CHERN NUMBERS OF THE MODULI SPACE OF SPATIAL POLYGONS

ΥΑSUHIKO ΚΑΜΙΥΑΜΑ

Abstract

Let \mathcal{M}_n $(n \ge 3)$ be the moduli space of spatial polygons with *n* edges. We consider the case of odd *n*. First we establish a procedure to determine the Chern numbers of \mathcal{M}_n . Next we follow the procedure and get a description of \mathcal{M}_n $(n \le 9)$ in the complex cobordism group Ω_{2n-6}^U . Finally we determine some characteristic numbers of \mathcal{M}_n . In particular, we calculate the Todd genus of \mathcal{M}_n by showing that \mathcal{M}_n is birationally equivalent to $\mathbb{C}P^{n-3}$.

1. Introduction

Let \mathcal{M}_n $(n \ge 3)$ be the moduli space of spatial polygons $P = (a_1, a_2, \ldots, a_n)$ whose edges are vectors $a_i \in \mathbb{R}^3$ of length $|a_i| = 1$ $(1 \le i \le n)$. Two polygons are identified if they differ only by motions in \mathbb{R}^3 . The sum of the vectors is assumed to be zero. Thus:

(1.1)
$$\mathcal{M}_n = \{P = (a_1, \dots, a_n) \in (S^2)^n : a_1 + \dots + a_n = 0\}/SO(3).$$

It is known that \mathcal{M}_n is a Kähler manifold of complex dimension n-3. For odd *n* or n = 4, \mathcal{M}_n has no singular points. For even *n* with $n \ge 6$, $P = (a_1, a_2, \ldots, a_n)$ is a singular point if and only if all the a_i $(1 \le i \le n)$ lie on a line in \mathbb{R}^3 through *O*. Such singular points are cone-like singularities and have neighborhoods $C(S^{n-3} \times_{S^1} S^{n-3})$, where *C* denotes the cone and S^1 acts on both copies of S^{n-3} by complex multiplication (see for example [8]).

For odd *n*, the module $H_*(\mathcal{M}_n; \mathbf{R})$ was determined by Kirwan and Klyachko [10], [12]. Later the cohomology ring $H^*(\mathcal{M}_n; \mathbf{R})$ was determined by Brion and Kirwan [1], [11] (cf. Theorem 2.2). In particular $H^*(\mathcal{M}_n; \mathbf{R})$ is generated by certain two dimensional cohomology classes.

In contrast to this, for even n, $H_*(\mathcal{M}_n; \mathbf{R})$ is complicated and is not generated by two dimensional cohomology classes nor does not obey Poincaré duality [5]. The cohomology ring $H^*(\mathcal{M}_n; \mathbf{R})$ is not yet known.

¹⁹⁹¹ Mathematics Subject Classification: 57R20, 57R77

Key words and phrases: spatial polygon, Chern number, complex cobordism. Received September 3, 1999.

For the rest of this paper, we assume *n* to be odd and set n = 2m + 1. In [6], we described \mathcal{M}_n in the oriented cobordism group Ω_{2n-6}^{SO} . The result is that \mathcal{M}_n is oriented cobordant to $(-1)^{m+1} \binom{2m-1}{m} CP^{2m-2}$. Here $\binom{2m-1}{m}$ denotes the binomial coefficient, and we give an orientation to \mathcal{M}_n which is induced from the complex structure. The proof of this fact is carried out by constructing an oriented manifold with boundary, which gives the desired cobordism. However, such a method seems difficult when we describe \mathcal{M}_n in the complex cobordism group Ω_{2n-6}^U , where 2n - 6 denotes the real dimension.

bordism. However, such a method seems difficult when we describe \mathcal{M}_n in the complex cobordism group Ω_{2n-6}^U , where 2n-6 denotes the real dimension. The main topic of this paper is a description of \mathcal{M}_n in Ω_{2n-6}^U . Since $\mathcal{M}_3 = \{\text{point}\}$, the problem is trivial for \mathcal{M}_3 . Hence for the rest of this paper, we assume *n* to be odd ≥ 5 . Recall that Ω_*^U is determined by the Chern numbers [14]. Hence the problem is essentially to determine the Chern numbers of \mathcal{M}_n . In fact, we have a procedure to determine such numbers:

THEOREM A. We have a procedure to determine the Chern numbers of \mathcal{M}_n .

For more details of Theorem A, see Section 2. The key theorems for Theorem A are as follows.

