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CHERN NUMBERS OF THE MODULI SPACE OF

SPATIAL POLYGONS

YASUHIKO KAMIYAMA

Abstract

Let Mn (n > 3) be the moduli space of spatial polygons with n edges. We

consider the case of odd n. First we establish a procedure to determine the Chern

numbers of Mn. Next we follow the procedure and get a description of Jίn (n < 9) in

the complex cobordism group Ω2^_6. Finally we determine some characteristic numbers

of Mn. In particular, we calculate the Todd genus of J(n by showing that Jίn is

birationally equivalent to CPn~3.

1. Introduction

Let Jin (n > 3) be the moduli space of spatial polygons P = (a\,a2,.. ,an)
whose edges are vectors at e R3 of length |<z, | = 1 (1 <i <n). Two polygons
are identified if they differ only by motions in R3. The sum of the vectors is
assumed to be zero. Thus:

(1.1) Jfn = {P=(au...,an)e ( S 2 ) n :aλ + . + an = 0 } / S O ( 3 ) .

It is known that Jίn is a Kahler manifold of complex dimension n — 3. For
odd n or n = 4, Mn has no singular points. For even n with n>6, P =
(a\, (22,..., an) is a singular point if and only if all the at (1 < / < ή) lie on a line
in R3 through O. Such singular points are cone-like singularities and have
neighborhoods C(Sn~3 xsι Sn~3), where C denotes the cone and S 1 acts on both
copies of Sn~3 by complex multiplication (see for example [8]).

For odd n, the module H*(Jin\R) was determined by Kirwan and Klyachko
[10], [12]. Later the cohomology ring H*{Jίn\R) was determined by Brion and
Kirwan [1], [11] (cf. Theorem 2.2). In particular H*(Jίn\R) is generated by
certain two dimensional cohomology classes.

In contrast to this, for even n, H*{Jin-,R) is complicated and is not generated
by two dimensional cohomology classes nor does not obey Poincare duality [5].
The cohomology ring H*(J?n;R) is not yet known.
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For the rest of this paper, we assume n to be odd and set n = 2m + 1.
In [6], we described Jίn in the oriented cobordism group Ωfw°_6. The result
is that Jin is oriented cobordant to (_1)'M+1(2^-1)CP2/I1-2. Here (7m~ι)
denotes the binomial coefficient, and we give an orientation to Jίn which is
induced from the complex structure. The proof of this fact is carried out by
constructing an oriented manifold with boundary, which gives the desired co-
bordism. However, such a method seems difficult when we describe Jin in the
complex cobordism group Ω2^_6, where In- 6 denotes the real dimension.

The main topic of this paper is a description of Jtn in Ω2^_6. Since Mz =
{point}, the problem is trivial for Jί^, Hence for the rest of this paper, we
assume n to be odd >5. Recall that Ωj7 is determined by the Chern numbers
[14]. Hence the problem is essentially to determine the Chern numbers of Jtn.
In fact, we have a procedure to determine such numbers:

THEOREM A. We have a procedure to determine the Chern numbers of Jίn.

For more details of Theorem A, see Section 2. The key theorems for
Theorem A are as follows.

(i) First we give the ring structure of H*(Jΐn;R) in Theorem 2.2. In
particular, H*(Jtn;R) is generated by certain two dimensional cohomology
classes z i , . . . ,zΛ e H2(Jίn-,R).

(ii) Next for a sequence (d\,...,dn) of nonnegative integers with ]Γ"=1 dt =
n — 3, we give the intersection number (zf1 z ^ , μ ^ > in Theorems 2.5 and 2.6,
where μM denotes the fundamental homology class determined by the orientation
which is induced from the complex structure on Jtn.

(iii) Finally we describe c(Jίn), the total Chern class of the tangent bundle of
Jίny in terms of z i , . . . ,zπ e H2{Jίn\R) (cf. (i)) in Theorem 2.8.

From (iii), we can describe Ci{Jίn) in terms of z i , . . . ,z n (cf. Theorems 2.8
and 2.12). Then for each partition / = i\,..., ir of n - 3, the 7-th Chern number
cj[Jίn] = clw^lr\Mγ\ is determined from (ii). (As usual, we set ciu..^lr[Jin) =
(clχ(Jίn) - - clr(Jίn),μj{ny.)

