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Abstract

Let #, (n>3) be the moduli space of spatial polygons with n edges. We
consider the case of odd n. First we establish a procedure to determine the Chern
numbers of .#,. Next we follow the procedure and get a description of .4, (n<9) 1n
the complex cobordism group QY (. Finally we determine some characteristic numbers
of #,. In particular, we calculate the Todd genus of .#, by showing that .4, 1s
birationally equivalent to CP”"=3.

1. Introduction

Let 4, (n > 3) be the moduli space of spatial polygons P = (a;,ay,...,a,)
whose edges are vectors a; € R® of length |a; =1 (1 <i<n). Two polygons
are identified if they differ only by motions in R®>. The sum of the vectors is
assumed to be zero. Thus:

(1.1) My ={P=(ay,...,an) € (S>)" a1+ -+ a, =0}/SO(3).

It is known that .4, is a Kéhler manifold of complex dimension n — 3. For
odd n or n=4, M, has no singular points. For even n with n>6, P=
(a1,ay,...,a,) is a singular point if and only if all the a; (1 <i < n) lie on a line
in R through O. Such singular points are cone-like singularities and have
neighborhoods C(S"3 x g1 S"~3), where C denotes the cone and S! acts on both
copies of S"~* by complex multiplication (see for example [8]).

For odd n, the module H,(.#,;R) was determined by Kirwan and Klyachko
[10], [12]. Later the cohomology ring H*(.#,; R) was determined by Brion and
Kirwan (1], [11] (cf. Theorem 2.2). In particular H*(.#,;R) is generated by
certain two dimensional cohomology classes.

In contrast to this, for even n, H,(.#,; R) is complicated and is not generated
by two dimensional cohomology classes nor does not obey Poincaré duality [5].
The cohomology ring H*(#y,;R) is not yet known.
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For the rest of this paper, we assume n to be odd and set n=2m + 1.
In [6], we described .#, in the oriented cobordism group ano_é. The result

is that .#, is oriented cobordant to (—1)"*'(**~1\CP?"-2. Here (")

m
denotes the binomial coefficient, and we give an orientation to .#, which is
induced from the complex structure. The proof of this fact is carried out by
constructing an oriented manifold with boundary, which gives the desired co-
bordism. However, such a method seems difficult when we describe .#, in the
complex cobordism group QY . where 2n — 6 denotes the real dimension.

The main topic of this paper is a description of .#, in Q) .. Since .43 =
{point}, the problem is trivial for .#3. Hence for the rest of this paper, we
assume n to be odd >5. Recall that QU is determined by the Chern numbers
[14]. Hence the problem is essentially to determine the Chern numbers of .#,.
In fact, we have a procedure to determine such numbers:

THEOREM A. We have a procedure to determine the Chern numbers of M.

For more details of Theorem A, see Section 2. The key theorems for
Theorem A are as follows.

(i) First we give the ring structure of H*(.#,;R) in Theorem 2.2. In
particular, H*(.#,;R) is generated by certain two dimensional cohomology
classes zi,...,z, € H*(My; R).

(ii) Next for a sequence (di,...,d,) of nonnegative integers with > . d; =
n — 3, we give the intersection number <zf‘ -~-sz", Uy, > in Theorems 2.5 and 2.6,
where 4, denotes the fundamental homology class determined by the orientation
which is induced from the complex structure on ..

(iii) Finally we describe ¢(.#,), the total Chern class of the tangent bundle of
My, in terms of zy,...,z, € H*(My; R) (cf. (i) in Theorem 2.8.

From (iii), we can describe c;(.#,) in terms of zi,...,z, (cf. Theorems 2.8
and 2.12). Then for each partition I = ij,...,i of n — 3, the I-th Chern number
cilly) = ¢y, ., [ M) is determined from (ii). (As usual, we set c¢;, _,[M,] =
<cl| (%n) e Clr('/%n)vﬂj/,,>-)

Theorem A is effective for the calculations of the Chern numbers of .#,. In
fact, we give the results for » < 9 in Theorem 3.1. Using these results, we have
the following:

Tueorem B. (i) In QF, we have
[Ms) = 4[CP' x CP'] - 3[CP?.
(ii) In QF, we have
[ 7] = =9[(CP")*| + 33[(CP")* x CP? - 33[CP' x CP?|

+0[(CP?)?] + 10[CP*).
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(iii) In QY ® Q, we have

(5] = 43((CP')] ~ "X (CP)* x CP?] + 234[(CP')* x CP
+220[(CP")? x (CP?)?*| — 220[(CP')* x CP¥ Jr‘—“;—o[cpl x CPY)

—220[CP" x CP? x CP* +0[(CP?*)’] + 0[CP? x CP¥|
+ 55[(CP*)?] - 35[CP"].