(i) First we give the ring structure of $H^*(\mathcal{M}_n; \mathbb{R})$ in Theorem 2.2. In particular, $H^*(\mathcal{M}_n; \mathbb{R})$ is generated by certain two dimensional cohomology classes $z_1, \ldots, z_n \in H^2(\mathcal{M}_n; \mathbb{R})$.

(ii) Next for a sequence (d_1, \ldots, d_n) of nonnegative integers with $\sum_{i=1}^n d_i = n-3$, we give the intersection number $\langle z_1^{d_1} \cdots z_n^{d_n}, \mu_{\mathcal{M}_n} \rangle$ in Theorems 2.5 and 2.6, where $\mu_{\mathcal{M}_n}$ denotes the fundamental homology class determined by the orientation which is induced from the complex structure on \mathcal{M}_n .

(iii) Finally we describe $c(\mathcal{M}_n)$, the total Chern class of the tangent bundle of \mathcal{M}_n , in terms of $z_1, \ldots, z_n \in H^2(\mathcal{M}_n; \mathbf{R})$ (cf. (i)) in Theorem 2.8.

From (iii), we can describe $c_i(\mathcal{M}_n)$ in terms of z_1, \ldots, z_n (cf. Theorems 2.8 and 2.12). Then for each partition $I = i_1, \ldots, i_r$ of n-3, the *I*-th Chern number $c_I[\mathcal{M}_n] = c_{i_1,\ldots,i_r}[\mathcal{M}_n]$ is determined from (ii). (As usual, we set $c_{i_1,\ldots,i_r}[\mathcal{M}_n] = \langle c_{i_1}(\mathcal{M}_n), \cdots, c_{i_r}(\mathcal{M}_n), \mu_{\mathcal{M}_r} \rangle$.)

Theorem A is effective for the calculations of the Chern numbers of \mathcal{M}_n . In fact, we give the results for $n \leq 9$ in Theorem 3.1. Using these results, we have the following:

THEOREM B. (i) In Ω_4^U , we have

$$[\mathcal{M}_5] = 4[\mathbf{C}\mathbf{P}^1 \times \mathbf{C}\mathbf{P}^1] - 3[\mathbf{C}\mathbf{P}^2].$$

(ii) In Ω_8^U , we have

$$[\mathcal{M}_7] = -9[(CP^1)^4] + 33[(CP^1)^2 \times CP^2] - 33[CP^1 \times CP^3] + 0[(CP^2)^2] + 10[CP^4].$$

(iii) In
$$\Omega_{12}^U \otimes Q$$
, we have

$$[\mathscr{M}_9] = 43[(\mathbb{C}P^1)^6] - \frac{668}{3}[(\mathbb{C}P^1)^4 \times \mathbb{C}P^2] + 234[(\mathbb{C}P^1)^3 \times \mathbb{C}P^3] + 220[(\mathbb{C}P^1)^2 \times (\mathbb{C}P^2)^2] - 220[(\mathbb{C}P^1)^2 \times \mathbb{C}P^4] + \frac{440}{3}[\mathbb{C}P^1 \times \mathbb{C}P^5] - 220[\mathbb{C}P^1 \times \mathbb{C}P^2 \times \mathbb{C}P^3] + 0[(\mathbb{C}P^2)^3] + 0[\mathbb{C}P^2 \times \mathbb{C}P^4] + 55[(\mathbb{C}P^3)^2] - 35[\mathbb{C}P^6].$$

Remark 1.2. The rational coefficients -668/3 and 440/3 in Theorem B (iii) are due to the fact that $[CP^5] \in \Omega_{10}^U$ is not a ring generator of Ω_*^U [14]. Instead of $[CP^5]$, if we use x_5 defined by $x_5 = [CP^5] + [H_{3,3}] - [H_{2,4}]$, then we obtain a description of $[\mathcal{M}_9]$ in Ω_{12}^U . For more details, see Remark 3.2.

Finally we consider the case of general odd n. Note that for each partition $I = i_1, \ldots, i_r$ of n-3, the *I*-th Chern number $c_I[\mathcal{M}_n]$ is defined. In this paper, instead of giving all the $c_I[\mathcal{M}_n]$, we give some characteristic numbers of \mathcal{M}_n .

Recall that for a compact, complex k-dimensional manifold M, the Todd genus T[M] and a certain, well-known integral combination of the Chern numbers $s_k[M]$ are defined as follows (see for example [13]). First let $\{T_k\}$ be the multiplicative sequence of polynomials belonging to the power series $f(x) = x/(1 - e^{-x})$. Then the Todd genus T[M] is defined to be the characteristic number $\langle T_k(c_1(M), \ldots, c_k(M)), \mu_M \rangle$.

