THE HARMONIC FUNCTIONS IN A HALF-PLANE
AND FOURIER TRANSFORMS

By Tatauo KAWATA.

1. Introduction. Let f(xtiy)=4(z)
be regular in the upper half-plane 4>o0
savisfying the condition

(1.1) j°7+m+ {y)iru < C, p»o,
where C 1s a constant independent of y,o.
We say the class of such functions MP ,
The following theorem concerning a func=-
tion of HP 1s well known.

Theorem A, Let Fwewrl, pro.

en
(1) 3%x+iy) converges to g functlon
Fx) ag y>+o for almoat all x , which
is sald the boundary function of s(z) ,
(11) f(x+iy) converges £o f(x) Ain
mean with index p , or

(r.2) f(x-i-ig)—j-w]l ’-”J“lfla(f}")-f[;)}’dz

—»>o0 &8 y=>*+o,

(111) Nfx+<y)t 13 a non-increasing

f\;r;ction of y and (es a consequence of

N+ 90 ends to n#w)N ,
and
(iv) #(%) can be represented as a

Poisson integral of the boundary function

+(x) Or in other words

yy ok [T Y
(1.3) Fox+iy ".‘[ao C?-x)‘w-'i"d{

The ease $24 1s due to E. Hille
and J. D, Temarkin‘and the case o<p< i
was proved by the author(?). Analogous
results for functions regular in the unit
circle are well known (3).

Consider the function f¢x,4) harmo-
nic in 4>0 , such that

(1.4) J-iraripi®C, 930 pat,

C being a constant independent of 4>0 .
When p=41 , we consider the harmonic
function satisfying (1.4) with p=1 and
in eddition satisfying the condition that
(1.5) Ie gyl 4x < g

where & 1s a given arbitrary positive
number and ¢ 1s any set such that mie)<§
(8=4)) . We shall denote the class
of functions having these properties, H'.
In & 2, we shall prove the analogous the-
orem for a function of H: as Theorem A.

4

The main arguments of Hille and Tamarkln
for proving Theorem A 1s to transform

the theorem into the one for functions
regular in the unit circle, using a fact
due to Gabriel(") concerning subharmonic
functions. The proof of Theorem 1 in

§2 consists, on the contrary, of showing,
first, the fact (1v) and then of deducing
(1), (11) end (i111) and we do not use the
transformation of a half-plane into a
circle. Thus it gives incidentally an
another proof for analytlic case p>2 .

We can also prove the theorem by
reducing to Theorem A, Indesd originally
I have proved Theorem 1 in this way.
Afterwards Mr. T. Ugaerl has glven the
proof written in this paper. With his
permission I have given his proof.

S. Verblunsky(® has proved the

Theorem B. Let F be a function
such that -

(1.6) j:ehyml‘gmnau < 00

for every y>o and
(1.7)  Fuy= ﬁj”e'j'“'e“‘“am)du
is bounded for x and y>o0 . Then-f(xy)

converges to a function +&) for almost
every x 8as y->+0 s and

(1.8) g~ i= [ rooax (c 1),
oo

A. C. Offord () generalized this
theorem assuming only the fact that (1.7)
exists in some Ceséro sense for 4>0
and +«4)is bound in x and 4Co0),

In Verblunsky’s theorem Fw.y) evi-
dently defines a harmonic function in
the upper half-plane and is a consequence
of the well known theorem of Fatou
(transformi¥e the half-plane into unit
circle).

A. G, Offord, on the other hand, has
also considered a general class of func-
tions and treated the analogous Fourier
transform problems (7).

