SOME PROPERTIES OF ASYMPTOTIC

DISTRIBUTIONS

(Communicated by T.Kawata)

By Masatomo UDAGAWA.

This note contains two different
problems. In §1,8 2 we shall give some
results similaer as the one which were
obtained by Kac and Steinhszus.() The de-
finitions used here of asymptotic dis-
tributions are different from them, and
the hypothesis in the theorem are less
restrictive. In & 3, we are concerned
with some limit theorems.

8 1.
Definition 1. Let xt) be a measur-

able function of a resl] varisble + tak-
ing values in R™.

For every >0 , we define
PrE)= = mE [~TebeT, xheE]

E being an arbitru Borel set in R™ .
Then 9. (e) is a distribution function
every fixed T .

lstribution function ¢. tends
tribution function ¢(» forvt-w ,
that xct) has an asxn_lptotig is-
tribution function @ ¥ . This definition
is due to Hartemen and Wintner.

Now we shall prove the theorem,

Theorem 1. If xt) has an asympto-
tic distribution function, then for any
continuous function +x) in R™ 1—(111-))
has an asymptotic distribution function.

To prove the theorem we need a fol-
lowlng lemma.

Lermma 1. n measurable function
has an asmrp_gtic distribution function

"¢ , if and only if

L (T aexch)
Tooo 2T =y
exists, uniformly in ywic < for any

C>0 o

This lemma 1iu known, (3)

Proof of Theorem. For simplicity,
we restrict ourselves for the case where
xct) 13 a real function. We write

Fxi)) = yet)

By Lemma 1, it is sufficient to prove
that
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exists, uniformly in
c>o - Obvioualy

e.‘“ gd»)

w1 sc for every
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T
- so that it suffices to show that

waj’ e
T>00 ~00
exisuvs, uniformly in i< C
Since ¢ > 9 , for arbitrarily small
¢>o0 , we can choose x, and T, which
satlsfy following conditions:
1) -z, o, are continuity points of 9.

“° iu F0x)
Tu-
=_:Lo<’- dqru),

O 24
2 P, 10

11) {1~?T(x.)j+q:1_(~1.) <g¢ for all T>T,.

Then we have
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But the integration by parts shows that
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Since P
there exists a T,
term, 1s less than & for T>T,
thus we get

Xo,
‘ Seuu-F“Li ‘P‘”"‘fr‘”” <3&, for ™T,.

tends to ¢®) boundedly,
such that the last
and

b
Hence it results:
o .
| ] e

which Eroves our theorem.

g 2.
Definition 2, Let xit), yit) Dbe
measurable, real valued functions in
(~e0, ) , 1f these functions satlsfy

the followlng conditions, they are called

£o be Sr.___mt&tistic Independent.
1) A vector function z)=(xh,ych)

has an asymptotic distribution function,
(g0 that each of xi and y® have also
asymptotic distribution functions.)
i1) Let Q-<(a,b; a,,b,] be an interval

.1_12 R-l ’ and Q'=Laubn]; sz [al' bl-)

be intervals in R'.
Whenever @, @', = are continuity inter-
vals of distribution functions ¢. ¢' ¢*
espectively, ¢, ¢! 4* being asympto-
tic distribution functions of =z xih, yb)

resgectively, 1t holds
P = $'(@r-$T).
We shall prove following result

which 1s, in some sense, a generalization

of the result of Kac and Steinhaus.,

Theorem 2. ILet xtt) and y¢) be
statistically independent and both boun-
ded, that is, there exlstsaconstant M ,
such that

1XxH1£ M, 1yhl <M,

If f09,3) are real and continuoug in
the interval [-M, M1 , then F(x:t), 3l{y)

are also statlstically independent.

To prove the theorem, we.shall state

a number of lemmas.

Lemma 2. If x(t) and yit) are boun-
ded real measurable functions, then in
order that x(t),wt) are statistically

independent, it 1s necessaridy and suf-
cient that

T
Lo = J X yhbat

T>e0 T T
T =l L j x4t ik farm, ‘~j ylndt,
T3eo ZT-T T LT-T

g, -9 W} | <58, (T >max(1,T))

for -eo<t<eo,

for any positive integers & £.

