CHERN NUMBERS OF THE MODULI SPACE OF SPATIAL POLYGONS

Yasuhiko Kamiyama

Abstract

Let $\mathscr{M}_{n}(n \geq 3)$ be the moduli space of spatial polygons with n edges. We consider the case of odd n. First we establish a procedure to determine the Chern numbers of \mathscr{M}_{n}. Next we follow the procedure and get a description of $\mathscr{M}_{n}(n \leq 9)$ in the complex cobordism group $\Omega_{2 n-6}^{U}$. Finally we determine some characteristic numbers of \mathscr{M}_{n}. In particular, we calculate the Todd genus of \mathscr{M}_{n} by showing that \mathscr{M}_{n} is birationally equivalent to $C P^{n-3}$.

1. Introduction

Let $\mathscr{M}_{n}(n \geq 3)$ be the moduli space of spatial polygons $P=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ whose edges are vectors $a_{i} \in \boldsymbol{R}^{3}$ of length $\left|a_{i}\right|=1(1 \leq i \leq n)$. Two polygons are identified if they differ only by motions in \boldsymbol{R}^{3}. The sum of the vectors is assumed to be zero. Thus:

$$
\begin{equation*}
\mathscr{M}_{n}=\left\{P=\left(a_{1}, \ldots, a_{n}\right) \in\left(S^{2}\right)^{n}: a_{1}+\cdots+a_{n}=0\right\} / S O(3) . \tag{1.1}
\end{equation*}
$$

It is known that \mathscr{M}_{n} is a Kähler manifold of complex dimension $n-3$. For odd n or $n=4, \mathscr{M}_{n}$ has no singular points. For even n with $n \geq 6, P=$ $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a singular point if and only if all the $a_{i}(1 \leq i \leq n)$ lie on a line in \boldsymbol{R}^{3} through O. Such singular points are cone-like singularities and have neighborhoods $C\left(S^{n-3} \times{ }_{S^{1}} S^{n-3}\right)$, where C denotes the cone and S^{1} acts on both copies of S^{n-3} by complex multiplication (see for example [8]).

For odd n, the module $H_{*}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$ was determined by Kirwan and Klyachko [10], [12]. Later the cohomology ring $H^{*}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$ was determined by Brion and Kirwan [1], [11] (cf. Theorem 2.2). In particular $H^{*}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$ is generated by certain two dimensional cohomology classes.

In contrast to this, for even $n, H_{*}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$ is complicated and is not generated by two dimensional cohomology classes nor does not obey Poincaré duality [5]. The cohomology ring $H^{*}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$ is not yet known.

For the rest of this paper, we assume n to be odd and set $n=2 m+1$. In [6], we described \mathscr{M}_{n} in the oriented cobordism group $\Omega_{2 n-6}^{S O}$. The result is that \mathscr{M}_{n} is oriented cobordant to $(-1)^{m+1}\binom{(2 m-1}{m} \boldsymbol{C} P^{2 m-2}$. Here $\binom{2 m-1}{m}$ denotes the binomial coefficient, and we give an orientation to \mathscr{M}_{n} which is induced from the complex structure. The proof of this fact is carried out by constructing an oriented manifold with boundary, which gives the desired cobordism. However, such a method seems difficult when we describe \mathscr{M}_{n} in the complex cobordism group $\Omega_{2 n-6}^{U}$, where $2 n-6$ denotes the real dimension.

The main topic of this paper is a description of \mathscr{M}_{n} in $\Omega_{2 n-6}^{U}$. Since $\mathscr{M}_{3}=$ \{point\}, the problem is trivial for \mathscr{M}_{3}. Hence for the rest of this paper, we assume n to be odd ≥ 5. Recall that Ω_{*}^{U} is determined by the Chern numbers [14]. Hence the problem is essentially to determine the Chern numbers of \mathscr{M}_{n}. In fact, we have a procedure to determine such numbers:

Theorem A. We have a procedure to determine the Chern numbers of \mathscr{M}_{n}.
For more details of Theorem A, see Section 2. The key theorems for Theorem A are as follows.
(i) First we give the ring structure of $H^{*}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$ in Theorem 2.2. In particular, $H^{*}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$ is generated by certain two dimensional cohomology classes $z_{1}, \ldots, z_{n} \in H^{2}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$.
(ii) Next for a sequence $\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers with $\sum_{l=1}^{n} d_{i}=$ $n-3$, we give the intersection number $\left\langle z_{1}^{d_{1}} \cdots z_{n}^{d_{n}}, \mu_{\mu_{n}}\right\rangle$ in Theorems 2.5 and 2.6, where $\mu_{M_{n} .}$ denotes the fundamental homology class determined by the orientation which is induced from the complex structure on \mathscr{M}_{n}.
(iii) Finally we describe $c\left(\mathscr{M}_{n}\right)$, the total Chern class of the tangent bundle of \mathscr{M}_{n}, in terms of $z_{1}, \ldots, z_{n} \in H^{2}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$ (cf. (i)) in Theorem 2.8.

