# ON THE SCHWARZIAN DIFFERENTIAL <br> EQUATION $\{w, z\}=R(z, w)$ 

Katsuya Ishizaki


#### Abstract

It is showed in this note that if the Schwarzian differential equation (*) $\{w, z\}=R(z, w)=P(z, w) / Q(z, w)$, where $P(z, w)$ and $Q(z, w)$ are polynomials in $w$ with meromorphic coefficients, possesses an admissible solution $w(z)$, then $w(z)$ satisfies a first order equation of the form (**) $\left(w^{\prime}\right)^{2}+B(z, w) w^{\prime}+A(z, w)$ $=0$, where $B(z, w)$ and $A(z, w)$, are polynomials in $w$ having small coefficients with respect to $w(z)$, or by a suitable Möbius transformation (*) reduces into $\{w, z\}=P(z, w) /(w+b(z))^{2}$ or $\{w, z\}=c(z)$. Furthermore, we study the equation (**).


## 1. Introduction

We are concerned with the Schwarzian differential equation

$$
\begin{equation*}
\{w, z\}=\left(\frac{w^{\prime \prime}}{w^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{w^{\prime \prime}}{w^{\prime}}\right)^{2}=R(z, w)=\frac{P(z, w)}{Q(z, w)} \tag{1.1}
\end{equation*}
$$

where $P(z, w)$ and $Q(z, w)$ are polynomials in $w$ having meromorphic coefficients with $\operatorname{deg}_{w} P(z, w)=p$ and $\operatorname{deg}_{w} Q(z, w)=q$, respectively. Moreover, we assume that they are relatively prime.

We studied the Schwarzian equation $\{w, z\}^{m}=R(z, w)$ in [2, Theorems 1-3]. The Malmquist-Yoshida type theorem to the Schwarzian equation was obtained. Furthermore, we determined the form of the Schwarzian equation that possesses an admissible solution especially when $R(z, w)$ is independent of $z$. However, it might be difficult to get the similar assertion in the case when $R(z, w)$ is not independent of $z$. We treat the Schwarzian equation only when $m=1$, say, the equation (1.1). We also consider the first order equation

$$
\begin{equation*}
\left(w^{\prime}\right)^{2}+2 B(z, w) w^{\prime}+A(z, w)=0, \tag{1.2}
\end{equation*}
$$

where $B(z, w)$ and $A(z, w)$ are polynomials in $w$ having meromorphic coefficients. In this note, we use standard notations in the Nevanlinna theory (see e.g., [1], [5], [6]). Let $f(z)$ be a meromorphic function. Here, the word "meromorphic" means meromorphic in $|z|<\infty$. As usual, $m(r, f), N(r, f)$, and $T(r, f)$ denote

Received May 19, 1993 ; revised February 21, 1997.
the proximity function, the counting function, and the characteristic function of $f(z)$, respectively. Let $n_{C M}(r, f)$ be the number of poles of order at least $M$ for a meromorphic function $f(z)$ in $|z| \leqq r$ according to its multiplicity. The integrated counting function $N_{(M)}(r, f)$ is defined in the usual way.

We define the counting function concerning common zeros of two meromorphic functions $f(z)$ and $g(z)$. Let $n(r, 0 ; f)_{g}$ be the number of common zeros of $f(z)$ and $g(z)$ in $|z| \leqq r$, each counted according to the multiplicity of the zero of $f(z)$. The counting function $N(r, 0, f)_{g}$ is defined in the usual way. The integrated counting function $\bar{N}(r, 0 ; f)_{g}\left(=\bar{N}(r, 0 ; g)_{f}\right)$ counts distinct common zeros of $f(z)$ and $g(z)$.

A function $\varphi(r), 0 \leqq r<\infty$, is said to be $S(r, f)$ if there is a set $E \subset \boldsymbol{R}^{+}$of finite linear measure such that $\varphi(r)=o(T(r, f))$ as $r \rightarrow \infty$ with $r \notin E$.