This 1s known.(*)

Lerma 3, .Under the hypothesis of
Lemma 2,

s =a,xTh +a, A"+ - v am

’

‘le{’) = bo 3"(%) + b, 1“_'{4) + +by,

are statistically independent.
This 18 readily derived from Lemma
2, that is
-
Q'#;:O é;j_‘_‘fl“!b fze‘*)dt
1

T K n [}

=LJMJ—-I (8,175 +- +Gum) (b, 1+ +h)ar
T300 2T2p

= Lo

T LT
= L 0 . L L thar
yn ZTer. hat L LTJTf

mme 4. Let x»(b), Yynth) Dbe sta-
tistically independent and be bounded,
I O > (B, guih 5 gitr (noo0)
uniformly in c-ov,00) , then xt), yct)
are also statistically Independent.

By uniform convergence, we can prove
easily the validity of conditions of
Lemma 1.

Proof of Theorem 2. If we choose
polynomials sequence {#fn0(x)}, {gntuf
such that 4§, 00—Ffm), n/1>-> 21 holds
uniformly in (-M.M] then fn(xh) —> flxdt),

In L6 —> Jhctr) uniformly
in (-0 00) o By Lemma 3, #n(xb)
Intycéd) are statistically indepen-
dent, and hence by Lemms 4,
Fubr), 3(yt)) are statistically %ndepen-
dent.

§ 3.
Definition 3. ILet xnf) and xb)
be measurable in (-co,e0) , and let

(-TT)
mE [-TetsT, Ixnth-xh) 1> €] D, (Tlx-r)‘l),

0T 4 T N L
Q_’r"_:; 2T Dy (Ix..wcl)-Dé(lx.. xl))

for every positive &t .

If for every positive ¢ ,
Civs, D1 1n-2.1)=0, then we say after A.
Wintner that the sequence [x~j is con-
vergent in relative measure to x and we
write In fafx

Definitiomr 4. If the function x(t)
and x(¢) have asymptotic distribution
functions 9. and @ respectively, and
ife.> ¢ at the continuity points of
the latter function then after A, Wint-
er, the gequence f*~} 1is said to con-




verge to x in ;gt;zbution‘, and we write
Xn ()X (M- 0)

Theorem 3. If X.I-9}x, ynf-3}y s

An, Yn are statistically

independe-~
then x, 4y are statisticanx indepen-
dent.
To prove the theorem, we use the
following lemma.
If Xyn ‘ﬁd

@‘4%

‘Lemma 5.

Xntyn I95%+ Yy,

Ynf>1y, then

Since
E (~T$44TE Xnvga-x-y>¢)

2E(~T$£4T3 2a-2<k, Xnryax-y>e)
+E, (-TebsT, x..—;;_ii, Xt Yo%~y ? €)

< Eg('Tﬁt <T Yn—y 2 —i—)
YE (T2t <T; x> ),
we have

;';_ME [—Ts4 <T: 1n+3n~1—-3>£]

by D‘ T'T)(u..—xl)i-— Dz

(ly.. yl).
Similo.rily we have
7+ mE, [-T_d-'s T5 Zmtyn-2-y < =]
< Ds
Thcrefore we have

-T.77
\x..~xj)+ Z—T'Dzi C14a—yl)

E‘-} (’anj-n-x ql)s?_.’_ 3 (m‘—x(:;r)
+4 0 (14a41)

That 1is
[)z()z,ﬁj,‘—x—g])él)%(m—x)) + Dﬁ (1ya-y1)

whieh proves

:‘L;.‘_)Nchllui-*’"—X—“jl) <o, for every cyo,
The proof of Theorem 3. From a
theorem of Hartman, van Kamnen and A.
Wintper () for any resl constants «,u,
the function w,xatt) + 4y Yact) has the
asymptotic distribution function F, » G,
where F., ¢, are asymptotic distribution
funetions of wAnt) , “ryact) res-
pectively, and F,» Gr. slgnifies the
convolution of F. and G,
By the above lemma

n 9

WX O +u, gu ) {5 F W, Tib + U yd)

So from another known theorem(® wxct)
+uzyt) has an asymptotic distribution
function and

UiZnth) + up yaik) (=) w, Xt g ydd)

But from our hypothesis, Fn- F, G, 3G,
where F and G are asymptotlc distril-
bution functions of u . xtt) » u,yt)
respectlvely. 8o we have F G, > F*G

Thus F*¥& 18 an asymptotic distribution
function of wx®) +uxyt) , which proves
from the theorem of Hartman, van Kampen
and A. Wintner(”that x(t) and yt) apre
statistically lndependent.