Theorem A is effective for the calculations of the Chern numbers of Mn. In
fact, we give the results for n < 9 in Theorem 3.1. Using these results, we have
the following:

THEOREM B. (i) In Ω^, we have

μ# 5] = 4[CPι x CP1} - 3[CP2}.

(ii) In Ωg ,̂ we have

\MΊ\ = -9[(CP1)4} + 33[(CP ! ) 2 x CP2} - 33[CPι x CP3}
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(iii) In ίlγ2® Q> w e n a v e

[jξ9] = 43[(CP1)6] - ^ [ ( C P 1 ) 4 x CP2} + 234[(CP ! ) 3 x CP3}

+ 220[(CP !) 2 x (CP2)2] -220[(CP1)2 x CP4} + ^-[CPι x CP 5]

- 220[CPι x CP2 x CP3} + 0[(CP 2) 3] + 0[CP2 x CP 4 ]

+ 55[(CP 3 ) 2 ]-35[CP 6 ] .

Remark 1.2. The rational coefficients —668/3 and 440/3 in Theorem B (iii)
are due to the fact that [CP5] e Ω/Q is not a ring generator of Ωj 7 [14]. Instead
of [CP5], if we use x5 defined by x5 = [CP5] + [Jf3>3] - [#2,4], then we obtain a
description of \M<^ in Ω^. For more details, see Remark 3.2.

Finally we consider the case of general odd n. Note that for each partition
/ = / 1 , . . . , /r of n — 3, the 7-th Chern number ci[Jϊn] is defined. In this paper,
instead of giving all the cj[Jtn], we give some characteristic numbers of Mn.

Recall that for a compact, complex ^-dimensional manifold M, the Todd
genus T[M] and a certain, well-known integral combination of the Chern
numbers Sk[M] are defined as follows (see for example [13]). First let {Tk} be
the multiplicative sequence of polynomials belonging to the power series f(x) =
x/(\-e~x). Then the Todd genus T[M] is defined to be the characteristic
number <Jk{c\(M),... ,ck(M)),μM}.

Next let σt denote the /-th elementary symmetric polynomial in variables
t\,...,tk, and let Sk{σ\,... ,σk) denote the polynomial in σx which express the
sum t\λ Yt\. Then sk[M] is defined to be the characteristic number
(sk(c\ (M),..., ck(M)), μM>. (The characteristic number sk[M] is important.
For example if sk[M] Φ 0, then M cannot be expressed non-trivially as a product
of complex manifolds.)

Then we have the following results on characteristic numbers of Jίn. As
before, we set n — 2m + 1.

THEOREM C. (i) We have

Λ«-3

j=0 \ J

(ii) We have

cn^[.Jϊn] = -2lm-χ + {2mΛ

(iii) We have

T[Jίn) = 1.
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(iv) We have

In fact we can deduce Theorem C (iii) from the following stronger assertion,
which may be of interest in their own right (cf. Assertion 4.1): Jίn is birationally
equivalent to CPn~3. And as examples for other Chern numbers, we give
c\cn-^[Jin] and C2Cn-s[Jίn] in Theorem 4.5.

Remark 1.3. (i) It is known that Jίn admits a symplectic structure [8], [12].
Let ωn be the symplectic form on Jίn. Then it is known that [ωn] — c\(Jin) e
H2(Jtn',R) [2] (cf. Remark 2.13). Thus Theorem C (i) gives the symplectic
volume <ω^~ 3,μ^> of Mn.

(ii) From the fact that Jίn is oriented cobordant to ( - l ) m + 1 (2m~1)-
CP2m~2 [6], we can determine all the Pontrjagin numbers and the Stiefel-Whitney
numbers of J(n.

This paper is organized as follows. In Section 2, we study Theorem A in
detail. We explain how to compute the Chern numbers of Jίn according to the
steps (i), (ii) and (iii) in this section. In Section 3 we prove Theorem B, and in
Section 4 we prove Theorem C.

2. Procedure for the Chern numbers of Jin

In this section, we study Theorem A in detail. First we recall the structure
of H*{Mn\Έ£) for odd n, which was determined by Brion and Kirwan [1], [11].
For / G {1,.. . ,AI}, we define AΆil a (R3)n by

=(au...,an)e(S2)n:al + ...+an = 0 a n d at = I 0

Let 50(2) act on R3 by rotation about the z-axis. Then for odd n, the
diagonal SO(2)-action on (R3)n is free on AΛit and we have Jin = Anil/S0(2) (cf.
(1.1)). Therefore, AΛil —> Jίn is a principal 5O(2)-bundle. Let ξt —> J(n be a
complex line bundle associated with An^ —> Jin\

where we identify 50(2) with 5 1 and let 5 1 act on AΛίl x C by

(P,α) g = (Pflf,αflf), (P,α) e AΛiί x C, geS1.