From (iii), we can describe $c_{i}\left(\mathscr{M}_{n}\right)$ in terms of z_{1}, \ldots, z_{n} (cf. Theorems 2.8 and 2.12). Then for each partition $I=i_{1}, \ldots, i_{r}$ of $n-3$, the I-th Chern number $c_{I}\left[\mathscr{M}_{n}\right]=c_{l_{1}, ., l_{r}}\left[\mathscr{M}_{n}\right]$ is determined from (ii). (As usual, we set $c_{i_{1}, \ldots, l_{r}}\left[\mathscr{M}_{n}\right]=$ $\left.\left\langle c_{l_{1}}\left(\mathscr{M}_{n}\right) \cdots c_{l_{r}}\left(\mathscr{M}_{n}\right), \mu_{M_{n}}\right\rangle.\right)$

Theorem A is effective for the calculations of the Chern numbers of \mathscr{M}_{n}. In fact, we give the results for $n \leq 9$ in Theorem 3.1. Using these results, we have the following:

Theorem B. (i) In Ω_{4}^{U}, we have

$$
\left[\mathscr{M}_{5}\right]=4\left[\boldsymbol{C} P^{1} \times \boldsymbol{C} P^{1}\right]-3\left[\boldsymbol{C} \boldsymbol{P}^{2}\right] .
$$

(ii) In Ω_{8}^{U}, we have

$$
\begin{aligned}
{\left[\mathscr{M}_{7}\right]=} & -9\left[\left(\boldsymbol{C} \boldsymbol{P}^{1}\right)^{4}\right]+33\left[\left(\boldsymbol{C} \boldsymbol{P}^{1}\right)^{2} \times \boldsymbol{C} \boldsymbol{P}^{2}\right]-33\left[\boldsymbol{C} \boldsymbol{P}^{1} \times \boldsymbol{C} \boldsymbol{P}^{3}\right] \\
& +0\left[\left(\boldsymbol{C} P^{2}\right)^{2}\right]+10\left[\boldsymbol{C} P^{4}\right] .
\end{aligned}
$$

(iii) In $\Omega_{12}^{U} \otimes Q$, we have

$$
\begin{aligned}
{\left[\mathscr{M}_{9}\right]=} & 43\left[\left(\boldsymbol{C} \boldsymbol{P}^{1}\right)^{6}\right]-\frac{668}{3}\left[\left(\boldsymbol{C} \boldsymbol{P}^{1}\right)^{4} \times \boldsymbol{C} \boldsymbol{P}^{2}\right]+234\left[\left(\boldsymbol{C} \boldsymbol{P}^{1}\right)^{3} \times \boldsymbol{C} \boldsymbol{P}^{3}\right] \\
& +220\left[\left(\boldsymbol{C} \boldsymbol{P}^{1}\right)^{2} \times\left(\boldsymbol{C} \boldsymbol{P}^{2}\right)^{2}\right]-220\left[\left(\boldsymbol{C} \boldsymbol{P}^{1}\right)^{2} \times \boldsymbol{C} \boldsymbol{P}^{4}\right]+\frac{440}{3}\left[\boldsymbol{C} \boldsymbol{P}^{1} \times \boldsymbol{C} \boldsymbol{P}^{5}\right] \\
& -220\left[\boldsymbol{C} \boldsymbol{P}^{1} \times \boldsymbol{C} \boldsymbol{P}^{2} \times \boldsymbol{C} \boldsymbol{P}^{3}\right]+0\left[\left(\boldsymbol{C} \boldsymbol{P}^{2}\right)^{3}\right]+0\left[\boldsymbol{C} \boldsymbol{P}^{2} \times \boldsymbol{C} P^{4}\right] \\
& +55\left[\left(\boldsymbol{C} P^{3}\right)^{2}\right]-35\left[\boldsymbol{C} P^{6}\right] .
\end{aligned}
$$

Remark 1.2. The rational coefficients $-668 / 3$ and $440 / 3$ in Theorem B (iii) are due to the fact that $\left[C P^{5}\right] \in \Omega_{10}^{U}$ is not a ring generator of Ω_{*}^{U} [14]. Instead of $\left[\boldsymbol{C} P^{5}\right]$, if we use x_{5} defined by $x_{5}=\left[\boldsymbol{C} P^{5}\right]+\left[H_{3,3}\right]-\left[H_{2,4}\right]$, then we obtain a description of $\left[\mathscr{M}_{9}\right]$ in Ω_{12}^{U}. For more details, see Remark 3.2.

Finally we consider the case of general odd n. Note that for each partition $I=i_{1}, \ldots, i_{r}$ of $n-3$, the I-th Chern number $c_{I}\left[\mathscr{M}_{n}\right]$ is defined. In this paper, instead of giving all the $c_{I}\left[\mathscr{M}_{n}\right]$, we give some characteristic numbers of \mathscr{M}_{n}.

Recall that for a compact, complex k-dimensional manifold M, the Todd genus $T[M]$ and a certain, well-known integral combination of the Chern numbers $s_{k}[M]$ are defined as follows (see for example [13]). First let $\left\{T_{k}\right\}$ be the multiplicative sequence of polynomials belonging to the power series $f(x)=$ $x /\left(1-e^{-x}\right)$. Then the Todd genus $T[M]$ is defined to be the characteristic number $\left\langle T_{k}\left(c_{1}(M), \ldots, c_{k}(M)\right), \mu_{M}\right\rangle$.