Next let σ_i denote the *i*-th elementary symmetric polynomial in variables t_1, \ldots, t_k , and let $s_k(\sigma_1, \ldots, \sigma_k)$ denote the polynomial in σ_i which express the sum $t_1^k + \cdots + t_k^k$. Then $s_k[M]$ is defined to be the characteristic number $\langle s_k(c_1(M), \ldots, c_k(M)), \mu_M \rangle$. (The characteristic number $s_k[M]$ is important. For example if $s_k[M] \neq 0$, then M cannot be expressed non-trivially as a product of complex manifolds.)

Then we have the following results on characteristic numbers of M_n . As before, we set n = 2m + 1.

THEOREM C. (i) We have

$$c_1^{n-3}[\mathcal{M}_n] = \sum_{j=0}^{m-1} (-1)^j \binom{2m}{j} (2m-1-2j)^{2m-2}.$$

(ii) We have

$$c_{n-3}[\mathcal{M}_n] = -2^{2m-1} + (2m+1)\binom{2m-1}{m}.$$

(iii) We have

$$T[\mathcal{M}_n] = 1$$

(iv) We have

$$s_{n-3}[\mathcal{M}_n] = (-1)^{m+1}(2m-1)\binom{2m-1}{m}.$$

In fact we can deduce Theorem C (iii) from the following stronger assertion, which may be of interest in their own right (cf. Assertion 4.1): \mathcal{M}_n is birationally equivalent to $\mathbb{C}P^{n-3}$. And as examples for other Chern numbers, we give $c_1c_{n-4}[\mathcal{M}_n]$ and $c_2c_{n-5}[\mathcal{M}_n]$ in Theorem 4.5.

Remark 1.3. (i) It is known that \mathcal{M}_n admits a symplectic structure [8], [12]. Let ω_n be the symplectic form on \mathcal{M}_n . Then it is known that $[\omega_n] = c_1(\mathcal{M}_n) \in H^2(\mathcal{M}_n; \mathbf{R})$ [2] (cf. Remark 2.13). Thus Theorem C (i) gives the symplectic volume $\langle \omega_n^{n-3}, \mu_{\mathcal{M}_n} \rangle$ of \mathcal{M}_n . (ii) From the fact that \mathcal{M}_n is oriented cobordant to $(-1)^{m+1} {\binom{2m-1}{m}}$.

(ii) From the fact that \mathcal{M}_n is oriented cobordant to $(-1)^{m+1} \binom{2m-1}{m}$. CP^{2m-2} [6], we can determine all the Pontrjagin numbers and the Stiefel-Whitney numbers of \mathcal{M}_n .

This paper is organized as follows. In Section 2, we study Theorem A in detail. We explain how to compute the Chern numbers of \mathcal{M}_n according to the steps (i), (ii) and (iii) in this section. In Section 3 we prove Theorem B, and in Section 4 we prove Theorem C.

2. Procedure for the Chern numbers of \mathcal{M}_n

In this section, we study Theorem A in detail. First we recall the structure of $H^*(\mathcal{M}_n; \mathbf{R})$ for odd *n*, which was determined by Brion and Kirwan [1], [11]. For $i \in \{1, ..., n\}$, we define $A_{n,i} \subset (\mathbf{R}^3)^n$ by

$$A_{n,i} = \left\{ P = (a_1, \dots, a_n) \in (S^2)^n : a_1 + \dots + a_n = 0 \text{ and } a_i = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Let SO(2) act on \mathbb{R}^3 by rotation about the z-axis. Then for odd *n*, the diagonal SO(2)-action on $(\mathbb{R}^3)^n$ is free on $A_{n,i}$ and we have $\mathcal{M}_n = A_{n,i}/SO(2)$ (cf. (1.1)). Therefore, $A_{n,i} \to \mathcal{M}_n$ is a principal SO(2)-bundle. Let $\xi_i \to \mathcal{M}_n$ be a complex line bundle associated with $A_{n,i} \to \mathcal{M}_n$:

$$\xi_i = (A_{n,i} \times \boldsymbol{C})/S^1$$

where we identify SO(2) with S^1 and let S^1 act on $A_{n,i} \times C$ by

$$(P, \alpha) \cdot g = (Pg, \alpha g), \quad (P, \alpha) \in A_{n, \iota} \times C, \quad g \in S^1.$$

Then we define $z_i \in H^2(\mathcal{M}_n; \mathbf{R})$ to be the Chern class of ξ_i :

Now we have the following theorem.

