H
* <)>>') » then -̂iA,v> is bounded for *

i ίoOo), - « < x <ΛJ , ^j
o
 being an

arbitrary but fixed positive number
Let y be a positive fixed constant

Now
 *?

 v a
?

y J
"

 and fix
 ^

 β
y

Uo4; and (1 5) and known theorem on weak
convergence,, there exists a function +(*.->
e L*, such that

(2.4) i.

for suitable •equeneV 3* i y
h
 -+ © } .

Since the left side of (2
β
3) tends to

10



as , we have

(2.5)

From this, (1) is trivial and (ii) is
also well known <*ty. (ill) is an imme-
diate consequence of Jensen's inequality
and of (Io3) for

M
**o almost all

values of x »
fix, Ϊ>> converges in mean with
index p £o H*>

 f

(1)

(11)

(ill)
and

(iv) -h&i*i) ςan be represented a&
Poiason integral of +(*? «>

This is trivial since +(χ
f
<i) In

(2.2) defines a harmonic function in v°«
We can further show that thus gotten

•*•<*> and g W are Fourier transform in
each othero

Theorem 3. Î et ££./ Under
the hypotheses of Theorem %j> we. have

(3.4)

to
Thus the theorem is proved

We remark that J ncy) tends
zero as z-*** uniformly in y ̂ . ̂ >©

 f

5 being an arbitrary but fixed positive
number* This is a consequence of (2.3)«
For if />=-/* this Is evident since
Poisson kernel y //Vy-x Vy

1
? Is boun

dedly convergent to zero as χ y
When {>> i , by Jensen's Inequality

from which our assertion follows*

A? Analogue ojΓ Theorem B. First
we shall prove the following theorem
which is an immediate consequence of
Theorem 1 and is an L^-analogue of Ver-
blunsky'3 theorem B.

Theorem 2_. Let

(3*1)

and write

fw every

almoat everywhere»

almost everywhere«

Theorem j4. Under t̂ he hypotheses pj
Theorem 0^ 5-«•) is the Fourier trans-
form in Up j£f a ̂ > T? p 9

The following argument is complete
ly analogous as the one used by A G,
Of ford.

Let ^
ί3
O bounded and of

and its Fourier transform be
Then we have, -}•(*) being the one in
Theorem 2,

j ί

rr ίtn j e
J
 e j

rα; e

(3 3)

being independent Qt i>o aηfl when
^ » M i£ addition, for given ^ >o

Now put, x. being fixed,

ΊTUO

!££ arbitrary set «^^Λ; < S
 9

, then there exists a_ function

11



Then we have by

2__ r°° jό

-Ut

As la well known, the left side tends
to +**) almost everywhere, we get (2.4)«

Before proving (3.5), we shall
prove Theorem 4

O
 If we put in (2 6)

/ϊh

Tit)

then we have

ί 5.

doeβ not belong to ̂ ι but has
the Fourier transform su) in B sense<

%l
)

and (3«6) also holds). A result due to
£. Hilie and J D» Tamarkin shows that
(3.7) tends to -ftx) in mean with index
p c > *> .

Now we ̂ hall prove (3
β
5). Similar-

ly as (3 7) we have

If (3«3) is satisfied, then -fίx; * *-? .
Thus for p?i p putting x-ί? In (3«Θ)
and using Holder s inequality to the
right side, we have

where C is an absolute constant. Hence

(3.9) ]/*

Now since by Theorem 4* ~.
"CΛJ

converges in mean with index /o to J-i*J
 9

we have

-co

- JL
(x~vix

7TU> J^
 π

 loo </C

say. Let />?/ . Then integration by
parts βhowβ, denoting Jf $i** A<*.~

Hence Γf or u? > /

Thus taking
we can take

sufficiently large (>%} ,

(3.11) IIjKt.

Similarly we may have

(3.12) /XJ<ε.

Since *•§ tends to %ίχj as ω-^oo at
almost ever,y x less than /C in absolute
value, and by (3

O
11), (3.12) and (3.Ϊ0),

e being arbitrary, we have



sayc βy ( 4 . 2 ) and ( 4 * 5 ) , w© nave

for almost aXl values of * * Thus (3
β
5)

is proved for \» 1 . For M *- ,
L
f
H»,oo) and (3*8^ gives for χ-o

Hence
~© -σo

holds almost everywhere wnloh proves
(3

β
5,) Thus Theorem 3 is proved*

JL ShS. class *-*/A «?
a function integrable in every finite
Interval and*put

(4 1)

, y?o and <*>><? » We
shall first show the following theorem.