Next let σ_{l} denote the i-th elementary symmetric polynomial in variables t_{1}, \ldots, t_{k}, and let $s_{k}\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ denote the polynomial in σ_{l} which express the sum $t_{1}^{k}+\cdots+t_{k}^{k}$. Then $s_{k}[M]$ is defined to be the characteristic number $\left\langle s_{k}\left(c_{1}(M), \ldots, c_{k}(M)\right), \mu_{M}\right\rangle$. (The characteristic number $s_{k}[M]$ is important. For example if $s_{k}[M] \neq 0$, then M cannot be expressed non-trivially as a product of complex manifolds.)

Then we have the following results on characteristic numbers of \mathscr{M}_{n}. As before, we set $n=2 m+1$.

Theorem C. (i) We have

$$
c_{1}^{n-3}\left[\mathscr{M}_{n}\right]=\sum_{j=0}^{m-1}(-1)^{J}\binom{2 m}{j}(2 m-1-2 j)^{2 m-2}
$$

(ii) We have

$$
c_{n-3}\left[\mathscr{M}_{n}\right]=-2^{2 m-1}+(2 m+1)\binom{2 m-1}{m} .
$$

(iii) We have

$$
T\left[\mathscr{M}_{n}\right]=1
$$

(iv) We have

$$
s_{n-3}\left[\mathscr{M}_{n}\right]=(-1)^{m+1}(2 m-1)\binom{2 m-1}{m}
$$

In fact we can deduce Theorem C (iii) from the following stronger assertion, which may be of interest in their own right (cf. Assertion 4.1): \mathscr{M}_{n} is birationally equivalent to $\boldsymbol{C} P^{n-3}$. And as examples for other Chern numbers, we give $c_{1} c_{n-4}\left[\mathscr{M}_{n}\right]$ and $c_{2} c_{n-5}\left[\mathscr{M}_{n}\right]$ in Theorem 4.5.

Remark 1.3. (i) It is known that \mathscr{M}_{n} admits a symplectic structure [8], [12]. Let ω_{n} be the symplectic form on \mathscr{M}_{n}. Then it is known that $\left[\omega_{n}\right]=c_{1}\left(\mathscr{M}_{n}\right) \in$ $H^{2}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$ [2] (cf. Remark 2.13). Thus Theorem C (i) gives the symplectic volume $\left\langle\omega_{n}^{n-3}, \mu_{\mathscr{M}_{n}}\right\rangle$ of \mathscr{M}_{n}.
(ii) From the fact that \mathscr{M}_{n} is oriented cobordant to $(-1)^{m+1}\binom{2 m-1}{m}$. $C P^{2 m-2}[6]$, we can determine all the Pontrjagin numbers and the Stiefel-Whitney numbers of \mathscr{M}_{n}.

This paper is organized as follows. In Section 2, we study Theorem A in detail. We explain how to compute the Chern numbers of \mathscr{M}_{n} according to the steps (i), (ii) and (iii) in this section. In Section 3 we prove Theorem B, and in Section 4 we prove Theorem C.

2. Procedure for the Chern numbers of \mathscr{M}_{n}

In this section, we study Theorem A in detail. First we recall the structure of $H^{*}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$ for odd n, which was determined by Brion and Kirwan [1], [11]. For $i \in\{1, \ldots, n\}$, we define $A_{n, t} \subset\left(\boldsymbol{R}^{3}\right)^{n}$ by

$$
A_{n, t}=\left\{P=\left(a_{1}, \ldots, a_{n}\right) \in\left(S^{2}\right)^{n}: a_{1}+\cdots+a_{n}=0 \text { and } a_{i}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}
$$

Let $S O(2)$ act on \boldsymbol{R}^{3} by rotation about the z-axis. Then for odd n, the diagonal $S O(2)$-action on $\left(\boldsymbol{R}^{3}\right)^{n}$ is free on $A_{n, t}$ and we have $\mathscr{M}_{n}=A_{n, t} / S O(2)$ (cf. (1.1)). Therefore, $A_{n, l} \rightarrow \mathscr{M}_{n}$ is a principal $S O(2)$-bundle. Let $\xi_{l} \rightarrow \mathscr{M}_{n}$ be a complex line bundle associated with $A_{n, l} \rightarrow \mathscr{M}_{n}$:

$$
\xi_{l}=\left(A_{n, t} \times C\right) / S^{1}
$$

where we identify $S O(2)$ with S^{1} and let S^{1} act on $A_{n, l} \times C$ by

$$
(P, \alpha) \cdot g=(P g, \alpha g), \quad(P, \alpha) \in A_{n, l} \times C, \quad g \in S^{1}
$$

Then we define $z_{l} \in H^{2}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$ to be the Chern class of ξ_{l} :

$$
\begin{equation*}
z_{l}=c_{1}\left(\xi_{l}\right), \quad 1 \leq i \leq n . \tag{2.1}
\end{equation*}
$$

Now we have the following theorem.

Theorem 2.2 [1], [11]. When $n=2 m+1$, the algebra $H^{*}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$ is generated by z_{1}, \ldots, z_{n} with the relations:
(i) $z_{1}^{2}=\cdots=z_{n}^{2}$.
(ii) $\prod_{j \in J}\left(z_{l}+z_{J}\right)=0$, for all $1 \leq i \leq n$ and $J \subset\{1, \ldots, n\}$ such that $i \notin J$ and card $(J)=m$, where card denotes the cardinal.