A meromorphic function $a(z)$ is small with respect to $f(z)$ if $T(r, a)=S(r, f)$. In the below, $\mathscr{M}=\{a(z)\}$ denotes a given finite collection of meromorphic functions. A transcendental meromorphic function $f(z)$ is admissible with respect to $\mathscr{M}$ if $T(r, a)=S(r, f)$ for any $a(z) \in \mathscr{M}$.

Let $c \in \boldsymbol{C} \cup\{\infty\}$. We call $z_{0}$ a $c$-point of $f(z)$ if $f\left(z_{0}\right)-c=0$. Suppose that a transcendental meromorphic function $f(z)$ is admissible with respect to $\mathscr{M}$. A $c$-point $z_{0}$ of $f(z)$ is an admissible $c$-point with respect to $\mathcal{M}$ if $a\left(z_{0}\right) \neq 0, \infty$ for any $a(z) \in \mathscr{M}$.

Suppose $N(r, c ; f) \neq S(r, f)$ for a $c \in \boldsymbol{C} \cup\{\infty\}$. Let $P$ be a property. We denote by $n_{P}(r, c ; f)$ the number of $c$-points in $|z| \leqq r$ that admit the property $P$. The integrated counting function $N_{P}(r, c ; f)$ is defined in the usual fashion. If

$$
N(r, c ; f)-N_{P}(r, c ; f)=S(r, f),
$$

then we say that almost all $c$-points admit the property $P$.
We define an admissible solution of the equation

$$
\begin{equation*}
\Omega\left(z, w, w^{\prime}, \ldots, w^{(n)}\right)=\sum_{J \in \mathcal{G}} \Phi_{J}=\sum_{J \in \mathcal{G}} c_{J}(z) w^{\jmath_{0}}\left(w^{\prime}\right)^{\rho_{1}} \cdots\left(w^{(n)}\right)^{\jmath_{n}}=0, \tag{1.3}
\end{equation*}
$$

where $g$ is a finite set of multi-indices $J=\left(j_{0}, j_{1}, \ldots, j_{n}\right)$, and $c_{J}(z)$ are meromorphic functions. Let $\mathscr{M}_{(1,3)}$ be the collection of the coefficients of $\Omega\left(z, w, w^{\prime}, \ldots\right.$, $\left.w^{(n)}\right)$ in (1.3), say, $\mathscr{M}_{(1.3)}:=\left\{c_{J}(z) \mid J \in g\right\}$. A meromorphic solution $w(z)$ of the equation (1.3) is an admissible solution if $w(z)$ is admissible with respect to $\mathscr{M}_{(1,3)}$.

We now state the results below.
Theorem 1.1. Suppose that the Schwarzian equation (1.1) possesses an admissible solution $w(z)$. Then $w(z)$ satisfies a Riccati equation, a first order differential equation of the form (1.2), or the equation (1.1) is one of the following forms:

$$
\begin{align*}
& \{w, z\}=\frac{P(z, w)}{(w+b(z))^{2}},  \tag{1.4}\\
& \{w, z\}=c(z), \tag{1.5}
\end{align*}
$$

where $b(z), c(z)$ are small functions with respect to $w(z)$. In the case $w(z)$ satisfies a first order differential equation (1.2), by a suitable transformation $u=1 /(w-\tau)$, $\tau \in \boldsymbol{C}$, we see that $u(z)$ satisfies a first order differential equation of the form (1.2) with $\operatorname{deg}_{u} B(z, u) \leqq 1, \operatorname{deg}_{u} A(z, u)=3$.

Theorem 1.2. Suppose that $\operatorname{deg}_{w} B(z, w) \leqq 1$ and $\operatorname{deg}_{w} A(z, w)=3$ in (1.2)

$$
\left\{\begin{array}{l}
B(z, w)=b_{1}(z) w+b_{0}(z)  \tag{1.6}\\
A(z, w)=a_{3}(z) w^{3}+a_{2}(z) w^{2}+a_{1}(z) w+a_{0}(z)
\end{array}\right.
$$