Write

w -
(1.9) 4+, m:ﬁ_jwu-—':—j—)?cu)z‘"“au.
and suppose that if p>1
(1.10)  [J14u001Pax £ C,



C being a constant independent of <«
and 1f p=1 , Fwix) satisfies (1.10)
with p=1 and in addltion

1.11) [ tfueolax<eE,

such that m(e) s _
We call the class of
offord prowed

pz1 , then

for every set ¢
5 = 6(8)

such functions HJ

that 1f g e HE
kg ~(x@
° 4 d ,1 d
(1.12) v'i?:gfoa?’“”‘ w (C1)
exists for almost all X and further g«
has Pourler transform F&) in L., or
oo T . '
(1.13) Lo [ | L [ 9w € ™ Qu- fox3|daso
T‘?w.foa’ﬁ;tLg ] .
In proving these facts, he avolds
the use of harmonic functions and mainly
uses weak convergence,
In § 4, we consider the more gene-
ral class +tJ, of functions

w
R I
with the condition

»
°

Fen) = ==

~Jlul _xu

jul
e J(u)e da

et

[74

(1.15) lefw(gy)],’dzﬁ C. p>1,

C being a constant independent of w(>o}
and y>o , and when p=3%1 , in addi-
tion

(1.16) ANE R Ly ldrs g, yro,
e
¢ being any set m(e><d, E=68(e)
We shall prove the Fourior trans-
form theorem concerning H/J,

1ne harmonic function in & half-

We shall prove the following the-

2.
plane.
orem,

Theorem 1. If HFx.4) e HZ(}:.D ’
then

(1) +mv4) converges to a function
Fx) 88 y->+o0 for almost all x ,

(11)  f.4) converges to f(x) in mean
with index » *ﬂ, and hence -—-}‘-tfn-)L.., »

U111 i fex 9451 tends increasingly
to ufoou as Y->+0 » and

(1v) 44y can be represented as the
Poisson integral of &) , or

(2.1 e L [ 9

) 7 dcoo g 4L

p Proof. We shall first that if f(x.q)
€M, (p24) , then f@,4) 18 bounded for y
24, (>0)y —o9<x <o , 4, Dbeing an

arbitrary but fixed positive number.
Let Y be a positive fixed constant

10

less than "o
nic, we mve, for

Since #(%/4) 1s harmo-
oL pPLY

2T
{2.2) 4ouyr= ,{;J F(x+ pcos®. Y+ psne)dd
o

from which it results

h d
IFo ) = pifwygldp
T E's ,
é?cju del | $(x+peose, Y+ Psinedl pap
ip 4 2p-/p PALS
S@IPUIr [

2P
-J rl«f-(upco.sa, y+psmell
-]

X
2
<

Y
Foap}l

Thus we have o N
9| Pe C,fbd‘ojo ['pap
<G [ s pltas aq
(}_1.)‘1‘ [’l-’) <r

y+r zrr r
< (s a 3, Py 4%
.‘g—\' 1 Jl-v f 1 )

Y

I§Cxrpcose, 4+ Psn8)

<GI a4 pifas s G Coax
17 e

where (., is dependent only of ¥ .

Hence #+x4) 1s bounded for Y2 4Ye .
Now for. fixed 4. , we consider the
function

oo 9
;F’(X.'-j)——— ‘,',—{f +(§, ‘J") (t-l)"f 92 df}
Zoo

which is evidently a harmonic function

for -= < x <o , y>o « Since
FUX.Yo) is bounded, setting |4(x,q.)
$M

FATHLE m-,'f!:_‘;__.:a? =1

And by the known fact, F (X 3) conver-
ges $(x.Y) for almost all x If we
consider the function

Flg, 9= g~ fx, yaya)

which is clearly harmonic for Y > Yo and
bounded in -w<¢x cco , 4>0 , then
8ince f(x,ytyed > F(2.4y.), F(ry)—>o0

as > +o Thus by Fatou’s theorem
F (z, 9 =0 for 4y>o ,
Then we get

2.3 (x, o) = L 9
( ) + X Iy ) R_G'(i,')o) ’(T%—'—J

-x)tey?

s
g()

Now we vary Y. and fix 4y . B
(1.4) and (1.5) and known theorem on wegk
convergence, there exdsts a function +¢x)

€ L‘F such that
o0
Y
(2.4) 1—’;_[3—{5,3“) (T_,x—“),_*vz 4%

L (= 2
- ﬂjw‘j’ (3) (3% y* q4F

for suitable secquence Yu(4.-> o) o

Since the left side of (2.3) tends to



+ix,4) 88 Yo>o© , we have

o
Y
{2.5) f1x9= ‘,;jmﬁi)m”.