Next we study the intersection numbers. For a sequence $\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers with $\sum_{l=1}^{n} d_{i}=n-3$, we define $\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle$ by

$$
\begin{equation*}
\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle=\left\langle z_{1}^{d_{1}} \cdots z_{n}^{d_{n}}, \mu_{\mathscr{M}_{n}}\right\rangle \tag{2.3}
\end{equation*}
$$

where $z_{l} \in H^{2}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)(1 \leq i \leq n)$ is defined in (2.1), and $\mu_{\mathscr{M}_{n}}$ denotes the fundamental homology class of \mathscr{M}_{n}. Thus we need to determine $\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle$ for all $\left(d_{1}, \ldots, d_{n}\right)$. To do this, we consider the following types of $\left(d_{1}, \ldots, d_{n}\right)$. As before, we set $n=2 m+1$.
(i) $d_{1}=\cdots=d_{n-3}=1$ and $d_{n-2}=d_{n-1}=d_{n}=0$.
(ii) $d_{1}=2 k, d_{2}=\cdots=d_{n-2 k-2}=1$ and $d_{n-2 k-1}=\cdots=d_{n}=0$, where $1 \leq$ $k \leq m-1$ and $n=2 m+1$.
If $\left(d_{1}, \ldots, d_{n}\right)$ is of the type (i), then we write $\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle$ by $\left\langle\rho_{n, 0}\right\rangle$. On the other hand, if $\left(d_{1}, \ldots, d_{n}\right)$ is of the type (ii), then we write $\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle$ by $\left\langle\rho_{n, 2 k}\right\rangle$. Thus:

$$
\left\{\begin{array}{l}
\left\langle\rho_{n, 0}\right\rangle=\left\langle z_{1} \cdots z_{n-3}, \mu_{M_{n}}\right\rangle \tag{2.4}\\
\left\langle\rho_{n, 2 k}\right\rangle=\left\langle z_{1}^{2 k} z_{2} \cdots z_{n-2 k-2}, \mu_{M_{n}}\right\rangle \quad(1 \leq k \leq m-1)
\end{array}\right.
$$

For a sequence $\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers with $\sum_{l=1}^{n} d_{i}=n-3$, we set $d_{i}=2 \alpha_{i}+\varepsilon_{i}(1 \leq i \leq n)$, where $\varepsilon_{i}=0$ or 1 . Then we have the following:

Theorem 2.5 [7]. We have the following relations in $H^{*}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$.
(i) If $\alpha_{i}=0$ for $1 \leq i \leq n$, then we have

$$
\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle=\left\langle\rho_{n, 0}\right\rangle
$$

(ii) If $\alpha_{i} \neq 0$ for some i, then we have

$$
\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle=\left\langle\rho_{n, 2\left(\alpha_{1}+\cdots+\alpha_{n}\right)}\right\rangle .
$$

Thus it suffices to determine $\left\langle\rho_{n, 2 k}\right\rangle(0 \leq k \leq m-1)$ in order to determine the intersection numbers. About this, we have the following theorem.

Theorem 2.6 [7]. When $n=2 m+1$, the number $\left\langle\rho_{n, 2 k}\right\rangle(0 \leq k \leq m-1)$ is given as follows.

$$
\left\langle\rho_{n, 2 k}\right\rangle=(-1)^{k} \frac{\binom{m-1}{k}\binom{2 m-1}{m}}{\binom{2 m-1}{2 k+1}}
$$

Example 2.7. We have the following examples:
(i) $\mathscr{M}_{5}:\left\langle\rho_{5,0}\right\rangle=1$ and $\left\langle\rho_{5,2}\right\rangle=-3$.
(ii) $\mathscr{M}_{7}:\left\langle\rho_{7,0}\right\rangle=2,\left\langle\rho_{7,2}\right\rangle=-2$ and $\left\langle\rho_{7,4}\right\rangle=10$.
(iii) $\mathscr{M}_{9}:\left\langle\rho_{9,0}\right\rangle=5,\left\langle\rho_{9,2}\right\rangle=-3,\left\langle\rho_{9,4}\right\rangle=5$ and $\left\langle\rho_{9,6}\right\rangle=-35$.

Finally we give $c\left(\mathscr{M}_{n}\right)$, the total Chern class of the tangent bundle of \mathscr{M}_{n}.
Theorem 2.8 [2]. We have

$$
c\left(\mathscr{M}_{n}\right)=\left(1-z_{1}^{2}\right)^{-1} \prod_{l=1}^{n}\left(1+z_{l}\right)
$$

Note that we have $z_{1}^{2}=\cdots=z_{n}^{2}$ (cf. Theorem 2.2 (i)). Hence we can replace $\left(1-z_{1}^{2}\right)^{-1}$ in Theorem 2.8 by $^{n}\left(1-z_{j}^{2}\right)^{-1}$ for any j with $2 \leq j \leq n$.

Proof of Theorem 2.8. This theorem is essentially [2, p. 307]. But in [2], the result is stated in terms of other generators $R, V_{l}(1 \leq i \leq n-1) \in H^{2}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$. So we summarize how to deduce Theorem 2.8 from [2].