THEOREM 2.2 [1], [11]. When n = 2m + 1, the algebra $H^*(\mathcal{M}_n; \mathbf{R})$ is generated by z_1, \ldots, z_n with the relations:

(i)
$$z_1^2 = \cdots = z_n^2$$
.

(ii) $\prod_{j \in J} (z_i + z_j) = 0$, for all $1 \le i \le n$ and $J \subset \{1, ..., n\}$ such that $i \notin J$ and card (J) = m, where card denotes the cardinal.

Next we study the intersection numbers. For a sequence (d_1, \ldots, d_n) of nonnegative integers with $\sum_{i=1}^n d_i = n-3$, we define $\langle \tau_{d_1} \cdots \tau_{d_n} \rangle$ by

(2.3)
$$\langle \tau_{d_1} \cdots \tau_{d_n} \rangle = \langle z_1^{d_1} \cdots z_n^{d_n}, \mu_{\mathcal{M}_n} \rangle,$$

where $z_i \in H^2(\mathcal{M}_n; \mathbf{R})$ $(1 \le i \le n)$ is defined in (2.1), and $\mu_{\mathcal{M}_n}$ denotes the fundamental homology class of \mathcal{M}_n . Thus we need to determine $\langle \tau_{d_1} \cdots \tau_{d_n} \rangle$ for all (d_1, \ldots, d_n) . To do this, we consider the following types of (d_1, \ldots, d_n) . As before, we set n = 2m + 1.

- (i) $d_1 = \cdots = d_{n-3} = 1$ and $d_{n-2} = d_{n-1} = d_n = 0$.
- (ii) $d_1 = 2k$, $d_2 = \cdots = d_{n-2k-2} = 1$ and $d_{n-2k-1} = \cdots = d_n = 0$, where $1 \le k \le m-1$ and n = 2m+1.

If (d_1, \ldots, d_n) is of the type (i), then we write $\langle \tau_{d_1} \cdots \tau_{d_n} \rangle$ by $\langle \rho_{n,0} \rangle$. On the other hand, if (d_1, \ldots, d_n) is of the type (ii), then we write $\langle \tau_{d_1} \cdots \tau_{d_n} \rangle$ by $\langle \rho_{n,2k} \rangle$. Thus:

(2.4)
$$\begin{cases} \langle \rho_{n,0} \rangle = \langle z_1 \cdots z_{n-3}, \mu_{\mathcal{M}_n} \rangle \\ \langle \rho_{n,2k} \rangle = \langle z_1^{2k} z_2 \cdots z_{n-2k-2}, \mu_{\mathcal{M}_n} \rangle \quad (1 \le k \le m-1). \end{cases}$$

For a sequence (d_1, \ldots, d_n) of nonnegative integers with $\sum_{i=1}^n d_i = n-3$, we set $d_i = 2\alpha_i + \varepsilon_i$ $(1 \le i \le n)$, where $\varepsilon_i = 0$ or 1. Then we have the following:

THEOREM 2.5 [7]. We have the following relations in $H^*(\mathcal{M}_n; \mathbf{R})$. (i) If $\alpha_i = 0$ for $1 \le i \le n$, then we have

$$\langle \tau_{d_1}\cdots\tau_{d_n}\rangle = \langle \rho_{n,0}\rangle.$$

(ii) If $\alpha_i \neq 0$ for some *i*, then we have

$$\langle \tau_{d_1} \cdots \tau_{d_n} \rangle = \langle \rho_{n, 2(\alpha_1 + \cdots + \alpha_n)} \rangle.$$

Thus it suffices to determine $\langle \rho_{n,2k} \rangle$ $(0 \le k \le m-1)$ in order to determine the intersection numbers. About this, we have the following theorem.

THEOREM 2.6 [7]. When n = 2m + 1, the number $\langle \rho_{n,2k} \rangle$ $(0 \le k \le m - 1)$ is given as follows.

$$\langle \rho_{n,2k} \rangle = (-1)^k \frac{\binom{m-1}{k} \binom{2m-1}{m}}{\binom{2m-1}{2k+1}}.$$

Example 2.7. We have the following examples: (i) $\mathcal{M}_5: \langle \rho_{5,0} \rangle = 1$ and $\langle \rho_{5,2} \rangle = -3$. (ii) $\mathcal{M}_7: \langle \rho_{7,0} \rangle = 2$, $\langle \rho_{7,2} \rangle = -2$ and $\langle \rho_{7,4} \rangle = 10$. (iii) $\mathcal{M}_9: \langle \rho_{9,0} \rangle = 5$, $\langle \rho_{9,2} \rangle = -3$, $\langle \rho_{9,4} \rangle = 5$ and $\langle \rho_{9,6} \rangle = -35$.