Remark 1.2. The rational coefficients —668/3 and 440/3 in Theorem B (iii)
are due to the fact that [CP°] € Qf) is not a ring generator of QU [14]. Instead
of [CP?], if we use xs defined by xs = [CP’] + [H3 3] — [H2,4), then we obtain a
description of [#s] in Q. For more details, see Remark 3.2.

Finally we consider the case of general odd n. Note that for each partition
I=1i,...,i, of n—3, the Ith Chern number c¢;[.#,] is defined. In this paper,
instead of giving all the c¢;[.#,], we give some characteristic numbers of .#,.

Recall that for a compact, complex k-dimensional manifold M, the Todd
genus T[M] and a certain, well-known integral combination of the Chern
numbers sx[M] are defined as follows (see for example [13]). First let {7%} be
the multiplicative sequence of polynomials belonging to the power series f(x) =
x/(1 —e™). Then the Todd genus T[M] is defined to be the characteristic
number <Tk(cl(M)7 ) Ck(M))a.uM>'

Next let o, denote the i-th elementary symmetric polynomial in variables
t1,...,t, and let sg(o1,...,0%) denote the polynomial in o, which express the
sum ¢f+---+¢k. Then sx[M] is defined to be the characteristic number
(i(er (M), ... e(M)), 1y,>.  (The characteristic number sx[M] is important.
For example if s;[M] # 0, then M cannot be expressed non-trivially as a product
of complex manifolds.)

Then we have the following results on characteristic numbers of ./#,. As
before, we set n=2m+ 1.

THEOREM C. (i) We have

it = -1 () om—1 -2
(i) We have
sty = 22" 4 2m+ 1) <2’"m‘ 1).

(ili) We have
T M) =1.
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(iv) We have

Spaltly] = (1) 2m — 1)(2’" 1).
m
In fact we can deduce Theorem C (iii) from the following stronger assertion,
which may be of interest in their own right (cf. Assertion 4.1): .4, is birationally
equivalent to CP"3. And as examples for other Chern numbers, we give
CiCn—4[My] and cacn_s|#y,] in Theorem 4.5.

Remark 1.3. (i) It is known that .4, admits a symplectic structure [8], [12].
Let w, be the symplectic form on .#,. Then it is known that [w,] = ¢;(4,) €
H?*(Mu;R) 2] (cf. Remark 2.13). Thus Theorem C (i) gives the symplectic
volume <{w} ™3, u, > of M.

(i) From the fact that .#, is oriented cobordant to (—1)"*'(¥"-1).
CP?>"=2 [6], we can determine all the Pontrjagin numbers and the Stiefel-Whitney
numbers of .Z,.

This paper is organized as follows. In Section 2, we study Theorem A in
detail. We explain how to compute the Chern numbers of .#, according to the
steps (i), (ii) and (iii) in this section. In Section 3 we prove Theorem B, and in
Section 4 we prove Theorem C.

2. Procedure for the Chern numbers of ./,

In this section, we study Theorem A in detail. First we recall the structure
of H*(My; R) for odd n, which was determined by Brion and Kirwan [1], [11].
For ie{l,...,n}, we define 4,, = (R*)" by

0
An,z: {P:(al,...,an)e(Sz)":a1+..._|_an:() and a; = (0)
1

Let SO(2) act on R® by rotation about the z-axis. Then for odd n, the
diagonal SO(2)-action on (R?)" is free on 4,,, and we have .#, = A,,/SO(2) (cf.
(1.1)). Therefore, A,, — M, is a principal SO(2)-bundle. Let & — .4, be a
complex line bundle associated with A, , — 4y