In [2, p. 296], two dimensional cohomology classes $R, V_{l}(1 \leq i \leq n-1)$, which are the generators of $H^{*}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$, are defined. Then in [2, Proposition 7.3], it is shown that

$$
z_{l}= \begin{cases}R+2 V_{l} & 1 \leq i \leq n-1 \tag{2.9}\\ -R & i=n\end{cases}
$$

(Note that [2] uses the symbol c_{l} to denote z_{l} in this paper.)
Finally in [2, p. 307], the following result is proved.

$$
\begin{equation*}
c\left(\mathscr{M}_{n}\right)=(1+R)^{-1} \prod_{l=1}^{n-1}\left(1+V_{l}+R\right) \prod_{j=1}^{n-1}\left(1+V_{J}\right) \tag{2.10}
\end{equation*}
$$

Then using (2.9) and the fact $z_{1}^{2}=\cdots=z_{n}^{2}$ (cf. Theorem 2.2), we see that (2.10) is equivalent to Theorem 2.8.

Let $\sigma_{i}\left(z_{1}, \ldots, z_{n}\right) \in H^{2 i}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$ be the elementary symmetric polynomial on $z_{1}, \ldots, z_{n} \in H^{2}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$. Recall that $z_{1}^{2}=\cdots=z_{n}^{2}$ (cf. Theorem 2.2 (i)). We define $D^{2} \in H^{4}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$ by

$$
\begin{equation*}
z_{1}^{2}=\cdots=z_{n}^{2}=D^{2} \tag{2.11}
\end{equation*}
$$

(Note that we shall not define $D \in H^{2}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$, but just define D^{2}.) Then Theorem 2.8 implies the following:

Theorem 2.12. For $0 \leq k \leq n-3$, we have

$$
c_{k}\left(\mathscr{M}_{n}\right)=\sum_{l=0}^{[k / 2]} D^{2 i} \sigma_{k-2 i}\left(z_{1}, \ldots, z_{n}\right)
$$

Remark 2.13. From Theorem 2.8, we see that $c_{1}\left(\mathscr{M}_{n}\right)=z_{1}+\cdots+z_{n}$. On the other hand, if we write the symplectic form on \mathscr{M}_{n} by ω_{n}, then a theorem of [2] tells us that $\left[\omega_{n}\right]=z_{1}+\cdots+z_{n} \in H^{2}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$. Hence we have $c_{1}\left(\mathscr{M}_{n}\right)=\left[\omega_{n}\right]$.

3. Proof of Theorem B

For $n=5,7$ and 9 , the Chern numbers of \mathscr{M}_{n} are given by the following:
Theorem 3.1. (i) $c_{1}^{2}\left[\mathscr{M}_{5}\right]=5$ and $c_{2}\left[\mathscr{M}_{5}\right]=7$.
(ii) For \mathscr{M}_{7}, we have the following table of the Chern numbers.

	Chern number
$c_{1}^{4}\left[\mathscr{M}_{7}\right]$	154
$c_{1}^{2} c_{2}\left[\mathscr{M}_{7}\right]$	112
$c_{1} c_{3}\left[\mathscr{M}_{7}\right]$	56
$c_{2}^{2}\left[\mathscr{M}_{7}\right]$	136
$c_{4}\left[\mathscr{M}_{7}\right]$	38

(iii) For \mathscr{M}_{9}, we have the following table of the Chern numbers.

	Chern number
$c_{1}^{6}\left[\mathcal{M}_{9}\right]$	13005
$c_{1}^{4} c_{2}\left[\mathcal{M}_{9}\right]$	7857
$c_{1}^{3} c_{3}\left[M_{9}\right]$	3393
$c_{1}^{2} c_{2}^{2}\left[\mathcal{M}_{9}\right]$	5157
$c_{1}^{2} c_{4}\left[\mathcal{M}_{9}\right]$	1287
$c_{1} c_{2} c_{3}\left[\mathcal{M}_{9}\right]$	2421
$c_{1} c_{5}\left[\mathcal{M}_{9}\right]$	423
$c_{2}^{3}\left[\mathcal{M}_{9}\right]$	4969
$c_{2} c_{4}\left[\mathcal{M}_{9}\right]$	1459
$c_{3}^{2}\left[\mathcal{M}_{9}\right]$	1221
$c_{6}\left[\mathcal{M}_{9}\right]$	187

Proof. This theorem follows from Theorems 2.2, 2.5, 2.6 and 2.12. As an example, we show $c_{1} c_{3}\left[\mathscr{M}_{7}\right]$. From Theorem 2.12, we have $c_{1}\left(\mathscr{M}_{7}\right)=$ $\sigma_{1}\left(z_{1}, \ldots, z_{7}\right)$ and $c_{3}\left(\mathscr{M}_{7}\right)=\sigma_{3}\left(z_{1}, \ldots, z_{7}\right)+D^{2} \sigma_{1}\left(z_{1}, \ldots, z_{7}\right)$. Hence

$$
c_{1} c_{3}\left[\mathscr{M}_{7}\right]=\left\langle\sigma_{1}\left(z_{1}, \ldots, z_{7}\right) \sigma_{3}\left(z_{1}, \ldots, z_{7}\right), \mu_{\mu_{7}}\right\rangle+\left\langle D^{2} \sigma_{1}\left(z_{1}, \ldots, z_{7}\right)^{2}, \mu_{\mu_{7}}\right\rangle
$$

