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LINES ON BRIESKORN-PHAM SURFACES
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Abstract

By using tone modifications and a result of Gonzalez-Spπnberg and Lejeune-

Jalabert, we answer the following questions completely. On which Bπeskorn-Pham

surface there exist smooth curves passing through the singular point? If there exist, how

"many" and what are the defining equations?

1. Introduction

Let (X, 0) be an analytic space germ embedded in (C",0), and (L,0) be a
smooth curve germ in (Cw,0). Since L is locally biholomorphic to a line, we
often say that L is a line. If for a singular point O e Xsmg, there exists a
line (smooth curve) L in Cn such that Oe L and L\{0} <= Xreg) we say that X
contains [or has) a line passing through O.

On a singular surface X in C 3 one can not always find a smooth curve
passing through (not contained in) the singular locus of X. Gonzalez-Sprinberg
and Lejeune-Jalabert proved a criterion for the existence of smooth curve on
any (two dimensional) surface. We quote this result here for the convenience of
the reader. Let π : X —• (X, 0) be the minimal resolution of a singular surface
(X, 0). Let JS? be the set of lines on (X, 0). For an exceptional divisor E, let
S£E denote the set of lines on (Xy0) with the strict transform intersecting
E transversally. Let m be the maximal ideal of the local ring Θx^. The cycle
&x on X defined by the ideal sheaf mΘx is called the maximal cycle of π.

GONZALEZ-SPRINBERG AND LEJEUNE-JALABERT THEOREM ([1,2]). (1) There

exists lines on (X, 0) if and only if the maximal cycle ££χ has at least one reduced
component,

(2) The set of all the lines on {X, 0) is a disjoint union of the j ^ ' s with each
E a reduced component in ££χ. And S£E is called the family of lines corresponding
to E.
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In [3,4], lines on surfaces with simple singularities are classified by using the
classification machinery. All the surfaces with simple or simple elliptic singu-
larities passing through x-axis are equivalent to (under the coordinate transfor-
mation preserving the x-axis) some surfaces defined by explicit equations.

Remark that by the aforementioned theorem many singular surfaces have
lines. Among the examples are minimal surfaces, sandwiched surfaces and so on.

In this paper we are interested in the following questions on the so-called
Brieskorn-Pham type surfaces, denoted by G(p,q,r), and defined in C 3 by

xp + yq + zr = 0.

For what kind of (p,q,r), there are lines on G(p,q,r)Ί And for what kind of
(p,q,r), there are no lines on G(p,q,r)Ί Furthermore, if there are lines, how
"many"? What are the defining equations for the lines? We give complete
answers to these questions. The method we use here is the toric modifications
of surface singularities. We refer the reader to the book [6] for notions and
notations.

There is an invariant, called the torsion number [3], attached to each line.
This torsion number is defined as follows. For a pair of analytic space germs
(Σ,0) c (JζO), embedded in (C",0), defined by the ideals g => ί) of Θ := ΘC",o
respectively. Denote Θx := Θ/ί), #Σ '— $/g The image ideal of g in (9χ is
denoted by g. The ^-module M :— g/g2 ~ g/(g2 + ί)) is called the conormal
module of g. If the torsion submodule T(M) of M has finite length, then the
length is called the torsion number of (Σ,Z) and is denoted by λ := λ(Σ,X).

For two integers m > n, let m/n := \m\,πi2,... ,mk] be the continued fraction
representation of m/n. Define Φ(m/n) := max{/|mi = = m, = 2, 1 < i < k}.
Denote the number of families of lines on G{p,q,r) by g(p,q,r) := (t{J% Φ 0}.
By the above mentioned theorem, ρ(p,q,r) = [({reduced components in Z£χ).

2. The Newton boundary and the dual Newton diagram

Let s:=gcd(p,q,r) and px =gcd(q,r)/s, q\ =gcd(r,p)/s, n =gcd(p,q)/s.
Let p,q, f be the integers such that p/s = pq\r\, q/s = pxqr\, r/s — Pχq\r. Then
p, q, f are pairwisely coprime.

The Newton boundary of G(p,q,r) is a triangle with vertices A(p,0,0),
5(0, q, 0), C(0,0, r) on the plane x/p + y/q + z/r=l. The dual Newton diagram
Γ* of G(p,q,r) consists of Ex = Γ(l,0,0), £2= r (0 , l ,0) , £ 3 = Γ ( 0 , 0 , l ) and
P= τ(pιqr,pq\r,pqr\), where and in the following we use "T" to indicate that
the vector is a column vector.