&= (4y, x C)/S",
where we identify SO(2) with S' and let S! act on 4,, x C by
(P,a)-g = (Pg,ag), (P,a)eA,, xC, geS'
Then we define z, € H?*(#,;R) to be the Chern class of ¢&;:
(2.1 z=c(&), 1<i<n

Now we have the following theorem.
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THEOREM 2.2 [1], [11]. When n=2m+ 1, the algebra H*(My;R) is gen-
erated by zi,...,z, with the relations:

(i) 2=...=z22

(i) [1,es(z:+2) =0, forall 1 <i<nand J < {1,...,n} such that i ¢ J and
card (J) = m, where card denotes the cardinal.

Next we study the intersection numbers. For a sequence (di,...,d,) of
nonnegative integers with > "', d; =n — 3, we define (74 - -74,> by
(2.3) o ta) =<2z ),

where z, € H*(My;R) (1 <i<n) is defined in (2.1), and u, denotes the fun-
damental homology class of .#,. Thus we need to determine <74, - -- 74, for all
(dy,...,d,). To do this, we consider the following types of (di,...,d,). As
before, we set n =2m+ 1.

(l) dl == n—3:1 and dn_zzdn_l =dn=0.

(i) di =2k, dy=---=dy22=1 and dy_3_1 =---=d, =0, where 1<

k<m-—1and n=2m+ 1.

If (di,...,dy) is of the type (i), then we write {4 ---74,)> by {p,(>. On the
other hand, if (dy,...,d,) is of the type (ii), then we write {7y, ---74,> by {p, %>
Thus:

(2.4) $Pno? = <21 Zn-3, M, )
. <pn,2k>: <212k22"'zn—2k—2a,u‘/{,,> (1 <ksm- 1)
For a sequence (dy,...,d,) of nonnegative integers with > "', d; =n — 3, we

set d; =20;+¢ (1 <i<n), where & =0 or 1. Then we have the following:

THEOREM 2.5 [7]. We have the following relations in H*(My; R).
(i) If ;=0 for 1 <i <n, then we have

$Tay T4, = {Pu07-
(i) If o; # O for some i, then we have

<Td| T Tdn> = <pn,2(al+...+a")>.

Thus it suffices to determine {p, 5> (0 <k <m—1) in order to determine
the intersection numbers. About this, we have the following theorem.

THEOREM 2.6 [7]. When n=2m+ 1, the number {p, 5> (0 <k <m—1) is

given as follows.
(m - 1) (Zm - 1)
Puz> = (~F KA )

2m —1
2k +1
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Example 2.7. We have the following examples:

(i) Ms:<psoy=1 and {ps,y=-3.

(i) AM7:{p70) =2, {p7,27=-2 and {p; 4> = 10.

(i) Ao :<pg o> =35, {pg 2> =-3, {pg4» =75 and {pg ¢y = —35.

Finally we give c(.#,), the total Chern class of the tangent bundle of .#,.

THEOREM 2.8 [2]. We have

ety = (1= ) T[(1+ 2.
=1

Note that we have z? =...=z2 (cf. Theorem 2.2 (i)). Hence we can
replace (1 —z?)"" in Theorem 2.8 by (1 _ij)—l for any j with 2 <j <n.

Proof of Theorem 2.8. This theorem is essentially [2, p. 307]. But in [2],
the result is stated in terms of other generators R, V; (1 <i <n— 1) e H*(My;R).
So we summarize how to deduce Theorem 2.8 from [2].

In [2, p. 296], two dimensional cohomology classes R, V, (1 <i<n-—1),
which are the generators of H*(.#,;R), are defined. Then in [2, Proposition
7.3], it is shown that

29) —R i=n.