Using Theorem 2.5 and Example 2.7 (ii), we have

$$
\begin{aligned}
& \left\langle\sigma_{1}\left(z_{1}, \ldots, z_{7}\right) \sigma_{3}\left(z_{1}, \ldots, z_{7}\right), \mu_{\mu_{7}}\right\rangle \\
& \quad=7\left\langle z_{1} \sigma_{3}\left(z_{1}, \ldots, z_{7}\right), \mu_{M_{7}}\right\rangle \\
& \quad=7\left(\binom{6}{2}\left\langle\rho_{7,2}\right\rangle+\binom{6}{3}\left\langle\rho_{7,0}\right\rangle\right) \\
& \quad=70 .
\end{aligned}
$$

Similarly, we have

$$
\left\langle D^{2} \sigma_{1}\left(z_{1}, \ldots, z_{7}\right)^{2}, \mu_{M_{7}}\right\rangle=-14 .
$$

Hence we have $c_{1} c_{3}\left[\mathscr{M}_{7}\right]=56$.
Now we complete the proof of Theorem B. It is known that Ω_{*}^{U} is the integral polynomial ring on classes x_{l} of dimension $2 i$ for each integer $i . \Omega_{*}^{U}$ is determined by the Chern numbers. Moreover, $\Omega_{*}^{U} \otimes \boldsymbol{Q}$ is the rational polynomial ring on the cobordism classes of complex projective spaces [14].

We consider \mathscr{M}_{7}. The above fact tells us that in $\Omega_{8}^{U} \otimes \boldsymbol{Q},\left[\mathscr{M}_{7}\right]$ is a linear combination of $\left[\left(\boldsymbol{C} P^{1}\right)^{4}\right],\left[\left(\boldsymbol{C} P^{1}\right)^{2} \times \boldsymbol{C} P^{2}\right],\left[\boldsymbol{C} P^{1} \times \boldsymbol{C} P^{3}\right],\left[\left(\boldsymbol{C} P^{2}\right)^{2}\right]$ and $\left[\boldsymbol{C} P^{4}\right]$. The coefficients are determined completely since we know all Chern numbers of \mathscr{M}_{7} in Theorem 3.1 (ii). Thus we get a description of $\left[\mathscr{M}_{7}\right]$ in $\Omega_{8}^{U} \otimes \boldsymbol{Q}$, and the result is given in Theorem B (ii). Since the coefficients of the description are integers, this is also a description in Ω_{8}^{U}.

Similarly, we can prove Theorem B (i) and (iii).
Remark 3.2. In order to get a description of \mathscr{M}_{9} in Ω_{12}^{U}, we define an element x_{5} of Ω_{10}^{U} by

$$
x_{5}=\left[\boldsymbol{C} P^{5}\right]+\left[H_{3,3}\right]-\left[H_{2,4}\right],
$$

where $H_{a, b}$ denotes a non-singular hypersurface of degree $(1,1)$ in $\boldsymbol{C} \boldsymbol{P}^{a} \times \boldsymbol{C} \boldsymbol{P}^{b}$. Since $s_{5}\left(x_{5}\right)=1$, we see that $x_{5} \in \Omega_{10}^{U}$ is a ring generator. Then it is easy to see that in Ω_{10}^{U}, we have

$$
\begin{align*}
{\left[\boldsymbol{C} P^{5}\right]=} & 21\left[\left(\boldsymbol{C} P^{1}\right)^{5}\right]-68\left[\left(\boldsymbol{C} P^{1}\right)^{3} \times \boldsymbol{C} P^{2}\right]+27\left[\left(\boldsymbol{C} P^{1}\right)^{2} \times \boldsymbol{C} P^{3}\right] \tag{3.3}\\
& +51\left[\boldsymbol{C} P^{1} \times\left(\boldsymbol{C} P^{2}\right)^{2}\right]-6\left[\boldsymbol{C} P^{1} \times \boldsymbol{C} P^{4}\right]-30\left[\boldsymbol{C} P^{2} \times \boldsymbol{C} P^{3}\right]+6 x_{5}
\end{align*}
$$

If we put (3.3) into Theorem B (iii), then we get the following description of $\left[\mathscr{M}_{9}\right]$ in Ω_{12}^{U}.

$$
\begin{aligned}
{\left[\mathscr{M}_{9}\right]=} & 3123\left[\left(\boldsymbol{C} \boldsymbol{P}^{1}\right)^{6}\right]-10196\left[\left(\boldsymbol{C} \boldsymbol{P}^{1}\right)^{4} \times \boldsymbol{C} \boldsymbol{P}^{2}\right]+4194\left[\left(\boldsymbol{C} \boldsymbol{P}^{1}\right)^{3} \times \boldsymbol{C} \boldsymbol{P}^{3}\right] \\
& +7700\left[\left(\boldsymbol{C} P^{1}\right)^{2} \times\left(\boldsymbol{C} \boldsymbol{P}^{2}\right)^{2}\right]-1100\left[\left(\boldsymbol{C} \boldsymbol{P}^{1}\right)^{2} \times \boldsymbol{C} \boldsymbol{P}^{4}\right] \\
& -4620\left[\boldsymbol{C} \boldsymbol{P}^{1} \times \boldsymbol{C} \boldsymbol{P}^{2} \times \boldsymbol{C} \boldsymbol{P}^{3}\right]+0\left[\left(\boldsymbol{C} \boldsymbol{P}^{2}\right)^{3}\right]+0\left[\boldsymbol{C} \boldsymbol{P}^{2} \times \boldsymbol{C} \boldsymbol{P}^{4}\right] \\
& +55\left[\left(\boldsymbol{C} \boldsymbol{P}^{3}\right)^{2}\right]-35\left[\boldsymbol{C} \boldsymbol{P}^{6}\right]+880\left[\boldsymbol{C} P^{1}\right] \cdot x_{5} .
\end{aligned}
$$