Theorem 4. If tnis}o , Yni=ly
and X.+ 9n fhave asymptotic distribution
functions for every n , then Ant Yl oty -

Proof. We have
E -TetsT, " Xatt) +ynit) Yo ]

=Etf—T£‘f$T, X lf) <€, Aneynrec] ¥ E(-Tt T, Xn) € Kot yd]

and so
7:‘Lr'" E1[—T5f5 T, xntyn>a ]

< 3o mE FTeteTypra-ele jomE [Tot<T 27 €]

from which by letting T-c0 , we have

?‘”'jl°‘>< l—_<]> (o(*&) + 1 - 9,("

where ¢, denotes the asymptotilc dis-
tribution function of x¢) . Thus we
have, by the assumptions

(o),

v-’-)oo ( I-= ?In“'fn (“)) € /= %{“—‘E) ’
That 1s
o ?’x,wj,, () 2 ?7 (3-8
Since €¢>0 1s arbitrary, if « 1is the

contlinuous point of Py » we have

n> ?""*7" (W 2 &)
On the other hand, since
E [" T‘t<T, )‘n""/nLd-]

= E [~T<tST, 2, 5=, Xntynca |
+ Ee [~TstsT, x, ¢, xuy-.(«]
EFT=t ST yncurtl + E,[-TetsT xi¢-c7,



by the same argument as above, we have

‘ rBoo 7’:@.*7..("” < 7’7 o)
Combining this with above result, we get

n“—)uéo ?"n“jnl"')‘ ?7‘/ (x),
This completes the proof.

Theorem 5, If x(f) has the unit
asymptotic distribution function and yet)
has _a_rlt;mgttotic distribution functicn

Py » en x(t) +y«) has also an asympto-
tic distrioution function @, .

Proof. By the seme way as in the

proof of Theorem 4, we have

I;;::» zl;‘”' Et [T<te T, ,;(6')4;7&))0{7

SI-Puua-€) +1=Pg) = /~<pi7 (t~).

Since >0 i3 arbitpap ;
Y, 1f o 1
continuity point of Py ,’then we ﬁaf;e

Lo L ” Et[~ Tets 7, xl‘)fyu‘) >e ]

Toc0 27T
< [~ ;09 (),

that is

I = Ll L - re
b o £ [FT=t< T, X e yity <]
2P
or A
77;; 2775 [,*TSLLS7, I(‘f)+;‘l{) <o) 3}% &),

Amlogously we have
L
e b BTt xdyeyr<a] < P, >

That is

I
f%;;;,mii[~rsfsr,xd)+yzf;<¢]:yyw_
This completes the proof,
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A NOTE ON GENERATORS OF COMPACT

LIE GROUPS

By Hiraku TOYAMA and
Masatake KURANISHI.

A. Auerbach has obtalned the fol-
lowing theorem (41 @

THEOREM: Let G be a {connected)
compact Lie group, and for any integer
let

£
Mix ) ={p} P=Jve
v.=x"when +i 1s odd,
v;=4™ When i 1is even }

M(!;‘J)ﬁ;/‘ M(x,4,4)

Then there exist x and § auch that
G = M(x,4) .
Here arises a question: _Is thers

any integer & such that &= MG, %) .
The affirmative answer for this question
can easily be obtalned. Let &) Dbe
the minimum of such & . The next pro-
blem, to determine H¢) for each compact
Lie group, is not yet solved for the
writers, but it can be seen

&) >  dim(E) S namhl&)

where rank(§¥ 4a the aimension of &
maximal abelian subgroup of G .

7

This note will contain the proofs
of these two propositions.

For any element x of G , let T(x)
be the abelian closed subgroup of &
generated by x , and put

N .
(1) Hegw={r; p=Tw,

w €T3 when { 1s odd and
w eT(y) When i 1s even

(2) H(x, ) = g‘)‘ HE %)

Then it is clear that
(3) HOY,R) & MY, k)

¥ G=Mx9 and if Tx) and
T(y) are connected, we shall say thatx
and 3 constitute a pair of generators
of G . The exlstence of such x and
.is proved 1n {11,

(L) When G 1s simply connected:
Take & palr of generators x, § of G,
Then H(x.y) 48 an arc-wlss connscted
subgroup of G and everywhere dense in
G . It follows from these that W(x,4)
= G {for the proof see {21 ). From