According to [6, III (6.3)], in order to obtain a canonical toric resolution of
the surface G(p,q,r), we need to make a canonical regular simplicial subdivision
Σ* of Γ*, which we describe roughly as follows (see [6] and [7] for details). For two
vectors Q\ and Q2 in Z 3 , denote by det(gi, Qi) the greatest common divisor of
the absolute values of the 2 x 2 minors of the 3 x 2 matrix (Q\,Qi). Obviously,
det(£Ί,P) = p. If p > 1, E\P is not regular and we need to subdivide it. By
[6, II (2.1)], there exists a unique integer p > p{ > 0 such that the vector R\ :=
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FIGURE 1. Newton boundary and dual Newton diagram of Bπeskorn-Pham surface

{P+pxE\)/p is integral. Then det(Λi,£1) = 1 and det(RuP)=pι<p. If px>l,
repeat the process for R\P, until we obtain a regular subdivision of E\P. In this
way, we obtain the canonical regular simplicial subdivisions of E\P, E2P, E^P.
Let Rt =

 Γ(ri5MΓ2,z,r35/) (1 < / < γ) be the points being added to E\P (see Figure
1). Similarly one adds S}•= (s\j,^2,7,^3,7) (l<j<σ) to E^P and % =
τ{h,k,h,kih,k) (1 < A: < τ) to E3P. Then Σ* is a regular simplicial subdivision
of Γ* such that its restriction to EjP (i — 1,2,3) is the canonical regular simplicial
subdivision of EiP described above.

The dual resolution graph ^ of G(p, q, r) is star-shaped with the center P, the
exceptional divisor determined by P. In the following we use the capital letters
to denote the points on Γ* as well as the exceptional divisors corresponding to
them by abusing the symbol. The arms in ̂  consist of spx = gcd(#, r) copies of
PR\, sq\ = gcd(r,p) copies of PS\ and sr\ = gcd(p,q) copies of PT\ (loc. cit.).

LEMMA 1. With the notations as above, we have

Π,ι < Γ/>I+i < θh Sij < 5/.y+i < θh tiik < t i i M < 0/, / = 1, 2, 3,

where θ\ := p{qr, Θ2 := pq\r, Θ3 := pqr\ are the coordinates of P.

Proof. We prove the lemma for the Rt's. Let π be the toric modification
associated with the above regular simplicial cone subdivision Σ*. Let (π*x) =
E\ + Σr\,iE(Rι) + P\qfE{P) +Z>, where D is the sum of the divisors which do
not intersect with E(Rιys. Note that the exceptional divisor E(Rt) is a disjoint
union of E(R^) (1 <a<spx). Each E(R^) possesses the following properties:
1) £(/^°°) is isomorphic to P\ 2) the self intersection number of E(R{"]) is
not bigger than -2 by [7] and 3) E(R[a)) only intersects with E(R{^1) and
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( ) (here J#> := E[«\ and R^ := P), and i< (*|α)) 2?(Λ<») = ^ ([6] p. 156).

Hence from (π*x) E(R\a)) = 1 + rιΛE(R^])2 + r u = 0, we have E(R{*])2 =

- ( l + r i , 2 ) M , i < - 2 which implies r u < n j 2 . From (π*j;) E(R(f)) = 0 +

r2 )i£'(i^1 ) 2 + Γ2,2•= 0, we have r 2 j 2 > r 2 ) i . Similarly, we can prove the other

inequalities. Π

3. The existence of Lines

THEOREM 2. Let s = gcd(p,q,r). G(p,q,r) has lines if and only if
G(p/s,q/s,r/s) has lines.

Proof It follows from the fact that the two surfaces have the same dual
Newton diagram. •

THEOREM 3. Assume gcd(/?,q,r) = I and ($) : p <q <r. G(p,q,r) has lines
if and only if at least one of the following conditions holds.

I) Two of the three integers p,q,r are coprime and the other one is divisible
by at least one of the coprime numbers.

II) The inequality r > pq/'gcd(p, q) holds.

Proof We continue to use the notations in the beginning of §2. By the
assumption (ft), we have the inequalities (fl|j) : pxqf > pq\r > pqr\.

We first show the necessity.
(a) Assume that there exists 1 in the coordinates of P. Then by (flU) we

have pqr\ = 1 which implies that gcά(p,q) = 1 and pq\r. This corresponds to a
special case of (I).