4. Proof of Theorem \mathbf{C}

Proof of Theorem C (i). From Remark 2.13, we have $c_{1}\left(\mathscr{M}_{n}\right)=\left[\omega_{n}\right]$. In [7], the symplectic volume $\left\langle\omega_{n}^{n-3}, \mu_{M_{n}}\right\rangle$ is determined. Hence Theorem C (i) follows.

Proof of Theorem C (ii). Note that $c_{n-3}\left[\mathscr{M}_{n}\right]=\chi\left(\mathscr{M}_{n}\right)$, the Euler characteristic of \mathscr{M}_{n}. For odd $n, H_{*}\left(\mathscr{M}_{n} ; \boldsymbol{R}\right)$ is determined in [10], [12]. Hence Theorem C (ii) follows.

Proof of Theorem C (iii). We can deduce this theorem from direct calculations using Theorems $2.5,2.6$ and 2.8 , or from the fact $h^{p, q}\left(\mathscr{M}_{n}\right)=0$ for $p \neq q$ [10], [12].

We can also deduce this theorem from the following stronger assertion. (Recall that the Todd genus is birational invariant [3].)

Assertion 4.1. \mathscr{M}_{n} is birationally equivalent to $C P^{n-3}$.
Proof. In order to construct a birational map $f: \mathscr{M}_{n} \rightarrow \boldsymbol{C P} P^{n-3}$, it is convenient to substitute \mathscr{M}_{n} by a space \mathscr{N}_{n}, which is biholomorphic to \mathscr{M}_{n}. Recall that an element $P=\left(x_{1}, \ldots, x_{n}\right)$ of $\left(\boldsymbol{C} P^{1}\right)^{n}$ is semistable if and only if P contains no point of $C P^{1}$ with multiplicity strictly greater than $n / 2$. Let \mathscr{N}_{n} be the orbit space of semistable points in $\left(\boldsymbol{C} P^{1}\right)^{n}$ with respect to the natural action of the group $\operatorname{PSL}(2, C)$. Thus:

$$
\begin{equation*}
\mathscr{N}_{n}=\left\{P=\left(x_{1}, \ldots, x_{n}\right) \in\left(\boldsymbol{C} P^{1}\right)^{n}: P \text { is semistable }\right\} / P S L(2, \boldsymbol{C}) . \tag{4.2}
\end{equation*}
$$

Then it is known that \mathscr{M}_{n} is biholomorphic to \mathscr{N}_{n} [8], [10], [12]:

$$
\mathscr{M}_{n} \cong \mathscr{N}_{n}
$$

Now we construct a rational map $\phi: \mathscr{N}_{n} \longrightarrow C P^{n-3}$ in the same way as in [9, p. 134]. (The inverse rational map $C P^{n-3} \rightarrow \mathscr{N}_{n}$ is constructed similarly.) Let $P=\left(x_{1}, \ldots, x_{n}\right) \in \mathscr{N}_{n}$. By the $\operatorname{PSL}(2, \boldsymbol{C})$-action, we can assume that $x_{1}=\infty$. Thus:

$$
\begin{equation*}
\mathscr{N}_{n}=\left\{P=\left(x_{1}, \ldots, x_{n}\right) \in\left(\boldsymbol{C} P^{1}\right)^{n}: P \text { is semistable and } x_{1}=\infty\right\} / G \tag{4.3}
\end{equation*}
$$

where G is a subgroup of $\operatorname{PSL}(2, C)$ defined by

$$
G=\left\{\left(\begin{array}{cc}
z & 0 \\
\xi & z^{-1}
\end{array}\right): z \in \boldsymbol{C}^{*}, \xi \in \boldsymbol{C}\right\} .
$$

Let \mathscr{N}_{n}^{\prime} be the subspace of \mathscr{N}_{n} defined by

$$
\begin{align*}
\mathscr{N}_{n}^{\prime}= & \left\{P=\left(x_{1}, \ldots, x_{n}\right) \in\left(\boldsymbol{C} P^{1}\right)^{n}: P \text { is semistable and } x_{1}=\infty,\right. \tag{4.4}\\
& \left.x_{l} \neq \infty(2 \leq i \leq n)\right\} / G .
\end{align*}
$$

Then we define a map $\phi: \mathscr{N}_{n}^{\prime} \rightarrow \boldsymbol{C} P^{n-3}$ as follows. Let $P=\left(x_{1}, \ldots, x_{n}\right) \in \mathscr{N}_{n}^{\prime}$. Note that $\boldsymbol{C} P^{1}-\{\infty\}$ is isomorphic to \boldsymbol{C}. Since $x_{l} \neq \infty(2 \leq i \leq n)$, we can regard that $x_{l} \in \boldsymbol{C}(2 \leq i \leq n)$. There is exactly one point $z=z\left(x_{1}, \ldots, x_{n}\right) \in$ $\boldsymbol{C} \boldsymbol{P}^{1}-\{\infty\}=\boldsymbol{C}$ such that $\sum_{t=2}^{n}\left(z-x_{t}\right)=0$. Then the point $\phi\left(x_{1}, \ldots, x_{n}\right)$ is defined to be point with homogeneous coordinates $\left(z-x_{2}, \ldots, z-x_{n}\right)$. This completes the proof of Assertion 4.1.