If the equation (1.2) possesses an admissible solution $w(z)$, then by a suitable Möbius transformation with meromorphic small coefficients with respect to $w(z)$

$$
\begin{equation*}
y=\frac{\alpha(z) w+\beta(z)}{\gamma(z) w+\delta(z)}, \quad \alpha(z) \delta(z)-\beta(z) \gamma(z) \not \equiv 0 \tag{1.7}
\end{equation*}
$$

the equation (1.2) reduces into one of the following types:

$$
\begin{align*}
& \left(y^{\prime}\right)^{2}=a(z)\left(y-e_{1}\right)\left(y-e_{2}\right)\left(y-e_{3}\right),  \tag{1.8}\\
& \left(y^{\prime}+b(z) y\right)^{2}=a(z) y(1+c(z) y)^{2},  \tag{1.9}\\
& \left(y^{\prime}-\frac{a^{\prime}(z)}{2 a(z)} y\right)^{2}=y\left(y^{2}-a(z)\right),  \tag{1.10}\\
& \left(y^{\prime}-\frac{a^{\prime}(z)}{3 a(z)} y\right)^{2}=y^{3}-a(z), \tag{1.11}
\end{align*}
$$

where $a(z), b(z), c(z)$ are small meromorphic functions with respect to $w(z)$ and $e_{1}, e_{2}, e_{3}$ are distinct constants.

Remark 1.1. Put $g=y^{2} / a$ in (1.10) and put $h=y^{3} / a$ in (1.11). Then we see that $g(z)$ and $h(z)$ respectively satisfy the binomial equations

$$
\left(g^{\prime}\right)^{4}=16 a(z) g^{3}(g-1)^{2} \quad \text { and } \quad\left(h^{\prime}\right)^{6}=729 a(z) h^{4}(h-1)^{3}
$$

We can find the Malmquist-Yosida-Steinmetz-He-Laine theorem to binomial equation, for instance, in Laine [5, Theorem 10.3, p. 194].

## 2. Preliminary Lemmas

In this section, we prepare some lemmas to prove Theorems 1.1 and 1.2.
Lemma 2.1 [2, Theorem 2, pp. 261-262]. If the equation (1.1) possesses an admissible solution $w(z)$, then the denominator $Q(z, w)$ of $R(z, w)$ must be one of the followings:

$$
\begin{equation*}
Q(z, w)=c(z)\left(w+\tilde{b}_{1}(z)\right)^{2}\left(w+\tilde{b}_{2}(z)\right)^{2} \tag{2.1}
\end{equation*}
$$

$$
\begin{align*}
& Q(z, w)=c(z)\left(w^{2}+\tilde{a}_{1}(z) w+\tilde{a}_{0}(z)\right)^{2},  \tag{2.2}\\
& Q(z, w)=c(z)(w+b(z))^{2},  \tag{2.3}\\
& Q(z, w)=c(z)(w+b(z))^{2}\left(w-\tau_{1}\right)\left(w-\tau_{2}\right),  \tag{2.4}\\
& Q(z, w)=c(z)(w+b(z))^{2}\left(w-\tau_{1}\right),  \tag{2.5}\\
& Q(z, w)=c(z)\left(w-\tau_{1}\right)\left(w-\tau_{2}\right)\left(w-\tau_{3}\right)\left(w-\tau_{4}\right),  \tag{2.6}\\
& Q(z, w)=c(z)\left(w-\tau_{1}\right)\left(w-\tau_{2}\right)\left(w-\tau_{3}\right),  \tag{2.7}\\
& Q(z, w)=c(z)\left(w-\tau_{1}\right)\left(w-\tau_{2}\right),  \tag{2.8}\\
& Q(z, w)=c(z)\left(w-\tau_{1}\right),  \tag{2.9}\\
& Q(z, w)=c(z), \tag{2.10}
\end{align*}
$$

where $c(z), \tilde{a}_{1}(z), \tilde{a}_{0}(z)$ are meromorphic functions, $\left|\tilde{a}_{1}^{\prime}\right|+\left|\tilde{a}_{2}^{\prime}\right| \neq 0, \tilde{b}_{1}(z), \tilde{b}_{2}(z), b(z)$ are nonconstant meromorphic functions, and $\tau_{\jmath}, j=1, \ldots, 4$ are distinct constants.

