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ON THE BEHAVIOUR OF MOCK 6#-FUNCTIONS FOUND IN THE
“LOST” NOTE BOOK
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1. Introduction

From Ramanujan’s ‘lost’ note book Andrews and Hickerson [1] stated the
seven mock theta functions ¢(q), ¥(q), p(q), a(q), A(q), u(q) and v(q). In their
paper Andrews and Hickerson [1] while studying the identities connecting these
seven functions did not actually find their asymptotic behaviour in the neigh-
bourhood of a point of a unit circle as |¢]| — 1. Earlier Watson [6, 7] and
Dragonette [3] had discussed in some detail the behaviour of the third and fifth
order mock theta functions. The asymptotic behaviour of the seventh order
mock theta functions has been discussed by Selberg [S5]. The object of this paper
is to study in detail the asymptotic behaviour of the seven mock theta functions
found in the ‘lost’ notebook, in their ‘bilateral’ forms as defined in the next
section below.

2. Notation and definitions

If n >0, we define

n—1

)y = (5:9), = [T(1 = g').

1=0
If |g| <1, we let
(X0 = (:9) e = lim (x), = [J(1 = ¢")

1>0

and more generally
(Xl, e axr;q)oo = (xl)oo e (xr)oo

=[[a-g%)---(1-g'x).
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For x #0, and |g| < 1
Jjx,q) = (x,9/%,4,9),, = Z(—l)”q(g)X"-

If a and m are integers with m > 1, then

Jam = j(q°, qam)
ja,m =j(-q%,q™)
and

Im = m,3m = (qm;qm)oo'

The seven mock theta function found in the ‘lost’ Note-book Andrews and
Hickerson [1, pp. 84, 89]
0 ¥ D)2

- 1
Jo,3¥(q) = ‘§J12,2+ Tr 4

r=—00

© r(3r+1)/2

) J3j(—q, qZ) © q3r(r+l)
CI](_laqG)P(q) =—§.—3— T %
i2j(=1,4°) = 1+4

- TeT6/(—4,4%) 2\ g¥rD
J(=1,4%0(q) = —E—o D E L —,
J1,2/(=4,9%)i(—=4*,9%) = 1+¢

_2h),10j(¢%, 4%, 4°)

aj(—1,4%)A(q) =

J4j(_1aq6)
qJ1.273,12 . 6 X, g3+
+—===j(-1, +2 —_—
J1,4 (=147 ,;001 +q%
. 20Js12/(—2,4%) j(—4°z, ¢°
2j(z, qﬁ)ﬂ(‘l) = J(4j(q22)qg) )
Ji 2-71 3. p © (_l)rq3r(r+l)zr+1
_+ Z, — 4 -/ -
e (@) ,;oo (1 - ¢5+Z)
J(=1,¢*)(g) = M[W]‘(—w2 q) + w2 j(—w,q)]
’ J3](_17q) ’ ’
43 @© q3r(r+1)/2 '
1 + q3r+1

r=—0a0
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3. The behaviour of the mock theta-functions in the neighbourhood of the unit
circle

According to Ramanujan the characteristic property of the mock theta-
functions is that corresponding to each ‘rational point’ g = e™**% (h and k
integers) of the unit circle |g| =1, there exists a theta function of g whose
difference from the mock theta-function is bounded when ¢ approaches this
rational point along a radius of the circle.

We prove that the ‘complete’ mock theta functions of sixth order possess this
characteristic property.

The rational numbers 4/k, when expressed as fractions in their lowest terms
with A positive, can be put into three categories:

(i) A even and k odd

(i1) A and k both odd

(iii) # odd and k even.

The corresponding values of e will be described as points of the first
(second or third) categories on the unit circle and if ¢ = pe™?/k) 0 <p <1, we
shall say that g approaches the circle along a radius when ¢ — 1.