Theorem 5_
 κ
 If_

( 4 # 2 )
 J~i+»t

c
 being a constant Independent"of 3 ,

then f̂ ,cχ,Hί converges in mean with
Index p to a, harmonic function

&„ fj+«,<*,?J -

with rea~

holds uniformly with respect to
Furthermore ^FW**Ύ.> converges
In ordinary sense to fcx, <*J
pect to -<*><χ<oa and V£ y<

I*et s*</,*y* ,#wherβ u
1 3 1 0 1 1 y A < i y /JL I f we p u t

(4.4)

then evidently

Twice integrations by parts yield that

J4.6) έ

Hence, as ω-*=c , JL, /Γ,c«)/ ^ ^
to zero uniformly for y>yo » If />> 1 p
ther.

where ι//>+ //f = L . Putting

we get

which converges to zero uniformly for
•/> y

o
 as CJ,-> oo

 o

If />-! ,

H e n c e

( 4 β 7 ) -CCyn. J / J^ ίu,)̂  /

h o l d s u n i f o r m l y f o r y^ifo
L a s t l y 9 we h a v e , f o r

13



say.

X> uniformly for i>y
o
 ,

as UJ'-$OO ,tj^oo
 9

 quite analogous-
ly as in the case of z

x
c**) We shall

show here that

We can prove that j I T
r
(«>')[Pdχ

x^ on)

uniformly for

Putting u
 z
 Uu.A

fi
(cύ.ιo) = f

we have by Jensen's inequality, /> > / ,

s c #

which tends to zero uniformly for
as ωu '^cx. , Thus we have that

- J, ̂ 0 - J
Λ
 i

which converges to zero uniformly for
^ > yσ as CJ, w^oβ β Thus

(4.9) J^futiX'yy-fte'ίXrjϊl ^dx

a 3 <^,co'—?o* $ uniformly for Y^ Jo
ί>o) 9 from which i t results that there
exis ts a function j-(κ, yj such that
(4*3) holds

Now since Λ,, (*+yj Is harmonic
for „«,'CX, y)-

""Λu'
{X/
y) is also harmonic for every

and hence we have

w h e r e y<*iio/*, y±!/os Jo b e i n g a n
arbitrary but fixed positive number.
Then

^ l-έkl

L
^c

r
\ J J

f>ίr'f

Since by (4 9)

as ^/co
7

noticing
we have

uniformly for
if

uniformly for -o°<-χ.«χ> and Ί-ΪJo .
Hence Puj(*"y) converges to a function

£-*(*-* y) uniformly as to~^c*o .
And r*cχ,y) i s harmonic and concides
with F (%.,$) for almost a l l x for every

y c > o ) . Thus F* ex, y) = F cac, y for
almost a l l x , y<>°) Hence we may
consider F(*,<j) to be harmonic in y>o
We have completely proved the theorem*

5 * <fl}e Fourier transforms of a
function of H&a. Let zcuj be a func-
tion integrable In every f in i te interval
and be of the claafs Ho£ (f>>/) , or l e t

satisfy the condition (l
β
10) for P?1

and for M 1 let (5.1) satisfy (1.10)
with (1.11). Then by Theorem 5,
converges uniformly for y^y© f

14



to a harmonic function Fcx'i) and more-
over f«*> ί*/ y) converges in mean with in-
dex /> to, i<*,y) for fixed y>o . I t is
almost t r iv ia l that jr<κ*<j) belongs t o ^ £ β

For by Fatpu's lemma,

< C

and

d* < Jl

Hence by Theorem 1, f-(x*y) converges
for almost all x to a function ŷ r*.;
as y ί- o , and further J-tX'V con-
verges to /<*} in mean with index P

 φ

With these notations we have the follow-*
ing theorems«

Theorem 6, Let *
(
u) e H*(t>z. 1)

Then ~~ <f
 r

(δ 3) h*)

and almost everywhere

(5α4)

almost everywhere«

Theorem 7« Let g^J e//oί CA*O o
Then ^x; in. Theorem 6 is the Fourier
transform in L^ or

-A
converges to

Index

The proofs of these Theorems run
similarly as in the proofs of Theorems
3 and 4»

Let πx) be bounded and of L,
and its Fourier transform be sex)

 9
Then we have

J

If we put,

and

- o,

then by (5o5) we get

n/f J

πJ

\Pΐk
£K "

from which (5 3) fellows*
The proofs of f5.4) and Theorem 7

can be performed quite similarly as
those of (3 5) and Theorem 4, using the
argument in proving (5 3) above and WΘ
shall Omit the detai l proofs here.

(*) Received March 1, 1949.
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