Then we define zt e H2(Jίn\R) to be the Chern class of ξt:

(2.1) *, = <?!(£,), \<ί<n.

Now we have the following theorem.
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THEOREM 2.2 [1], [11]. When n = 2m+\, the algebra H*{Jίn;R) is gen-
erated by z\,..., zn with the relations:

(ii) YljeJ(zι + Zj) = 0, for all 1 < i <n and / cz {1,...,«} such that ί φ J and
card (J) = m, where card denotes the cardinal.

Next we study the intersection numbers. For a sequence (d\,... ,dn) of
nonnegative integers with Σ?=\ di — n — 3, we define (jdχ τdn} by

(2.3) (τdχ - - τdn} = {zj1 z/l",//^ri),

where zt e H2(^n;R) (\<i<n) is defined in (2.1), and μMn denotes the fun-
damental homology class of Jin. Thus we need to determine (τdχ τdn} for all
(d\,...,dn). To do this, we consider the following types of (d\,... ,dn). As
before, we set n — 2m + 1.

(i) d\ — '" = dn-i = 1 and dn-i — dn-\ — dn = 0.
(ii) d\ = 2k, d2 = = dn-2k-2 = 1 and dn-2k-\ = * = dn = 0, where 1 <

k <m- 1 and n = 2 m + 1.
If (d\,...,dn) is of the type (i), then we write (τdχ --r^} by </^ 0 ) ^ n ^ e

other hand, if (d\,...,dn) is of the type (ii), then we write (τdχ τdn} by </*Λ,2A:)
Thus:

I <J>n,2k> = izfz2 "zn-2k-2,μjϊny (1 < k < m - I).

For a sequence (d\,..., rfΛ) of nonnegative integers with Σ?=ι di = n — 3, we
set di = 2αz + ε/ (1 < i <n), where εz = 0 or 1. Then we have the following:

THEOREM 2.5 [7]. Ψe /zαi e the following relations in H*(JKn-,R).
(i) If at = 0 for 1 < i <n, then we

(ii) If OLi Φ 0 /or .some /, ίΛerc we

<τ^ '- τdn} = (pn

Thus it suffices to determine (pn^2k) (0 < k < m — 1) in order to determine
the intersection numbers. About this, we have the following theorem.

THEOREM 2.6 [7]. When n = 2m+l, the number (pn,2k) (0 < k < m - 1) is
given as follows.

ίm- l\/2m- 1

/ - x ( Λ^k\ k ) \ m

2m-I

2k + I
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Example 2.7. We have the following examples:
(i) J(s : O 5 ) 0 > = 1 and </?5)2> - - 3 .
(ii) JίΊ : </>7;0> = 2, (pΊ2y = - 2 and </?7?4> = 10.

(iii) Jί^ : </>9j0> = 5, </?9?2> = - 3 , </?94> = 5 and </?96> = -35.

Finally we give c(Jίn), the total Chern class of the tangent bundle of Jίn.

THEOREM 2.8 [2]. We have

ι=\

Note that we have z2 = - • = z2 (cf. Theorem 2.2 (i)). Hence we can
replace (1 — z\)~x in Theorem 2.8 by (1 - zj)~x for any j with 2 <j < n.

Proof of Theorem 2.8. This theorem is essentially [2, p. 307]. But in [2],
the result is stated in terms of other generators R,Vι (1 < / < n - 1) e H2(Jίn; R).
So we summarize how to deduce Theorem 2.8 from [2].

In [2, p. 296], two dimensional cohomology classes R, Vι (1 < / < n — 1),
which are the generators of H*(Jΐn;R), are defined. Then in [2, Proposition
7.3], it is shown that

R + 2Vι 1 < i < / ι - 1

l-R i = n.