From this, (1) i3 trivial and (11) is
also well known (%, (111) is an imme-

diate consequence of Jensen’s inequality
and of (1.3) for

P o
ST 10w g 90 ax < fax|&[ Fxed, 900 -
- P 00 "® eo—X ry
. }':‘. ?fgj S—’Ld:'i[,lf[;*x'y‘)lﬁ’-df
LV RELC R R
i oo

42:[* g%gtdi.fwlﬁx,y.)l Faz

“ ’
St g lfax

the theorem 1s proved.

We remark that f¢x.9) tends to
zéro as z > uniformly in ¢y >8>0
§ being an arbitrary but fixed positive
number. This 1s a consequence of (2.3).
For if p=, , this is evident since
Poisson kernel y/{ry-x)*4+y*) 1ls dboun=~
dedly convergent to zero as x“+y*sco
When p>; , by Jensen’s 1noqua12ty

il

il

Thus

’ o Py
£

Vit g )'e & [ 150,901 s 4,
from which our assertion follows.

S. Analogue of Theorem B. First
we shall prove the following theorem
which is an immediate consequence of
Theorem 1 and is an Lr-analogue of Ver-

blunsky’s theorem B,
Theorem 2. Let
o
(3,1) Le’”'"’:g(undu(ao for every yro

and wrlte

(3:2) 72, [ Yo ¢ = Fex ),
P>
(3.3)

i,

" r
J Irp]Tax £C, g0,

C being independent of y>0 and when
p=1 s if 1n addition, for given & >o

(», dx <
{Hay)l £

e being an arbitrary set mcer<d
§=d(e) » then there exists a function
fo0e L'P s such that

11

(1) limysaebop=fxfor almost all
values of x ,
(11) F« 3>  converges in mean with
index p to 0O,
(111) wf@yput nFeoll ag Yy=>+0
and
(1v) +=4) gan be 8 88
Poisson integral of +F(%) .
This is trivial since +(x.4) in

{2.2) defines a harmonic functlon in 4>0.

We can further show that thus gotten
+@) and g(») are Fourler transform in
each other.

Theorem 3. let #+2/ . Under
the hypotheses of Theorem 2, ¥e have

X«

(5.4) Fw= = [ gewe T (01

almoat everywhere,
(3.8) Jew= fr} foo*u?e‘.“dx (c.1)
00

almost everywhere.

Theorem 4. Under the hypotheses of.
Theorem 2, +¢<) 1is the Fourier trans-
form 1n Lp Oof g 31f P21 o

The following argument is complete-
1y analogous as the one used by A. C.
offord.

Let »(x) Dbounded and of L, (-o2,°)
and its Fourier transform be Sx)

Then we have, F(x) being the one in
Theorem 2,

[0 roodx= _fwﬂ.i-m. fouy)rix) dx
o0 Zoo (Lp)

oo s {-
. L oa —ylfl X
-_—.7/:)":& __[”r[n)dx we e ;a‘) d¢

o0

oo " >~ _ext
= Mo L j e“y“‘}mu raxye dx
j—)D Eﬂ_ oo

o0

-y 1€
(3.6) = fim _/Q 5':716)5(& drt.
3

20 oo

Now put, X Dbeing filxed,

ity = > szi' w(x-1)
= R
Tw (x-t)*

. 1 ~CR &
swo= Lo - A5)e T wigw

-0 ful>w,
2



Then we have by (3.6}

Ssin -Lw(x-u) *
Frw) 2
7w / T (o ?
. —ixt
=L fz-‘;c_/ {1~i})e o‘uz‘)e KLt
=w

«w

_ 4 16 ~cxt
‘Zfr‘_f (1- S gitre " ar

As 1s well known, the left gide tends
to Fix) almost everywhere, we got (2.4).
Before proving (3.5), we shall

prove Theorem 4. If we put in (2.6)

~(xuw
S(u) = f-iLT‘te L qulgw

= o0 jal 2w

rit)

"

1 A W (X t‘)
T x~t

then we have

L —-txl'
Iixw)= f*_;v; \/E‘n:./ gcb)é
= L 1.16 +
\/'sz_/ e 4
. Sen el (X~ -
(3.7 = :,L.c" f” £) —T't:_ dt,

{ r(x) does riot belong to.l, but has
the Fourier transform sa) in B sense (")
and (3.6) also holds). A result due to
E. Hille and J. D, Tamarkin shows that
(3.7) tends to #(x) in mean with index
> 1) o
P Now we shall prove (3.5). Similar-
ly as (3.7) we have

.