Finally we give $c(\mathcal{M}_n)$, the total Chern class of the tangent bundle of \mathcal{M}_n .

THEOREM 2.8 [2]. We have

$$c(\mathcal{M}_n) = (1 - z_1^2)^{-1} \prod_{i=1}^n (1 + z_i).$$

Note that we have $z_1^2 = \cdots = z_n^2$ (cf. Theorem 2.2 (i)). Hence we can replace $(1 - z_1^2)^{-1}$ in Theorem 2.8 by $(1 - z_j^2)^{-1}$ for any j with $2 \le j \le n$.

Proof of Theorem 2.8. This theorem is essentially [2, p. 307]. But in [2], the result is stated in terms of other generators R, V_i $(1 \le i \le n-1) \in H^2(\mathcal{M}_n; \mathbb{R})$. So we summarize how to deduce Theorem 2.8 from [2].

In [2, p. 296], two dimensional cohomology classes R, V_i $(1 \le i \le n-1)$, which are the generators of $H^*(\mathcal{M}_n; \mathbf{R})$, are defined. Then in [2, Proposition 7.3], it is shown that

(2.9)
$$z_{i} = \begin{cases} R + 2V_{i} & 1 \le i \le n-1 \\ -R & i = n. \end{cases}$$

(Note that [2] uses the symbol c_i to denote z_i in this paper.) Finally in [2, p. 307], the following result is proved.

(2.10)
$$c(\mathcal{M}_n) = (1+R)^{-1} \prod_{i=1}^{n-1} (1+V_i+R) \prod_{j=1}^{n-1} (1+V_j).$$

Then using (2.9) and the fact $z_1^2 = \cdots = z_n^2$ (cf. Theorem 2.2), we see that (2.10) is equivalent to Theorem 2.8.

Let $\sigma_i(z_1, \ldots, z_n) \in H^{2i}(\mathcal{M}_n; \mathbf{R})$ be the elementary symmetric polynomial on $z_1, \ldots, z_n \in H^2(\mathcal{M}_n; \mathbf{R})$. Recall that $z_1^2 = \cdots = z_n^2$ (cf. Theorem 2.2 (i)). We define $D^2 \in H^4(\mathcal{M}_n; \mathbf{R})$ by

(2.11)
$$z_1^2 = \dots = z_n^2 = D^2.$$

(Note that we shall not define $D \in H^2(\mathcal{M}_n; \mathbf{R})$, but just define D^2 .) Then Theorem 2.8 implies the following:

Theorem 2.12. For $0 \le k \le n-3$, we have

$$c_k(\mathcal{M}_n) = \sum_{i=0}^{[k/2]} D^{2i} \sigma_{k-2i}(z_1,\ldots,z_n).$$

Remark 2.13. From Theorem 2.8, we see that $c_1(\mathcal{M}_n) = z_1 + \cdots + z_n$. On the other hand, if we write the symplectic form on \mathcal{M}_n by ω_n , then a theorem of [2] tells us that $[\omega_n] = z_1 + \cdots + z_n \in H^2(\mathcal{M}_n; \mathbb{R})$. Hence we have $c_1(\mathcal{M}_n) = [\omega_n]$.

3. Proof of Theorem B

For n = 5, 7 and 9, the Chern numbers of M_n are given by the following:

THEOREM 3.1. (i) $c_1^2[\mathcal{M}_5] = 5$ and $c_2[\mathcal{M}_5] = 7$. (ii) For \mathcal{M}_7 , we have the following table of the Chern numbers.

	Chern number
$c_1^4[\mathcal{M}_7]$	154
$c_1^2 c_2[\mathcal{M}_7]$	112
$c_1c_3[\mathcal{M}_7]$	56
$c_2^2[\mathcal{M}_7]$	136
$c_4[\mathcal{M}_7]$	38

(iii) For \mathcal{M}_9 , we have the following table of the Chern numbers.