(Note that [2] uses the symbol cι to denote z, in this paper.)
Finally in [2, p. 307], the following result is proved.

n-\ n-\

(2.10) c(Jίn) = (1 + 7?)-1 J | ( l + Vt 4- R) ]J(l + Vj).
ι=l j=l

Then using (2.9) and the fact z\ = = z2

n (cf. Theorem 2.2), we see that (2.10) is
equivalent to Theorem 2.8. •

Let σz (zi, . . . ,zπ) e H2i{Jin;R) be the elementary symmetric polynomial on
zx,..., zn e H2(Jίn-, R). Recall that z\ = = z2 (cf. Theorem 2.2 (i)). We
define D2 eH\Jίn;R) by

(2.11) z? = - = zΛ

2 = Z>2.

(Note that we shall not define DeH2(Jίn\R), but just define D2.) Then
Theorem 2.8 implies the following:

THEOREM 2.12. For 0 < k < n - 3, we have

[k/2]

ck{Jίn) = ΣD2iσk-2i{z\, .. ,zn).
1=0
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Remark 2.13. From Theorem 2.8, we see that c\(Jin) = z\ -\ Yzn. On
the other hand, if we write the symplectic form on Jίn by ωn, then a theorem of
[2] tells us that [ωn] = z\ H h zn e H2{Jίn\R). Hence we have c\(Jfn) = [ωn].

3. Proof of Theorem B

For n = 5,7 and 9, the Chern numbers of Jίn are given by the following:

THEOREM 3.1. (i) c\[Jί5] = 5 and c2[J^5} = 7.
(ii) For Jίη, we have the following table of the Chern numbers.

c\c2[JίΊ}

C\C3[JίΊ]

c\[Jίη\

Chern number

154

112

56

136

38

(iii) For Jt^, we have the following table of the Chern numbers.

c\c2[Jί<>\

c\c3[Jt9\

c\c\[M,\

c\c^[Ji9]

CιC2C3[Jί9}

C\C5[Ji9]

4[Jf9]

c2c4[Jf9]

c\\M9\

^\Jt9\

Chern number

13005

7857

3393

5157

1287

2421

423

4969

1459

1221

187
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Proof. This theorem follows from Theorems 2.2, 2.5, 2.6 and 2.12. As
an example, we show c\c3\JίΊ}. From Theorem 2.12, we have c\{Jtη) =
σi(zi, . . . ,z 7 ) and c^Jtη) = σ 3 (zi, . . . ,z7) + D2σι(zu . . . ,z 7). Hence

cic 3 [^ 7 ] = <σi(zi,... ,z 7 )σ 3 (zi, . . . , z 7 ) , ^ 7 > + <Z)2σi(zi,... ,z7)
2,/z^7>.

Using Theorem 2.5 and Example 2.7 (ii), we have

i , . . . , z 7 )σ 3 (zi, . . . , zη),μMη>

= 70.

Similarly, we have

Hence we have c ic 3 [^ 7 ] = 56. G

Now we complete the proof of Theorem B. It is known that Ω ^ is the
integral polynomial ring on classes xt of dimension 2ί for each integer /. Ω^7 is
determined by the Chern numbers. Moreover, Ω,f ® Q is the rational poly-
nomial ring on the cobordism classes of complex projective spaces [14].

We consider Jίη. The above fact tells us that in O^ ® Q, [Jίη} is a linear
combination of [(CP 1) 4], [(CP1)2 x CP2}, [CP1 x CP3}, [(CP2)2} and [CP4}.
The coefficients are determined completely since we know all Chern numbers of
Jίη in Theorem 3.1 (ii). Thus we get a description of [Jίη} in Ω.% ® Q, and the
result is given in Theorem B (ii). Since the coefficients of the description are
integers, this is also a description in Ωg .̂

Similarly, we can prove Theorem B (i) and (iii).

Remark 3.2. In order to get a description of Jt$ in Ω^, we define an
element x$ of Ω ^ by

where Ha^ denotes a non-singular hypersurface of degree (1,1) in CPa x CPb.
Since s^(x^) = 1, we see that x$ e Ω ^ is a ring generator. Then it is easy to see
that in Ω^, we have

(3.3) [CP5} = 21[(CP1)5] - 68KCP 1) 3 x CP2} + 27KCP 1) 2 x CP3}

+ 51 [CP1 x (CP2)2} - 6[CPX x CP4} - 30[CP2 x CP3} + 6x5.

If we put (3.3) into Theorem B (iii), then we get the following description of

in ΩIΛ.
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μ r 9 ] = 3123[(CP*)6] - IO196[(CP1)4 x CP2} +4194[(CP 1 ) 3 x CP3}

+ 7700KCP1)2 x (CP 2 ) 2 ] - 1100KCP1)2 x CP4}

- 4620[CPι x CP2 x CP3} + 0[(CP2)3] + 0[CP 2 x CP4}

+ 55[(CP3)2] - 35[CP6] + 880[CP !] x5.