(b) Let det(P,E\)=p>l. The coordinates of R\ are r\i\ = (pιqr+pι)/p >
q\r + pι/p>l by (flU), r2?i = q\f > qr\ = r 3 j i . We assume that r 3 1 = 1. This
implies that r\—q—\. Then we have p — pq\, q = P\, r = pxr, from which we
have gcd(/?,<7) = 1 and q\r. This corresponds to a case of (I).

(c) In case det(P,£ 2) = q > 1, the coordinates of Si are s2,i = {pq\r + q\)/q
> l , s i i = P\r>sτ>,\—pr\. Assume that £3,1 —pr\ = 1. Then p\r and gcd(p,q) =
1. This is also a case of (I).

(d) If det(P,is3) = f > 1, the coordinates of T\ are t\^\ = pxq > /2,i = Mi
and fyi = {pqr\-\-f\)/r. In this case, we have only two possibilities, (d-1)
Firstly, assume that ί2,i = 1 which is equivalent to /?|</ and gcd(/?,r) = 1. This is
a case of (I). Since gcd(/?, g, r) = 1, this is also a case of (II) if p > 1. (d-2)
Secondly, assume that t^\ = 1. This implies r = ^ r i + ri for some r > π > 0,
which implies that r> pqr\. This implies that r > pq/gcd(p,q), which corre-
sponds to (II).

Note that all the coordinates of Rt (i > 1 in case px > 1) and that of Sj
(j > 1 in case qx > 1) are bigger than one. Also the first two coordinates of %
(k > 1 in case f\ > 1) are bigger than one. By lemma 1, t?,^ = 1 implies that
ί3)fle = 1 for all α = 1,... ,k — 1. Hence r > pq/gcd(p,q).
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We show the sufficiency. Assume first that (II): r > pq/gcd(p, q). Then
r> pqr\ and f\ — f — pqr\ and we get ^ 1 = 1. Next, assume that (I) is sat-
isfied. Then by (0), either (1) gcd(/?, q) = 1 and p\r or q\r or (2) gcd(/?, r) = 1
and p\q. (1) corresponds to a case of (a), (b), or (c) and (2) corresponds to a
case of (a) or (d). For example assume that gcd(/?,#) = 1 and p\r. This implies
that r\ = 1 and pq\\rpxq\. Thus p = 1 and this corresponds to (c) (respectively
to (a)) if q > 1 (resp. if q— 1). The other cases are treated similarly. •

Remark 4. The case that p = 1 is a special case of (I) and (II).

4. Equations, numbers and torsion numbers of the lines

We continue to use the notations in the beginning of §2 and to assume
p < q <r. Gonzalez-Sprinberg and Lejeune-Jalabert theorem also gives a way
to find the defining equations of the lines (as curves in C 3) on a surface. The
computation of the torsion number can be done as follows. For a line L with
parameterization x = x(t), y = y(ή, z = z(ή, one may assume that dx/dt(O) φ
0. By the inverse function theorem, we have t = t(x). Hence the line L can
be defined by y — φ(x) = 0 and z — φ(x) = 0. We choose the following local
coordinate transformation of (C 3,0) : xf = x} y' = y — φ(x), z' = z — φ(x). The
defining ideal of L is thus g = (j/,z'). The defining equation of the sur-
face containing L can be written as h = ax'y' + bx'z'mod §2. Then λ =

(a,b) + $) (see [4]).

LEMMA 5. g{p,p,p) = 1 and the line can be parameterized by

x = bt, y = ct, z = t, with bp -h cp + 1 = 0,

and the torsion number λ — p—\.

Proof. The proof is trivial and is omitted. •

LEMMA 6. 1) If p > 1, then g(p,pq,pqr) = p(r - 1) + 1. Let To := £3, Tr

:= P, and T Ί , . . . , Tr-\ be the points on E^P to make the canonical regular
simplicial subdivision of E^P. Then to each T^ correspond p reduced components

T^ (r > k > 0) in the maximal cycle of G(p, pq, pqr). The torsion numbers for
the lines in S^τ{,) (k fixed) are the same: λ = k(p—l)q;

2) If p > 1 and qjfr, then ρ(p,pq,pr) = p{\ + [r/q]). Let To := £3, and
7 Ί , . . . , T],./^ be the points on E3P to make the canonical regular simplicial
subdivision of E3P. Then to each Tk=τ(kq,k,\) correspond p reduced com-
ponents 7̂  (k > 0) in the maximal cycle of G(p,pq,pr). The torsion numbers of
the lines in £fτ(,) for each fixed k (k = 1,.. ., [r/q]) are the same λ = k(p — \)q.