£wt
(3.8) ‘Fz’_—&/gll_)eutt‘ b= L/f-{é .\'mw(t—t) e Tt

If (3.3) is satisfied, then +ww e &p
Thus for p>7 , putting x=2 1in (3.8)
and using Holder s 1nequality to the

vight side, we have
w l//
lﬁéﬂ ’[g(b)dt‘ < ?’i(jjﬂ”]’dt) A

(]t 1)

< Cw?

2

where C 1s an sbsolute constant.

(3.9)

Hence
3 7t “up
1 [ gewas]<Ct™ p>1.
’ w ot
Now since by Theorem 4, X fgﬂ‘)e at

converges in mean wilth index p to F0u),
we have

7 J ol 15 au

= ‘,ﬁ_[w[r—';‘_)e duf%&]?(ﬂé ar

A

w

// (l—‘;,— e"‘lztujgrl/?e.
/’

n
[»
—
ool

N
[

3

'-l
£
»

]
N

(310) = 1, +T, + 1'3)

say. Let p>/ « Then 1ntegration by
parts shows, denoting j Jwr dus= Gk

3= 2 GeK) St twl-K)
(x-K)*
Tas e 4 __._&___’“‘[:Sj’at

2L xl

2 Gxy Tz 0K) ; s )

- "/C"“’ = g t)dt+1-/61£ st Dt
Hence "for wy{
15[ < IG(K)[ 7 "’—'K ”%3
/_[_'/r(:iﬂ )

Thus taking K sufficiently large (>x) ,
we can take

(5011) l I3‘ < E.
Similarly we may have

(3.12)

IL,]<&,
Since I, tends to 9w as w —oo at
almoat eve. X less than K in absolute

value, and by (3.11), (3.12) and (3.10);
£ Dbelng arbitrary, we have



say.

w . By (4.2) and {4.5), we nave
Y luly (xu
ﬁ,;-[/f-m)[l~~;-)e du —1&(1)

iy PR 7 S AT Y
for almost all values of X . Thus (3.5) .joo/I:‘“’)[ ax=e [ [ Eh 0y, ;o] dx
is proved for p>1 o For P=L , 4bre - - p
L, (~c0,00) and (3.8) gives for x-o 14,6) < ((’_ 3‘!6"‘)=c e Yo iz
/{ml' I, (w)]FA7
= oL Ut Hence, as w- oo Lo © tends
y 316&. var dufe ftrdt to zsz"o uniform1§ for y2y, . Il p>i ,
Hence then
qws7=/ e g at I, | fux ,
-f dx2 I[ & d“u L
holds almost everywhere which pl&oves % /’j u f (X455 u)duf
. Theorem 3 1s proved. 2 Pl
(3.5). Thus . p ‘_j.,.,‘lj‘l;"d" (fe ?y'uuzdu) 't
e class Hgy,a o Let Jix) be &
a mn%t':iorxlnintegrable in every finite Loy w) Paw,
interval and’ put where 1/p+ /9 =1 o+ Putting
® -~ 3 /
(4.1) w gt ~ixe - 4/5 = {L e 1 Yo/ ui"du_)ﬁ 1
T‘“(l")zf_lz—-i_j (1- -';’“—I-)e e g(u)du we get
forsew<x<eo , Y70 and wro , We _f:} I, () Pay

shall first show the following theorem.