(Note that [2] uses the symbol ¢, to denote z, in this paper.)
Finally in [2, p. 307], the following result is proved.

i _{R+2V, l<i<n-1
, =

n—1 n—1

(2.10) c(My) =1+ R T[A+V+ R[]0+ 7).
=1 J=1

Then using (2.9) and the fact z? = - .- = z2 (cf. Theorem 2.2), we see that (2.10) is
equivalent to Theorem 2.8. O

Let 0i(z1,...,2,) € H*(M,; R) be the elementary symmetric polynomial on
Z1y...,2n € H*(My;R). Recall that zZ =...=z2 (cf. Theorem 2.2 (i)). We
define D? € H*(.y;R) by
(2.11) z}=-..=z2=D%

(Note that we shall not define D e H?(.,;R), but just define D?) Then
Theorem 2.8 implies the following:

THEOREM 2.12. For 0 <k <n—3, we have
k/2
ck(My) = ZDz’ak_Zi(zl, ey Zn).
=0
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Remark 2.13. From Theorem 2.8, we see that ¢;(#,) =z1+---+2z,. On
the other hand, if we write the symplectic form on .#, by w,, then a theorem of
[2] tells us that [w,] = z| + - - - + z, € H*(My; R). Hence we have ¢ (M) = [wy).

3. Proof of Theorem B
For n=5,7 and 9, the Chern numbers of .4, are given by the following:

TueoreM 3.1. (i) c}[Ms) =5 and o[ Ms)=1T.
(i) For M+, we have the following table of the Chern numbers.

Chern number
) 154
clzcz[Jh] 112
cre3| ) 56
2] 136
ca[M7] 38

(iii) For My, we have the following table of the Chern numbers.

Chern number
bl Mo) 13005
cheal o] 7857
cles[ M) 3393
cic3(Ms) 5157
cheq[ M) 1287
c1ea¢3| M) 2421
cres[ M) 423
A 4969
Crcq[ M) 1459
2| ls) 1221
cs[Mo] 187
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Proof. This theorem follows from Theorems 2.2, 2.5, 2.6 and 2.12. As
an example, we show cic3[.#7]. From Theorem 2.12, we have c¢;(#7)=
0'1(21, ce ,Z7) and 63(.%7) = 0'3(21,. . .,Z7) +D201(Z|, ee ,Z7). Hence

cres[ M) = <o1(z1,. .., 21)03(215 . 22)s g, > + (D01 (215 21) % g, -
Using Theorem 2.5 and Example 2.7 (ii), we have

<JI(ZI7 v )27)03(217 s aZ7)Jﬂ.//{7>

= 7<Z]0'3(21, e 327)’Hﬂ7>

(S (o)

=70.
Similarly, we have

(Dzal(zl, .. .,27)2,/4///7> — _14.
Hence we have cjc3[.47] = 56. 0

Now we complete the proof of Theorem B. It is known that QU is the
integral polynomial ring on classes x, of dimension 2i for each integer i. QU is
determined by the Chern numbers. Moreover, QU ® Q is the rational poly-
nomial ring on the cobordism classes of complex projective spaces [14].

We consider .#;. The above fact tells us that in Qf ® Q, [#7] is a linear
combination of [(CP)*], [(CP))? x CP?, [CP! x CP3], [(CP?)? and [CPY.
The coefficients are determined completely since we know all Chern numbers of
M7 in Theorem 3.1 (ii). Thus we get a description of [.#/] in QY ® Q, and the
result is given in Theorem B (ii). Since the coefficients of the description are
integers, this is also a description in Q.

Similarly, we can prove Theorem B (i) and (iii).

Remark 32. 1In order to get a description of .4y in Q, we define an
element x5 of Q) by
x5 = [CP°] + [H3 3] — [Ha,4),

where H,, denotes a non-singular hypersurface of degree (1,1) in CP% x CP?.
Since s5(xs5) = 1, we see that xs € Q[ is a ring generator. Then it is easy to see
that in QF, we have

(3.3)  [CP%] =21[(CP")°] — 68](CP")* x CP?) +27[(CP")? x CP?
+ 51[CP! x (CP?)?] — 6|CP"' x CP¥ —30[CP? x CP?)] + 6xs.

If we put (3.3) into Theorem B (iii), then we get the following description of
[ 5] in QF.
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[ M) = 3123[(CP")] — 10196[(CP")* x CP?| + 4194](CP")’ x CP?]
+7700[(CP")? x (CP*)?] - 1100[(CP")? x CP*|
— 4620[CP' x CP? x CP? +0[(CP?)*] +0[CP? x CP*
+ 55[(CP?)?] — 35[CP°] + 880[CP!] - xs.