	Chern number
$c_1^6[\mathcal{M}_9]$	13005
$c_1^4 c_2[\mathcal{M}_9]$	7857
$c_1^3 c_3[\mathcal{M}_9]$	3393
$c_1^2 c_2^2 [\mathcal{M}_9]$	5157
$c_1^2 c_4[\mathcal{M}_9]$	1287
$c_1c_2c_3[\mathcal{M}_9]$	2421
$c_1c_5[\mathcal{M}_9]$	423
$c_2^3[\mathcal{M}_9]$	4969
$c_2c_4[\mathcal{M}_9]$	1459
$c_3^2[\mathcal{M}_9]$	1221
$c_6[\mathcal{M}_9]$	187

Proof. This theorem follows from Theorems 2.2, 2.5, 2.6 and 2.12. As an example, we show $c_1c_3[\mathcal{M}_7]$. From Theorem 2.12, we have $c_1(\mathcal{M}_7) =$ $\sigma_1(z_1,...,z_7)$ and $c_3(\mathcal{M}_7) = \sigma_3(z_1,...,z_7) + D^2 \sigma_1(z_1,...,z_7)$. Hence

$$c_1c_3[\mathscr{M}_7] = \langle \sigma_1(z_1,\ldots,z_7)\sigma_3(z_1,\ldots,z_7),\mu_{\mathscr{M}_7} \rangle + \langle D^2\sigma_1(z_1,\ldots,z_7)^2,\mu_{\mathscr{M}_7} \rangle.$$

Using Theorem 2.5 and Example 2.7 (ii), we have

$$\langle \sigma_1(z_1, \dots, z_7) \sigma_3(z_1, \dots, z_7), \mu_{\mathcal{M}_7} \rangle$$

$$= 7 \langle z_1 \sigma_3(z_1, \dots, z_7), \mu_{\mathcal{M}_7} \rangle$$

$$= 7 \left(\binom{6}{2} \langle \rho_{7,2} \rangle + \binom{6}{3} \langle \rho_{7,0} \rangle \right)$$

$$= 70$$

Similarly, we have

$$\langle D^2 \sigma_1(z_1,\ldots,z_7)^2,\mu_{\mathcal{M}_7} \rangle = -14.$$

Hence we have $c_1c_3[\mathcal{M}_7] = 56$.

Now we complete the proof of Theorem B. It is known that Ω_*^U is the integral polynomial ring on classes x_i of dimension 2i for each integer *i*. Ω_*^U is determined by the Chern numbers. Moreover, $\Omega^U_* \otimes Q$ is the rational polynomial ring on the cobordism classes of complex projective spaces [14].

We consider \mathcal{M}_7 . The above fact tells us that in $\Omega_8^U \otimes \hat{Q}$, $[\mathcal{M}_7]$ is a linear combination of $[(CP^1)^4]$, $[(CP^1)^2 \times CP^2]$, $[CP^1 \times CP^3]$, $[(CP^2)^2]$ and $[CP^4]$. The coefficients are determined completely since we know all Chern numbers of \mathcal{M}_7 in Theorem 3.1 (ii). Thus we get a description of $[\mathcal{M}_7]$ in $\Omega_8^U \otimes \mathbf{Q}$, and the result is given in Theorem B (ii). Since the coefficients of the description are integers, this is also a description in Ω_8^U . Similarly, we can prove Theorem B (i) and (iii).

Remark 3.2. In order to get a description of \mathcal{M}_9 in Ω_{12}^U , we define an element x_5 of Ω_{10}^U by

$$x_5 = [CP^5] + [H_{3,3}] - [H_{2,4}],$$

where $H_{a,b}$ denotes a non-singular hypersurface of degree (1,1) in $\mathbb{C}P^a \times \mathbb{C}P^b$. Since $s_5(x_5) = 1$, we see that $x_5 \in \Omega_{10}^U$ is a ring generator. Then it is easy to see that in Ω_{10}^U , we have

(3.3)
$$[CP^{5}] = 21[(CP^{1})^{5}] - 68[(CP^{1})^{3} \times CP^{2}] + 27[(CP^{1})^{2} \times CP^{3}] + 51[CP^{1} \times (CP^{2})^{2}] - 6[CP^{1} \times CP^{4}] - 30[CP^{2} \times CP^{3}] + 6x_{5}.$$

If we put (3.3) into Theorem B (iii), then we get the following description of $[\mathcal{M}_9]$ in Ω_{12}^U .

$$\begin{split} [\mathscr{M}_9] &= 3123[(\mathbb{C}P^1)^6] - 10196[(\mathbb{C}P^1)^4 \times \mathbb{C}P^2] + 4194[(\mathbb{C}P^1)^3 \times \mathbb{C}P^3] \\ &+ 7700[(\mathbb{C}P^1)^2 \times (\mathbb{C}P^2)^2] - 1100[(\mathbb{C}P^1)^2 \times \mathbb{C}P^4] \\ &- 4620[\mathbb{C}P^1 \times \mathbb{C}P^2 \times \mathbb{C}P^3] + 0[(\mathbb{C}P^2)^3] + 0[\mathbb{C}P^2 \times \mathbb{C}P^4] \\ &+ 55[(\mathbb{C}P^3)^2] - 35[\mathbb{C}P^6] + 880[\mathbb{C}P^1] \cdot x_5. \end{split}$$

4. Proof of Theorem C

Proof of Theorem C (i). From Remark 2.13, we have $c_1(\mathcal{M}_n) = [\omega_n]$. In [7], the symplectic volume $\langle \omega_n^{n-3}, \mu_{\mathcal{M}_n} \rangle$ is determined. Hence Theorem C (i) follows.