Theorem 5. . IL  pz) <A [ [ty g )| o

(4.2) ‘f” Huwtx, g2 Tdx £ C 9>0, =4 .z:y;’ duj | L f;_(z,jzlu)) du
C being a constant independent of Y , < i
then +..cx 4> converges in mean with < A Yo ;
index p . to & harmonic function 4ex 4>
uniforml Y 83 w- oo for eVery Y 4o

which converges to zero uniformly for

Yo beigg an arbitr%?z but fixed con- Y240 a8 w00
)

stant, or in | other w

If p=1 ,
oo oo wt
(4.3) Lo, / 0y - Faxyd] Ax =0 S Lwildx < 22 [ dxje‘y'“ultflu,y,,u);.
holds uniformly with respect to J2Yo .. cdu = 2wl ST & fin s w) ld
o e “Fuw (ty) GOnNVerges w J, u “J U T2 t% Yol Ed
in ordinery sense to #cx, vJ) with rea- Cy, [~y ACy,
peect to -w<x<eo and Y2 Yo . ﬁ—}["‘ Tudus “‘,—]'
et Y=v,+v2 -,,where y,=ve’lz .
Then Yr2 Yol2 o "If we put . Hence
U 8 / o .
(4.4) J‘s‘»y:w)=,;-‘—;c]duf-e"'"';uzrze'm’4w (4.7) é’f;;a_fxllew)/'bdxio
holds uniformly for ¥ 2 Yo
lLastly, we have, for w’/>w ,
then evidently

I (w)-1'3(w)
(4.5) F£itxy)= Lhixysw) =9 fe”’ 2 (% Yo, u) o

- y,*J—/ ue‘y’ f,_(z,yz,u)dt‘
rzrx,yuw)“-y,ftg' fitxysu)du tars [Tue
+ o j ey &4 Falx g @ )du :

Twice integrations by parts yield that
Wi, ty)= ¢ T« Jg, (% ¢ 5 w)du

= Tylww) - Ip o T, ),
= w Li{w) + w L (w) + wra (wy

13



884y e oo
We can prove that f 1T [‘U/)[de.—_o[/)

oo
1T ax= 01)  uniformly for 42y, ,
a8 w0 5, w >0 s quite analogous-
ly as in the case of I,(w) . We shall
show here that

{2.8) Lin f 1 T, (w0 ou)l’bdx o

c—)OO—

uniformly for Y2 Y,
J= /oc} I, (w,w’)lpdz;
Zoo

/
= j/z/;:x//‘z_f//“u fl X 4,5 ) dufﬁ

=9 fd.xfje .‘I/“ug_/l: £ (x 31;“)0(“{;’

7/
Putting Af(w,co/):f“:ue_y'“ wr e

we have by Jensen’s inequality, P21,

- e ) —94
J" fj/Z/ d:(,d/o (w,w’ // ‘e‘-"‘,)uflllljt) K)dul

uurflw

s .7 (w c«/)/dli’ : :U “ ]‘Lf (z,y‘;u)}du

= ‘{" ﬂ w,@ )/2"/’ “ d«//"fz(x,q“u)/ Ax

w /a(w/w)

e L 4/5/’[«,,0,

vhich tends to zero uniformly for y.>yv.
a8 w w’'—>ce . Thus we have that

/_/ 1 fe g —F,,0 02, 95| Tax }I/P

f/ | I, (w0) + T, tw) + T, ()
- T, (- Ty tw?) — Ty (0] fix
S {/ II{«»)/dei ff”Izlw)Idx}/P
i) II{w)/fx} eSS Ty o) ax )"
+{J f 1 Ty (e, wi ) fax y /”-rfj ITr(w)}au(} K
+ {71zl Fax 3

which converges to zero uniformly for
y2q, 88 w,w’ye o, Thus

}l//’

i I
(4,9) Joo’/w"’/fl)'“fw""'j)l dx=0(1)

ag w w00 , uniformly for Y2 Yo
(>0) , from which it results that there
exlats a function #(xy) such that
(4.3) holds.

Now slnce 4., (x,y) 1is harmonic
for —cacx¢oo s Y>0 9 is.wm’(l'y)=fw“'5)

~#£.%9 is also harmonic for every w,w’p
and hence we have

éww’(l/fj)

2
- L
= 2”-{ DB (Xtreose, y+rsng) Lo

where 7<¢o/2, 42 Yo Jo Dbeing an
erbitrary but fixed positive number.
Then

>
%zléww,(x,y)/ < j; PlBwwizy)]dp

2 (T
S,f,rfo def/éww/(npcose y +psing)|pdp

< 2¢p1)/p pid
- ( Zﬂ)l/Pﬁr(P—l)/lb 1./ ./ ,é

p cosa, t/+P5m8/PPdP}’”’
AT T 1@ d}dt{}

(3-2)% 0 y)" 7'2
<G | ) 0y [Tz V7

I )L—Y

< Cr{f 47 /Téww,ff,y)/rdg }//’
A

Since by (4.9)

[:l@w,w,(§,7)l ’:1}' = o1

as w,w’/>cc uniformly for v> %/ ,

noticing Y=r> Yo/ s if 9> Yo ’
we have

Lo e D (X, y)=0
uniformly for —oe<xX <o and Y290 .