4. Proof of Theorem C

Proof of Theorem C (i). From Remark 2.13, we have c\(Jίn) = [ωn]. In
[7], the symplectic volume (ω%~3, μ^} is determined. Hence Theorem C (i)
follows.

Proof of Theorem C (ii). Note that cn-3[Jin] — χ(Jin), the Euler charac-
teristic of Jίn. For odd n, H*(Jin;R) is determined in [10], [12]. Hence
Theorem C (ii) follows.

Proof of Theorem C (iii). We can deduce this theorem from direct cal-
culations using Theorems 2.5, 2.6 and 2.8, or from the fact hp'q(J?n) = 0 for
pΦq [10], [12].

We can also deduce this theorem from the following stronger assertion.
(Recall that the Todd genus is birational invariant [3].)

ASSERTION 4.1. Jin is birationally equivalent to CPn~3.

Proof In order to construct a birational map / : Jin —> CPn~3, it is
convenient to substitute Jίn by a space Jίn, which is biholomorphic to Mn.
Recall that an element P = (xi, . . . , * „ ) of (CPι)n is semistable if and only if P
contains no point of CPX with multiplicity strictly greater than n/2. Let Jίn be
the orbit space of semistable points in (CPι)n with respect to the natural action
of the group PSX(2,C). Thus:

(4.2) Jίn = {P = fo,... ,*„) G (CPι)n : P is semistable}/PSL(2, C).

Then it is known that Mn is biholomorphic to Jίn [8], [10], [12]:

Now we construct a rational map φ : Jίn —• CPn~3 in the same way as in [9,
p. 134]. (The inverse rational map CPn~3 —• Jfn is constructed similarly.) Let
P — (x\,...,xn) e Jίn. By the PSL(2, C)-action, we can assume that x\ = oo.
Thus:

(4.3) jVn = {P=(xu...,xn)e {CPx)n : P is semistable and xx = oo}/G,

where G is a subgroup of PSL(2, C) defined by
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0

" - • • . «

Let Jί^ be the subspace of Jίn defined by

(4.4) JΓJ = {P = (xu... ,xΛ) e (CPι)n : P is semistable and JCI = oo,

Then we define a map φ : Jί^ —• CPn~3 as follows. Let P = (x\,... ,xn) e Jί^.
Note that CPι — {00} is isomorphic to C. Since xt φ 00 (2 <i <ή)} we can
regard that x , e C (2 <i<ή). There is exactly one point z = z(x\,... ,xn) e
CPι-{oo} = C such that Σf=2( z ~ χt) = ° τ h e n t h e P o i n t Φ(xι, ..,Xn) is
defined to be point with homogeneous coordinates (z — X2,...,z — xn). This
completes the proof of Assertion 4.1. •

Proof of Theorem C (iv). Recall that sn-^\Jtn\ is a characteristic number
defined from the Chern classes. Let n = 2m + 1 and let sm-\(p)[Jίn] be the
characteristic number which is defined in the same way as in sn-^[Jin] but using
the Pontrjagin classes instead of the Chern classes. Then it is known that
sn-i\Mr\ = sm-\(p)[Jίn] (see for example [13]).

Since Jίn is oriented cobordant to (_i)w+1(2^-i)C />2m-2 ^ a n d

sm-ι(p)[CP2m-2] = 2m-l, Theorem C (iv) follows. •

Finally we give some more results on the Chern numbers.

THEOREM 4.5. We have the following formulae for n = 2m + 1.
(i) We have

cxcn.A[Jίn] = - ( 2 m + l )2 2 m - ' + (2m+l)(m+l)(2m~l\

(ii) We have

2 . . no2^-i , ( 2 m + l ) ( 3 m 2 + 2m-h3) ^ 2 m - l
n} = -(2m2 ±m+ \)22ml + — 1

Recall Theorem C (ii). In general, it is easy to see that
(1 < (Λ - 3)/2) is of the form

n] = -fi(m)22m-χ + (2m + \)Qi(m)

where f(m) and giim) are polynomials of degree / with variable m.
We can prove Theorem 4.5 in the same way as in the proof of Theorem 3.1

using Theorems 2.5, 2.6 and 2.12.
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