Lemma 2.2 [4, Theorem 1 (ii)]. Suppose that the equation (1.3) possesses an admissible solution $w(z)$ that satisfies $N_{(M}(r, w)=S(r, w)$ for some $M>0$. Let $G(z, w)$ be an irreducible polynomial in $w$ having small coefficients with respect to $w(z)$. If $F(z, w)$ is a polynomial in $w$ having small coefficients with respect to $w(z)$ such that $F(z, w)$ and $G(z, w)$ are relatively prime, then

$$
\begin{equation*}
N(r, 0 ; G)_{F}=S(r, w) \tag{2.11}
\end{equation*}
$$

Lemma 2.3. Let $f(z)$ be a transcendental meromorphic function and let $\Omega\left(z, f, f^{\prime}, \ldots, f^{(n)}\right)$ be a differential polynomial in $f$ of total degree $\gamma_{\Omega} \leqq q$ having small coefficients with respect to $f(z)$. Define

$$
h(z):=\Omega\left(z, f(z), f^{\prime}(z), \ldots, f^{(n)}(z)\right) / \prod_{j=1}^{q}\left(f(z)-\tau_{j}\right)
$$

where $\tau_{1}, \ldots, \tau_{q}$ are distinct complex constants. Then

$$
m(r, h) \leqq \sum_{j=1}^{q} m\left(r, \frac{1}{f-\tau_{\jmath}}\right)+S(r, f) .
$$

The proof of Lemma 2.3 is the same as that of the original proof except for obvious modifications (see Steinmetz [8, Lemma 3, pp. 48-49]).

Lemma 2.4. Let $f(z)$ be a transcendental meromorphic function.
(i) Let $K(z, f)$ be a rational function in $f$ having small coefficients with respect to $f(z)$, i.e., $K(z, f):=F(z, f) / G(z, f)$ where $F(z, f)$ and $G(z, f)$ are relatively prime polynomials in $f$. If $m(r, K)=S(r, f)$ where $K(z)=K(z, f(z))$, then

$$
m\left(r, \frac{1}{G}\right)=S(r, f), \quad \text { where } G(z)=G(z, f(z))
$$

(ii) Let $G(z, f)$ be a polynomial in $f$ of degree $k$ having small coefficients with respect to $f(z)$ such that $m(r, 1 / G)=S(r, f)$, where $G(z):=G(z, f(z))$. Let $\Omega\left(z, f, f^{\prime}, \ldots, f^{(n)}\right)$ be a differential polynomial in $f$ of total degree $\gamma_{\Omega} \leqq k$ having small coefficients with respect to $f(z)$. Then we have

$$
m\left(r, \frac{\Omega}{G}\right)=S(r, f), \text { where } \Omega(z):=\Omega\left(z, f(z), f^{\prime}(z), \ldots, f^{(n)}(z)\right)
$$

Proof of Lemma 2.4. (i) Set $d=\operatorname{deg}_{f} K(z, f)$. Since $m(r, K)=S(r, f)$, by Mokhon'ko's Theorem (see e.g., Laine [5, Theorem 2.25, pp. 29-34]), we have $d T(r, f)=N(r, K)+S(r, f)$. Set $\operatorname{deg}_{f} F=d_{1}$ and $\operatorname{deg}_{f} G=d_{2}$. If $d_{1}>d_{2}$ so that $d=d_{1}$, then

$$
\begin{aligned}
N(r, K) & \leqq\left(d_{1}-d_{2}\right) N(r, f)+N\left(r, \frac{1}{G}\right)+S(r, f) \\
& \leqq\left(d_{1}-d_{2}\right) T(r, f)+N\left(r, \frac{1}{G}\right)+S(r, f)
\end{aligned}
$$