We shall now prove the following theorem.

ni(h/k)

THEOREM. For approach to |q| =1 along a radius of the first category

¢.(q9) = O(1), and y.(q)=O().
Proof. Anju Gupta [4, pp. 259-260] has shown that

_ 291+ 9) , [ -4 ,
bda) = #0) + D340 | T gt i

and
@) = (o) + L3 [‘-”q‘-"’,]

We shall prove the theorem taking the two functions on the right separately. We
shall mainly follow the proof given by Dragonette [3, p. 479].
Let g = pe'®®) R(p) >0 and let p — 1.

=iqm2 m 2r 1)

m=0 H +qr)

0 pm? gri(h/kym? TI7 (1 — pZ-lemh/RCr=1)
= 11+ /J’e’”(”/ wr)

Putting m = uk + v, we have
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k=1 o p(/lk+v)2 o Tilh/K) (uk-+v)? H:‘:;L”(l _p¥r- eni(h/k)(Zr—l))

$(q) = ; e HrZZIIcHV(l + prem'(h/k)r)
k—1

Then we shall show that for v=0,1,2,...,k—1 and p > 0, Zﬂ ay,, is uniformly
convergent. Now

p(yk+k+v) —(uk+v)? H/tk+v+k 11— p2r—1 emi(h/k)(2r-1) |

Ay, u+1 r=uk+v+1
2uk+2v+2k romi(h/k)r
@,u l_[r—luk+2v+l ll tp'e (k/k) |

We estimate the denominator using the inequality, Andrews and Hickerson [1,
p. 93], for 0< R <R<1 and |z| =1,

R
14+ R < ‘/ﬁ [1+ R'z|.
2uk+2v+2k

H |1 +pr ni(h/k) r| _ H |1 +pr+2,uk+2v mi(h/k)( r+2v)|
r=2puk+2v+1 r=1

2%
> H pUHBR=D/2)] g 21 mih/)r2),

r=1

2k
- p(2/1+1)k2—(k/2) H Il +p2v+le7ti(h/k)(r+2v)|

r=1

_ p(2,u+l)k2—(k/2)(l + pkavDy2

> plute=(k/2)
since 14 p2+1em(/k)(+2) ryuns twice through the roots of
(x — 1)k — pkr+D),
Now the numerator:

pk+v+k
H Il __p2r—1em'(h/k)(2r—1)|
r=pk+v+1

k
— H 11— p2r+2;4k+2v—1 eni(h/k)(2r+2,,k+2v+1)l

r=1
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k-1
- H I1— p2r+2/4k+2v+l eni(h/k)(2r+2v+1)|
r=0
k-1 ‘
< pr+/tk—k+1|1 _ p2v+2k—1 em(h/k)(2r+2v+1)|
r=0

k—1
- pkz(,u—-(]/Z))+(k/2) H |(1 _ p2v+2k—leni(h/k)(2r+2v+1)I

r=0

2(y— —
= PR u=(1/2)+k/2) (1 _ ph(2v42k-1))

< pkz(/l—(l/2))+(k/2)

Since 1 — p2+2k—1gmi(h/k)(2v+1+2r)

runs through the roots of
(x _ l)k +pk(2v+2k—1)‘
Hence

Grptl| p2vk+/4k+(k/2) <1

ay,
< ¢ (say) where 0 < ¢ < 1.

Hen(; >4 @v,u is uniformly convergent.
ow

1 k—lpv2 Hrv=1 |1 _p2r—lem’(h/k)(2r—1)|

T I e

1 & 1
< = 0(1
-1 —s;“ + emil(k=1)/k)| 2 (m)

for fixed k£ as p — 1.
To show that y(g) is bounded. Let

(=1"¢" (44"

w(P) =70,
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Then

og) 2n+1

W =S 1

— U
2n+1 71
n=01+qn+

(p)

and following the argument given by Andrews and Hickerson [1, p. 96] it can
shown that {/(g) is bounded.

Now the second functions on the right of the definition of ¢.(q) and ¥ .(q)
viz.