Proof of Theorem C (ii). Note that $c_{n-3}[\mathcal{M}_n] = \chi(\mathcal{M}_n)$, the Euler characteristic of \mathcal{M}_n . For odd n, $H_*(\mathcal{M}_n; \mathbf{R})$ is determined in [10], [12]. Hence Theorem C (ii) follows.

Proof of Theorem C (iii). We can deduce this theorem from direct calculations using Theorems 2.5, 2.6 and 2.8, or from the fact $h^{p,q}(\mathcal{M}_n) = 0$ for $p \neq q$ [10], [12].

We can also deduce this theorem from the following stronger assertion. (Recall that the Todd genus is birational invariant [3].)

Assertion 4.1. \mathcal{M}_n is birationally equivalent to $\mathbb{C}P^{n-3}$.

Proof. In order to construct a birational map $f: \mathcal{M}_n \to \mathbb{C}P^{n-3}$, it is convenient to substitute \mathcal{M}_n by a space \mathcal{N}_n , which is biholomorphic to \mathcal{M}_n . Recall that an element $P = (x_1, \ldots, x_n)$ of $(\mathbb{C}P^1)^n$ is semistable if and only if P contains no point of $\mathbb{C}P^1$ with multiplicity strictly greater than n/2. Let \mathcal{N}_n be the orbit space of semistable points in $(\mathbb{C}P^1)^n$ with respect to the natural action of the group $PSL(2, \mathbb{C})$. Thus:

(4.2)
$$\mathcal{N}_n = \{ P = (x_1, \dots, x_n) \in (\mathbb{C}P^1)^n : P \text{ is semistable} \} / PSL(2, \mathbb{C}).$$

Then it is known that \mathcal{M}_n is biholomorphic to \mathcal{N}_n [8], [10], [12]:

$$\mathcal{M}_n \cong \mathcal{N}_n.$$

Now we construct a rational map $\phi : \mathcal{N}_n \longrightarrow \mathbb{C}P^{n-3}$ in the same way as in [9, p. 134]. (The inverse rational map $\mathbb{C}P^{n-3} \longrightarrow \mathcal{N}_n$ is constructed similarly.) Let $P = (x_1, \ldots, x_n) \in \mathcal{N}_n$. By the $PSL(2, \mathbb{C})$ -action, we can assume that $x_1 = \infty$. Thus:

(4.3)
$$\mathcal{N}_n = \{P = (x_1, \dots, x_n) \in (\mathbb{C}P^1)^n : P \text{ is semistable and } x_1 = \infty\}/G,$$

where G is a subgroup of PSL(2, C) defined by

$$G = \left\{ \begin{pmatrix} z & 0 \\ \xi & z^{-1} \end{pmatrix} : z \in \mathbf{C}^*, \xi \in \mathbf{C} \right\}.$$

Let \mathcal{N}'_n be the subspace of \mathcal{N}_n defined by

(4.4)
$$\mathcal{N}'_n = \{P = (x_1, \dots, x_n) \in (\mathbb{C}P^1)^n : P \text{ is semistable and } x_1 = \infty,$$

$$x_i \neq \infty \ (2 \le i \le n) \} / G.$$

Then we define a map $\phi: \mathcal{N}'_n \to \mathbb{C}P^{n-3}$ as follows. Let $P = (x_1, \ldots, x_n) \in \mathcal{N}'_n$. Note that $\mathbb{C}P^1 - \{\infty\}$ is isomorphic to \mathbb{C} . Since $x_i \neq \infty$ $(2 \le i \le n)$, we can regard that $x_i \in \mathbb{C}$ $(2 \le i \le n)$. There is exactly one point $z = z(x_1, \ldots, x_n) \in \mathbb{C}P^1 - \{\infty\} = \mathbb{C}$ such that $\sum_{i=2}^n (z - x_i) = 0$. Then the point $\phi(x_1, \ldots, x_n)$ is defined to be point with homogeneous coordinates $(z - x_2, \ldots, z - x_n)$. This completes the proof of Assertion 4.1.