Hence F,(x,y) converges to a function
F*(x,4) uniformly as w-—co
And £#¢x.y) 1s harmonic and concides
with Fay) for almost all x for every
y(>0) o Thms F*ax y3=F(xy) for
almost all x , y(>o) . Hence we may
consider F(x, y) to be harmonic in y>o .
We have completely proved the theorem,

5. The Fourier transforms of a
function 6Ff 5. . Let gcw) be a func=-
tIon Integrable in every finite interval
and be of the class Hm (p21) , or let

(5.1) j-u(i,y):ﬁ.i:n—[w“_% e 713}(“)c«.x:“

satisfy the condition (1.10) for #>7 ,
and for p=1 let (5.1) satisfy (1.10)
with (1.11). Then by Theorem 5, £.(z.y)
converges uniformly for y2Y% ,



to a harmonic function F.4) and more-
over f.(xy) converges in mean with in-
dex p to.fwx.y) for fixed g0 , It ig
almost trivial that fcx.q) belongs to #Z2
For by Fatou’s lema, o

o0 P oo
f Lfex g)f 4x5‘%c_3,;° ;/k!f.‘,lx,'ﬂl’?il

<C, Y>o0

and
Stfopl dx < Lime, _élﬁ,(l,y)[dx. <g.

Hence by Theorem 1, .y

for almost all x to a funct:gzve:t?)’

as y Lo » and further Fix.y) con-

;igge:h::e J;x{: tin mean with index 4 P

otatio

ing thoame Do ns we have the followe
Theorem 6,

Then -

{(5.3) f{1)=‘72$;t__/°:‘3fk)éixudu (c. 1)

almost everywhere

ot swoerfocpan) o

and
o L 3
(5.4) Jw= /ﬁr-mﬂyelzu‘” (c1)
almost everywhere,
Theorem 7. Let grw) €Ml (par)

Then #x) 1n Theorem 6 1
‘ =1oorem s the P
transform in l'P or £8 the PFourier

L. A ~(xu
= twe
7-"(‘-/; ; )

converges to £(x)

‘b( >/) o
similgg Paooqa of
a
3ol 4°y 3 in the
Let Y(x)
and its PFourier
Then we have

du
in mean.with index

these Theorems run
pProofs of Theorems

be bounded ang

of L, ¢
transform be o)

Sx)

Co
ﬁz,,).vex) dx

o Folz ) T d x
~yld-{1y

O oo
LForcax s [ O am o, ¥ rexodx
»0

=/(&'on
20 =

~

2

3

]
SRR N
R
)
~
Rka
£
r
83

Sy

Lu)
() L ~Luhy
) (l )

¢
MY
8

' -
g Lup, syl
'G}-—w( { = -;;'-)e Jm)du

w g
j (=25 €-7u‘(l7m)3r«
2 olu,

r
3

Co
r(x).
~a

<
¥
Q
&
$

3
3

¢
°
§
3
|

£

€ errdy

(5
e 44X

15

and
sw= L (1-Lhe
=0,
then by (5.5) we get

o ann > LA ()
= [ o =
<o

(x-6) %
A e ~{xu
= Lo € L= _u A "u L _luf
135 SB), (1750 genli-ie du

- Z, 1 A “‘7“1’ l’ul ~{A U
J;e ?tu)(l—lg)e du

A4t

y->ovarn

A -{x
= 171__2—,;1:['4(1*%!‘)3(“)@

from which (5.3) fcllows.

The proofs of '5.4) and Theorem 7
can be performed quite similarly as
those of (3.5) and Theorem 4, using the
argument in proving (5.3) above and we
shall omit the detall proofs here.
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