Hence, we get $d_{2} T(r, f) \leqq N(r, 1 / G)+S(r, f)$, which proves our assertion in the case $d_{1}>d_{2}$. If $d_{1} \leqq d_{2}$, then

$$
N(r, K) \leqq N\left(r, \frac{1}{G}\right)+S(r, f)
$$

Therefore, we also have proved our assertion in the case $d_{1} \leqq d_{2}$.
(ii) Let $\tau_{j}, j=1,2, \ldots, \gamma_{\Omega}$ be distinct complex constants such that $G\left(z, \tau_{j}\right)$ $\not \equiv 0$ and $m\left(r, 1 /\left(f-\boldsymbol{\tau}_{j}\right)\right)=S(r, f)$. Since $\gamma \Omega \leqq k$, we have

$$
\begin{equation*}
N\left(r, \frac{\Pi_{j=1}^{\gamma_{n}}\left(f-\tau_{j}\right)}{G}\right)=N\left(r, \frac{1}{G}\right)+S(r, f) . \tag{2.12}
\end{equation*}
$$

By our assumption $m(r, 1 / G)=S(r, f)$, and by the first fundamental theorem and Mokhon'ko's theorem

$$
\begin{equation*}
N\left(r, \frac{1}{G}\right)=T(r, G)-m\left(r, \frac{1}{G}\right)+O(1)=k T(r, f)+S(r, f) . \tag{2.13}
\end{equation*}
$$

Hence, by Mokhon'ko's theorem and Lemma 2.3, we get

$$
\begin{align*}
m\left(r, \frac{\Omega}{G}\right) & \leqq m\left(r, \frac{\Omega}{\Pi_{j=1}^{\gamma_{\rho}}\left(f-\tau_{j}\right)}\right)+m\left(r, \frac{\Pi_{j=1}^{\gamma_{\rho}}\left(f-\tau_{j}\right)}{G}\right)+S(r, f)  \tag{2.14}\\
& \leqq \sum_{j=1}^{\gamma \Omega} m\left(r, \frac{1}{f-\tau_{j}}\right)+k T(r, f)-N\left(r, \frac{\Pi_{j=1}^{\rho_{\rho}}\left(f-\boldsymbol{\tau}_{j}\right)}{G}\right)+S(r, f)
\end{align*}
$$

The assertion follows from (2.12), (2.13) and (2.14).

Here, we refer to the lemmas on a representable double poles, (see [3, Theorem 2.6]). Let $f(z)$ be a transcendental meromorphic function and let $r_{1}(z), r_{2}(z), a_{0}(z), a_{1}(z), \ldots, a_{5}(z)$ be small functions with respect to $f(z)$. Let $z_{0}$ be a double pole of $f(z)$. We call $z_{0}$ a strongly representable double pole in the first sense of $f(z)$ by $r_{1}(z), r_{2}(z), a_{0}(z), a_{1}(z), \ldots, a_{5}(z)$, if $f(z)$ is written in a neighbourhood of $z_{0}$ as

$$
f(z)=\frac{r_{2}\left(z_{0}\right)}{\left(z-z_{0}\right)^{2}}+\frac{r_{1}\left(z_{0}\right)}{z-z_{0}}+a_{0}\left(z_{0}\right)+\cdots+a_{5}\left(z_{0}\right)\left(z-z_{0}\right)^{5}+O\left(z-z_{0}\right)^{6}, \quad \text { as } z \rightarrow z_{0}
$$

For the sake of simplicity, we abbreviate it SD1-pole. We denote by $n_{\langle\mathrm{SD} 1\rangle}(r, f)$ the number of the SD1-poles. The integrated counting function $N_{\left\langle\mathrm{SD}_{1}\right\rangle}(r, f)$ is defined in terms of $n_{\text {〈SD1 }}(r, f)$ in the usual way.

Lemma 2.5. Let $w(z)$ be a transcendental meromorphic function and let $r_{1}(z)$, $r_{2}(z), a_{0}(z), a_{1}(z), \ldots, a_{5}(z)$ be small functions with respect to $w(z)$. If

$$
m(r, w)+\left(N(r, w)-N_{\left\langle\mathrm{SD}_{1}\right\rangle}(r, w)\right)=S(r, w)
$$

then $w(z)$ satisfies a differential equation of the form (1.2) with $\operatorname{deg}_{w} B(z, w) \leqq 1$, $\operatorname{deg}_{w} A(z, w)=3$.