Proof of Theorem C (iv). Recall that $s_{n-3}[\mathcal{M}_n]$ is a characteristic number defined from the Chern classes. Let n = 2m + 1 and let $s_{m-1}(p)[\mathcal{M}_n]$ be the characteristic number which is defined in the same way as in $s_{n-3}[\mathcal{M}_n]$ but using the Pontrjagin classes instead of the Chern classes. Then it is known that $s_{n-3}[\mathcal{M}_n] = s_{m-1}(p)[\mathcal{M}_n]$ (see for example [13]).

 $s_{n-3}[\mathcal{M}_n] = s_{m-1}(p)[\mathcal{M}_n] \text{ (see for example [13]).}$ Since \mathcal{M}_n is oriented cobordant to $(-1)^{m+1} \binom{2m-1}{m} CP^{2m-2}$ [6] and $s_{m-1}(p)[CP^{2m-2}] = 2m-1$, Theorem C (iv) follows.

Finally we give some more results on the Chern numbers.

THEOREM 4.5. We have the following formulae for n = 2m + 1. (i) We have

$$c_1c_{n-4}[\mathcal{M}_n] = -(2m+1)2^{2m-1} + (2m+1)(m+1)\binom{2m-1}{m}.$$

(ii) We have

$$c_2c_{n-5}[\mathcal{M}_n] = -(2m^2 + m + 1)2^{2m-1} + \frac{(2m+1)(3m^2 + 2m + 3)}{3} \binom{2m-1}{m}.$$

Recall Theorem C (ii). In general, it is easy to see that $c_i c_{n-3-i}[\mathcal{M}_n]$ $(i \le (n-3)/2)$ is of the form

$$c_i c_{n-3-i}[\mathcal{M}_n] = -f_i(m)2^{2m-1} + (2m+1)g_i(m)\binom{2m-1}{m},$$

where $f_i(m)$ and $g_i(m)$ are polynomials of degree *i* with variable *m*.

We can prove Theorem 4.5 in the same way as in the proof of Theorem 3.1 using Theorems 2.5, 2.6 and 2.12.

References

- M. BRION, Cohomologie équivariante des points semi-stables, J. Reine Angew. Math., 421 (1991), 125-140.
- [2] J-C. HAUSMANN AND A. KNUTSON, The cohomology ring of polygon spaces, Ann. Inst. Fourier (Grenoble), 48 (1998), 281–321.
- [3] F HIRZEBRUCH, Topological Methods in Algebraic Geometry 3rd ed., translated, Springer, Berlin, 1966.
- [4] Y KAMIYAMA, Topology of equilateral polygon linkages, Topology Appl., 68 (1996), 13-31.
- [5] Y. KAMIYAMA, The homology of singular polygon spaces, Canad. J. Math., 50 (1998), 581– 594.
- Y KAMIYAMA, Remarks on the topology of spatial polygon spaces, Bull. Austral. Math. Soc., 58 (1998), 373–382.
- Y. KAMIYAMA AND M. TEZUKA, Symplectic volume of the moduli space of spatial polygons, J. Math. Kyoto Univ., 39 (1999), 557–575.
- [8] M. KAPOVICH AND J. MILLSON, The symplectic geometry of polygons in Euclidean space, J. Differential Geom., 44 (1996), 479–513.
- [9] M. KAPRANOV, The permutoassociahedron, MacLane's coherence theorem and asymptotic zones for the KZ equation, J. Pure Appl. Algebra, 85 (1993), 119-142.
- [10] F KIRWAN, Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes 31, Princeton University Press, Princeton, 1984.
- F KIRWAN, The cohomology rings of moduli spaces of bundles over Riemann surfaces, J. Amer. Math. Soc., 5 (1992), 853–906.
- [12] A. KLYACHKO, Spatial polygons and stable configurations of points in the projective line, Algebraic Geometry and its Applications Yaroslavl' 1992 (A. Tikhomirov and A. Tyurin eds.), Aspects Math. E 25, Vieweg, Braunschweig, 1994, pp. 67–84.
- [13] J. MILNOR AND J. STASHEFF, Characteristic Classes, Princeton University Press, Princeton, 1974.
- [14] R. STONG, Notes on Cobordism Theory, Princeton University Press, Princeton, 1968.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF THE RYUKYUS NISHIHARA-CHO, OKINAWA 903-01, JAPAN E-mail: kamiyama@sci.u-ryukyu.ac.jp