0 [—q2, -4, ¢ [ —q, —q2, ¢
3¢§‘”[ 1 qq3 1 ;q] and 3¢§‘”[ qq3 1 ;q]

are bounded functions of ¢ for |g| < 1.

Hence ¥.(q) and ®.(g) are uniformly convergent and bounded when g lies
on a radius of the first category.

When ¢ lies on a radius of the second category, it is evident that —q lies on
a radius of the first category. Hence by the results proved earlier, for radial
approach to points of the second category on the unit circle

Ye(-¢g)=0(1) and ¢.(-q)=0(1).

4. Transformation formulae and asymptotic expansions

We shall now construct the linear transformations of the mock theta
functions and follow the method used by Watson [6, pp. 73-76]. Any sub-
stitution of the modular group can be resolved into a number of substitutions of
the forms

=1+1, ‘c'=—l,
T
we shall construct the transformations which express the fourteen functions
Y(£9q),... in terms of similar functions of ¢; (or powers of ¢;), where g and ¢;
are connected by the relations

g=e¢" of=1n’ q =eP

We shall first consider ¥(g). By Cauchy’s theorem, we have

o—1¢ —oo+1¢ B e—3az(z+1)/2
L
+J } sinzz 14e3e

_ 1, 1
Jos¥e(q) +5J12 = Z—m{J

—oo—IC oo+ic

1 co—1ic —o0+1c n e—34’/2
= —— J + J n dz
2 \J_oie  Jootse ) sinmz 2cosh(3az/2)
where c¢ is a positive integer so small that the zeros of sinzz are the only poles of
the integrand between the lines forming the contour. On the higher of these two
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lines we write

1 [
_ = -2 e(Zn-{—l)mz,
s nz —0
so that
1 [~ote o g3’ /2
——J T dz
27 }ore  SiN7z 2 cosh(3az/2)

1 0 pootic . ] 30(22 e3uz + e—3otz -1
= 57_[;20 J_Oo+w 27i exp{(Zn + Driz — > } T
1 e oo+1Ic
= F,(z), say.
27:1"2:;4[—00-1-16 n( )

Now we shall calculate these integrals. The poles of F,(z) are simple poles at
the points
_ (2m+ Dmi
Zm = % (
and the residue at z,, is

m=—00,...—1,0,1,... 4+00)

3 2
%(—l)mexp{(Zn + Dmizy, — —%}(ZCOSh 30z — 1) = Anm, say.

Now, by Cauchy’s theorem
1 o+ic 0+2zp 1
_{J —PJ }Fn(z)dz=ln,0+ln,l +"'+}-n,n—l +"/1n,n
270 ) ot —00+2, 2

where P denotes the “principal value” of the integral. On rearranging the
repeated series, we have

1 1
5/10,0 + Z(in,o + Avn,l +--+ '{n,n—l + Ein,n>

0
n=1
“. /1
= Z(i'{m»m + im+1,m + im+2,m +-- )

m
1 &, 14 ek
= 5 Z j'WI,WI T

1-— e2mz,,,

(2/9)(2m+1)

2n 2m+1 6/502mt1? 1 + 45
=—Z(—1)m(2COS 3 T — 1)(]1 W

2/3)(2p+1
= q, 1— q§2/3)(2p+1) s

where m = 3p + 1, the terms vanish when m # 3p + 1.
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Now
00+2z, [e¢}
PJ F,(z)dz =Pj Fu(zn + x) dx
— o042z, -

© 5 2n+1)22 3ax? 2 ,
_PJ_OO2mexp{—§ . - —5(2n+1)mx

cosh{3ax + (2n + 1)mi/3} — 1/2
X (—1)"isinh (9ax/2) ax

41 ,
= 2zi(—1)" smw q§5/54)(2n+1 )

% Jw o (30x?/2)—=(2/3) (2n+ i sinh 3ax
o sinh (9ax/2)