4. Proof of Theorem C

Proof of Theorem C (i). From Remark 2.13, we have ¢;(#,) = [w,]. In
(7], the symplectic volume {w}>,u, > is determined. Hence Theorem C (i)
follows.

Proof of Theorem C (ii). Note that ¢, 3[.#,] = x(#,), the Euler charac-
teristic of .#,. For odd n, H.(#,;R) is determined in [10], [12]. Hence
Theorem C (ii) follows.

Proof of Theorem C (iii). We can deduce this theorem from direct cal-
culations using Theorems 2.5, 2.6 and 2.8, or from the fact A”9(.4#,) =0 for
p#q (10, [12].

We can also deduce this theorem from the following stronger assertion.
(Recall that the Todd genus is birational invariant [3].)

ASSERTION 4.1. ., is birationally equivalent to CP"~3,

Proof In order to construct a birational map f : .4, -— CP"3, it is
convenient to substitute .#, by a space .#,, which is biholomorphic to .#,.
Recall that an element P = (x,...,x,) of (CP!)" is semistable if and only if P
contains no point of CP! with multiplicity strictly greater than n/2. Let .4, be
the orbit space of semistable points in (CP!)" with respect to the natural action
of the group PSL(2,C). Thus:

(42)  Mp={P=(x1,...,%,) € (CP")": P is semistable}/PSL(2,C).
Then it is known that .4, is biholomorphic to .4 [8], [10], [12]:
My = N,

Now we construct a rational map ¢ : A, ——» CP" in the same way as in [9,
p. 134]. (The inverse rational map CP"~3 —— 4}, is constructed similarly.) Let
P=(xi,...,x,) € #,. By the PSL(2,C)-action, we can assume that x; = co.
Thus:

(4.3) Np={P=(x1,...,%,) € (CP")": P is semistable and x; = w0}/G,
where G is a subgroup of PSL(2,C) defined by
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G={<2 Z?l) :zec*,:ec}.

Let 4, be the subspace of .#, defined by
(44) N ={P=(x1,...,x) € (CPY": P is semistable and x| = oo,
x,#0 (2<i<n)}/G.

Then we define a map ¢: 4, — CP"3 as follows. Let P = (xi,...,X,) € 4.
Note that CP! — {0} is isomorphic to C. Since x, # c0 (2 <i<n), we can

regard that x,e C (2 <i<mn). There is exactly one point z = z(xj,...,Xx,) €
CP! — {0} = C such that " ,(z—x,)=0. Then the point ¢(xi,...,x,) is
defined to be point with homogeneous coordinates (z —x,...,z—Xx,). This
completes the proof of Assertion 4.1. O

Proof of Theorem C (iv). Recall that s,_3[.#,] is a characteristic number
defined from the Chern classes. Let n=2m+ 1 and let s,-1(p)[#,) be the
characteristic number which is defined in the same way as in s,_3[.#,] but using
the Pontrjagin classes instead of the Chern classes. Then it is known that
Sp—3[Mp) = Sm—1(p)|Mn] (see for example [13]).

Since .#, is oriented cobordant to (—1)""'(*"-1)CP?"2 [6] and

m

Sm_1(p)[CP¥"~2] = 2m — 1, Theorem C (iv) follows. O
Finally we give some more results on the Chern numbers.

THEOREM 4.5. We have the following formulae for n =2m+ 1.
(i) We have

C1Cnaltly) = —(2m + )22+ 2m + 1)(m + 1)<2mm— 1)'

(i) We have

2 DH(3m? +2 3) [2m—1
czc,,_5[/%,,]:—(2m2+m+1)22”’_1+( m+ 1)(3m” + 2m + )< " )

3 m

Recall Theorem C (ii). In general, it is easy to see that c;c,—3—;[#y]
(i<(n—3)/2) is of the form

CiCp3—i[My] = ~fi(m)2*" + (2m + 1)g,-(m)<2mm_ 1>,

where f;(m) and g;(m) are polynomials of degree i with variable m.
We can prove Theorem 4.5 in the same way as in the proof of Theorem 3.1
using Theorems 2.5, 2.6 and 2.12.
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