Let S\ be on PE2 (see Figure 1) with 1 as the last coordinate. There are p

reduced components S\ ( / = ! , . . . , / ? ) in the maximal cycle corresponding to S\.
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TABLE 1. Number of lines on Bπeskorn-Pham surfaces
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Conditions

gcd(p, q) = 1

1 < p<q<r

r = q

r > q, pq\r — = 1 + Φ
pq \r - pq4

r>q, pjfr, q\r — \+q=
pq\

+q

r>q, p\r,
pq pq.

r >
, q)

1 < p<q<r

gcd(/7, q,r) = \

gcd(p,q) = 1, pjfr, qjfr

or
gcά(p,q) > 1

, q)
'rgcd(p,q)

pq

= gcά(p,q)\ 1 -f Φ( /
I V̂  - pq/gcά(p,q).

The torsion numbers of the lines in J?s(ή are the same: λ = min{(/? — l)r,

(pq-l)(l +[r/q])}.

DProof. We leave the easy proof to the reader.

In the following, we assume that gcd(/?, q, r) = 1 and 1 < p <q <r. The
exact numbers of families of lines are given in Table 1. The proof is in
lemma 7-11.

LEMMA 7. Let 1 < p < q — r and gcd(p,q) = 1. There are q reduced

l

7.
components R\ in the maximal cycle corresponding to R\ (see figure 1). And the
q families of lines on G(p, q, q) can be parameterized by

x = ctx+Wp\ y = t, z = ωβ{\ + cptp-δ)ι/qt, β = 1,... ,q,

where c φ 0 is a constant, coβ is a root of ωq = — 1, and δ = q — p[q/p]. The
torsion numbers of these lines are the same λ = minj*/ — 1, (p — 1)(1 + [q/p])}.

Proof We omit the easy proof. •

LEMMA 8. Let gcd(/>, q) = 1 and pq\r. The maximal cycle is reduced and
consists of Tk+Ϊ = τ((k + l)q,(k + l)p, 1) (k = 0,. . . ,r - 1 = r/pq - 1). The
lines in ^τk+x

 c a n oe parameterized by

χ _ ckqu{\+v.q+kpq)/pt(k+\)q _ ckpuu.+k

where 0 < α < p such that (1 + ocq + kpq)/p is an integer, c φO is a constant and
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u = u(t) is a unit satisfying 1 + u + ur-^+pk^qυr-^k^pqwr-kpq = 0. The torsion
number for the lines in £?τk+λ is λ = (k + l)(p — \)q.

Proof In this case P = τ{rq, rp, 1) and det(P, E\) = det(P, E2) = I,
det(P, E3) = f. Let 0 < α, /? < /> such that

is integral. From the chart determined by M^, 7V|_i, 7̂ , one can do all the
computations. •

LEMMA 9. Lei gcd(/?,#) = 1 and p )(r, q\r. In the maximal cycle there are

q reduced components R\ (I < i < q) corresponding to R\ = τ((r + δ)/p, r/q, 1),
where 0 < δ < p such that (r + δ)/p is an integer. The lines in j^(o can be para-
meterized as λ

x = cfr+δ)lp, y = ω, (l + cqtδγlqtrlq, z = t,

where c φ 0 is a constant and ω, is a root of ωq = — 1, / = 1,..., q. The torsion
numbers are the same: λ = min{(/? — \){[r/q] + 1), (q — l)r/q}. Moreover, if r >
pq, in the maximal cycle there are also reduced components corresponding to Tk+\
= τ((k+ l)q,(k-\- l)p,l) (k = 0,..., [r/(pq)\ — 1). The parameterizations and
the torsion numbers of the lines in ^τk+x we the same as in lemma 8.

Proof One only needs to prove the statement about JS^O, which can be
done from the chart determined by E\, £2, R\. ι D

LEMMA 10. Let gcd(p,q) = 1 and p\r, q)(r. In the maximal cycle, there are

p reduced components s[J' (1 < j < p) corresponding to S\ = τ{r/p, (r + δ)/q, 1),
where 0 < δ < q such that S\ is integral. The lines in J^ (y) can be parameterized
by

x = ωj{\ + c

qtδγ/ptr/p, y = c&+δ)lq, z = t,

where c φ 0 is a constant and Wj is a root of ωp = — 1, j — 1,...,/?. The torsion
numbers are the same, λ = min{(# - l){[r/q] + 1), (p - l)r/p}. Moreover, if r >
pq, there are also [r/(pq)] reduced components in the maximal cycle corresponding
to Tk+\ = τ((k + \)q, (k + \)p, 1) (k = 0,..., [r/(pq)\ - 1). The parameterizations
and the torsion numbers of the lines in &τk+\ are the same as in lemma 8.