The integral has been simplified by modifying the contour to pass through the
stationary point of the function

exp{(Zn + Vziz — %oczz}

as is done in the “method of steepest descents”.
The integral along the lower is evaluated by simply changing the sign of
i. Hence we have

T 1
Jo,3%0(q) +§J12,2
A& 1" (5/6)(2,,+1)qu§2/3)@
_EZ(_ ) q1 1 |
n=0 !
0 . 2 1 )
+Z4ni(-1)" Sl_n(%'__)fq}S/M)(an)zJ R
0

n=0

sinh 3ax (2
0S

XWC §(2n+ 1)7'[)() dx

which is the transformation formula for y.(q).
We shall now consider the integral on the right hand side of the trans-
formation formula.
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w .
_ _3ax2/2__Sinh3ox 2
J(«) L e sinh (9x/2) cos { 3 2n + 1)zx ) dx.

16 [* [* _ 2 sinh 3ox 2
= 7J‘0 JO e G/2)8y COS 3nxyWCOS (3 (2n -+ l)nx) dy dx
28 “ —@p CoshB((y/3) +(2/27)(2n + 1)) d
V77l cosh38((¥/3) + /2N 2n + 1)) ¥

® 2 coshB((y/3) — (2/27)(2n + 1))
* L O 3B = e+ )Y ]

2/33
— () + 12(B)]
where
—(3/2)8y* COSh,BY]
D) = L cosh 351, ¥
and
0
_ " ~a/p2 coshBYs
2(B) JO cosh 35y,
where
y 2
Yi=24—
1 3727 (211 -+ 1)
and
y 2
Yy=2—
2=3 7+

We obtain the asymptotic expansions for J(«), Ji(«), J2(«) in ascending
powers of «, valid when « is small and R(p) > 0.

T 2
J(a)z\/%[l—@a+—(2n+l) )+]
Jz(d)=\/6z|:l+%(\/§+2—27-(2n+1)2 6a—‘—;-(2n+1))+...]
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Similarly we can find the transformation formula for ¢.(q) viz.

1 4 & :  (Q2p+1)n 1 4¢P
~J138,(q) ____Z(_l)nq§5/6)(2p+l) cos( p+1) 4

=73y o 3 1 = 2D
o) .
N Z(_l)unﬂz”_“ﬁqf/s@(znmz J ® -G/t
n=0 3 0

sinh 3ox 2n+ )z
1
sinh (9ox/2) °°s{ g (6x+1) } dx

and the corresponding asymptotic expansions.

Since the other bilateral functions p.(q), a.(q), 4.(q), ©.(q) and v.(q) are
related to ¥,.(q) and ¢,(q) by means of the relation, Andrews and Hickerson [1,
pp. 89-92], Anju Gupta [4, p. 260]

Ae(q) = 2p.(9), #1.(q) =20.(q)

JI2J36

20.(q) = 5

- ¢c( )
ple) =224 ()
and

2Jl Jo.3

j0,3[2vc( )—3¢c( )] = [Wj( w ,q)+W]( W,q)]

it is easy to find their transformation formula and asymptotic behaviour.

5. Lemma

If

o0
J(a) = J e"(3/2)“"2H(ocx) dx

0
where

_ sinh(3ax + o) 2 n
H(oax) = Snh((92/2)x ¥ (3a/2))cos(§ (2nn+ Vrx + 2n+ 1)5)

then there exists K > 0 such that |aJ(a)] < K for all R(x) >0 ie. aJ(a) is
uniformly bounded in this half-plane.

Proof. Let z=x+iy(x>0), then H(z) < e"C>/2=(#/2) for large x. Let
z = ax,

0
J(o) = ! e~ (/20/0x* F(x) dx, x real.
®Jo
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Since R(a) > 0, we have |e~G/2(1/ax*| <1 5o

@)l < |

0

0 o]

H(x)dx < K j e~ B3/2)=(/2) gy — K (say)
0

which proves the lemma.
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