Proof of Theorem C (iv). Recall that $s_{n-3}\left[\mathscr{M}_{n}\right]$ is a characteristic number defined from the Chern classes. Let $n=2 m+1$ and let $s_{m-1}(p)\left[\mathscr{M}_{n}\right]$ be the characteristic number which is defined in the same way as in $s_{n-3}\left[\mathscr{M}_{n}\right]$ but using the Pontrjagin classes instead of the Chern classes. Then it is known that $s_{n-3}\left[\mathscr{M}_{n}\right]=s_{m-1}(p)\left[\mathscr{M}_{n}\right]$ (see for example [13]).

Since $\underset{\mathscr{M}_{n}}{\mathscr{M}_{n}}$ is oriented cobordant to $(-1)^{m+1}\binom{2 m-1}{m} \boldsymbol{C} P^{2 m-2} \quad[6]$ and $s_{m-1}(p)\left[C P^{2 m-2}\right]=2 m-1$, Theorem C (iv) follows.

Finally we give some more results on the Chern numbers.
Theorem 4.5. We have the following formulae for $n=2 m+1$.
(i) We have

$$
c_{1} c_{n-4}\left[\mathscr{M}_{n}\right]=-(2 m+1) 2^{2 m-1}+(2 m+1)(m+1)\binom{2 m-1}{m} .
$$

(ii) We have

$$
c_{2} c_{n-5}\left[\mathscr{M}_{n}\right]=-\left(2 m^{2}+m+1\right) 2^{2 m-1}+\frac{(2 m+1)\left(3 m^{2}+2 m+3\right)}{3}\binom{2 m-1}{m}
$$

Recall Theorem C (ii). In general, it is easy to see that $c_{i} c_{n-3-i}\left[\mathscr{M}_{n}\right]$ $(i \leq(n-3) / 2)$ is of the form

$$
c_{i} c_{n-3-i}\left[\mathscr{M}_{n}\right]=-f_{i}(m) 2^{2 m-1}+(2 m+1) g_{i}(m)\binom{2 m-1}{m}
$$

where $f_{i}(m)$ and $g_{i}(m)$ are polynomials of degree i with variable m.
We can prove Theorem 4.5 in the same way as in the proof of Theorem 3.1 using Theorems 2.5, 2.6 and 2.12.

References

[1] M. Brion, Cohomologie équivariante des points semı-stables, J. Reıne Angew. Math., 421 (1991), 125-140.
[2] J-C. Hausmann and A. Knutson, The cohomology ring of polygon spaces, Ann. Inst. Fourier (Grenoble), 48 (1998), 281-321.
[3] F Hirzebruch, Topological Methods in Algebraic Geometry 3rd ed., translated, Springer, Berlin, 1966.
[4] Y Kamiyama, Topology of equilateral polygon linkages, Topology Appl., 68 (1996), 13-31.
[5] Y. Kamiyama, The homology of singular polygon spaces, Canad. J. Math., 50 (1998), 581594.
[6] Y Kamiyama, Remarks on the topology of spatial polygon spaces, Bull. Austral. Math. Soc., 58 (1998), 373-382.
[7] Y. Kamiyama and M. Tezuka, Symplectic volume of the moduli space of spatial polygons, J. Math. Kyoto Univ., 39 (1999), 557-575.
[8] M. Kapovich and J. Millson, The symplectic geometry of polygons in Euclidean space, J. Differential Geom., 44 (1996), 479-513.
[9] M. Kapranov, The permutoassociahedron, MacLane's coherence theorem and asymptotic zones for the $K Z$ equation, J. Pure Appl. Algebra, 85 (1993), 119-142.
[10] F Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes 31, Prınceton University Press, Prınceton, 1984.
[11] F Kirwan, The cohomology rings of moduli spaces of bundles over Riemann surfaces, J. Amer. Math. Soc., 5 (1992), 853-906.
[12] A. Klyachko, Spatial polygons and stable configurations of points in the projective line, Algebracc Geometry and its Applicatıons Yaroslavl' 1992 (A. Tikhomırov and A. Tyurın eds.), Aspects Math. E 25, Vieweg, Braunschweig, 1994, pp. 67-84.
[13] J. Milnor and J. Stasheff, Characteristic Classes, Princeton University Press, Princeton, 1974.
[14] R. Stong, Notes on Cobordism Theory, Prnnceton Unıversity Press, Princeton, 1968.
Department of Mathematics
University of the Ryukyus
Nishihara-Cho, Okinawa
903-01, Japan
E-mail: kamıyama@scı.u-ryukyu.ac.jp