Proof Similar to that of lemma 9. •

LEMMA 11. Let gcd(/?, q, r) = I, I < p < q < r and r > pq/gcd(p, q).
Assume that either gcd(p,q) = 1, p X r, qX r or gcd(p,q) > 1. Then to each

τ([k+\)q
= —77 r

(
\gcd(p,q)
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correspond gcd(/?, q) reduced components T^λ (γ — 1,..., gcd(/?, q)) in the maximal
cycle. And they are the only reduced components in the maximal cycle. For fixed
k, the lines in J£?τo) can be parameterized by

χ — kq {\+{kp+ct)q)/pJk+\)q _ kp kp+a Jk+l)p . 1

where uγ is a unit satisfying 1 + urχ + cf-kpqur-(kp+cc)qtr-(k+\)pq = 0 ? a n d γχ =

gcd(/?,q), p = /?/ri, # = g/π, 0 < α < ^ ŵc/z ίtoί (1 + (Z:̂  + oc)q)/p is an integer.

And the torsion numbers of the lines in JZLM are: λ= (k + \)(p — l)q/gcd(p,q).
Jk+l

Proof Notice that all the coordinates of Rt and Sj are greater than 1 and
7fc+i is as in the statement of the lemma (k = 0,. . . , [(rgcd(p,q))/(pq)] — 1).
Denote 7b := E3. Let 0 < α, β < p be the integers such that

P

is integral. Then the simplex determined by M^, 7\+i, % is regular. From this
chart, one can obtain the given parameterization of the lines in i?Γ(/} by a
calculation. *+1 •

COROLLARY 12. If any two of the p,q,r are coprime and q = p + α,

r — q-\- β with 0<<x<p,0<β<q, there do not exist smooth curves on G(p, q, r).

Proof We give an elementary proof. Let C be a smooth curve in (C 3,0),
parameterized by

x = x(t) = Σakt\ y = y(t) = Y^bkt\ z = z(ή = ̂ ckt
k, \t\ < ε.

k=\ k=\ k=\

Then C c G{p, q, r) if and only if

[x(t)}P + [y{t)]q + [z(ή}r = 0 for all \t\ < ε.

From this and the assumption on p, q, r, one can deduce that a\—b\ —
cx = 0. D

Example 13. 1) On E% surface G(2,3,5) there do not exist lines.
2) On the surfaces G(2,3,7), there exists one family of lines. A regular

subdivision of the dual Newton diagram is given in Figure 2. Where P =
Γ(21,14,6), β = Γ ( l l , 7 , 3 ) , i ? = Γ ( 7 , 5 , 2 ) , S = Γ ( 3 , 2 , 1 ) , 5Ί = r ( l , 1,1), S2 =
Γ(2,2,1), S3 = Γ(2,1,2), S4=

 Γ(2,1,1), Γ = Γ ( 4 , 3 , 1 ) . Only the exceptional
divisors corresponding to P, Q, R, S have non-empty intersections with the strict
transform of the surface G(2,3,7). On the chart corresponding to the triangle
σ — AQPS, we have the modification map represented by

x = t/Πf2 1w3, y = uΊvl4w2, z = u3v6w,

where (w, v, w) is the coordinates on the chart corresponding to σ. The strict
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E ,

FIGURE 2

transform of G(2,3,7) is defined by u + w+\=0. The exceptional divisor
corresponding to S is defined by u + 1 = 0, w = 0. The blowing down of the
line v = c Φ 0, u + w + 1 = 0 is the smooth curve in (C 3 ,0):

x = _ c 2 1 ( l + t)nt\ y = - c 1 4 ( l + t)7t2, z = - c 6 ( l + t)h,

where ί e C is the parameter. This curve is on (5(2,3,7) with torsion number 3.

Remark 14. If one applies the formula in lemma 11 to this example, one
gets a different parameterization. This shows that the parameterizations of the
lines in the same family might be different. This is because the toric modifi-
cations of the surface and the chart used might be different. However, the
torsion numbers are invariant.
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