Before we state Lemma 2.6, we write (1.2) as

$$
\begin{equation*}
\left(w^{\prime}+B(z, w)\right)^{2}=B(z, w)^{2}-A(z, w)=D(z, w) \tag{2.15}
\end{equation*}
$$

Moreover, we write $D(z, w)$ as

$$
\begin{align*}
D(z, w) & =d_{3}(z) w^{3}+d_{2}(z) w^{2}+d_{1}(z) w+d_{0}(z)  \tag{2.16}\\
& =d_{3}(z)\left(w-\eta_{1}(z)\right)\left(w-\eta_{2}(z)\right)\left(w-\eta_{3}(z)\right)
\end{align*}
$$

where $d_{j}(z), j=0,1,2,3$ are meromorphic functions, $\eta_{j}(z), j=1,2,3$, are algebroid functions.

Lemma 2.6. Suppose that the equation (2.15) possesses an admissible solution $w(z)$. Let $\eta(z)$ be a root of the equation $D(z, \eta)=0$. If $\eta(z)$ is a simple root, then $\eta(z)$ satisfies the equation

$$
\begin{equation*}
\eta^{\prime}+B(z, \eta)=0 \tag{2.17}
\end{equation*}
$$

Lemma 2.6 is originally proved by Steinmetz [8, p. 51] under the condition that the coefficients are not transcendental. We will follow his proof. To do this, we refer to the following Malmquist-Yosida type theorem, see Steinmetz [7], Laine [5, Theorem 13.1].

Lemma 2.7. Let $P\left(z, w, w^{\prime}, \ldots, w^{(n)}\right)$ be a differential polynomial in $w$ with meromorphic coefficients and let $R(z, w)$ be a rational function in $w$ having meromorphic coefficients. If the differential equation

$$
P\left(z, w, w^{\prime}, \ldots, w^{(n)}\right)=R(z, w)
$$

possesses an admissible solution, then $R(z, w)$ reduces to a polynomial in $w$.
Proof of Lemma 2.6. Differentiating (2.15), and combining (2.15) with the obtained equation we get

$$
\begin{align*}
& \left(2 w^{\prime \prime}+2 B_{z}(z, w)+2 B_{w}(z, w) w^{\prime}-D_{w}(z, w)\right)^{2}  \tag{2.18}\\
= & \frac{\left(D_{z}(z, w)-D_{w}(z, w) B(z, w)\right)^{2}}{D(z, w)} .
\end{align*}
$$

Write $D(z, w)=(w-\eta) \Delta(z, w)$, where $\Delta(z, \eta(z)) \not \equiv 0$. We denote by $R(z, w)$ the right-hand side of (2.18). We actually compute

$$
\begin{aligned}
R(z, w)= & \frac{\left(\eta^{\prime}(z)+B(z, w)\right)^{2} \Delta(z, w)}{w-\eta(z)}-2\left(\eta^{\prime}(z)+B(z, w)\right)\left(\Delta_{z}(z, w)-\Delta_{w}(z, w) B(z, w)\right) \\
& +\frac{(w-\eta(z))\left(\Delta_{z}(z, w)-\Delta_{w}(z, w) B(z, w)\right)^{2}}{\Delta(z, w)}
\end{aligned}
$$

By means of Lemma 2.7, $R(z, w)$ must be a polynomial in $w$. Since $w-\eta(z)$ and $\Delta(z, w)$ are mutually prime polynomials in $w$, there exists a polynomial $Q(z, w)$ in $w$ such that

$$
\left(\eta^{\prime}(z)+B(z, w)\right)^{2} \Delta(z, w)=Q(z, w)(w-\eta(z)) .
$$

From the reasoning $\Delta(z, \eta(z)) \not \equiv 0$, we obtain $\eta^{\prime}(z)+B(z, \eta(z)) \equiv 0$.
Lemma 2.8. Let $a(z), b_{1}(z), b_{0}(z), \eta_{j}(z), \jmath=1,2,3$ be meromorphic functıons. Suppose that the equation

$$
\begin{equation*}
\left(w^{\prime}+b_{1}(z) w+b_{0}(z)\right)^{2}=a(z)\left(w-\eta_{1}(z)\right)\left(w-\eta_{2}(z)\right)\left(w-\eta_{3}(z)\right) \tag{2.19}
\end{equation*}
$$

possesses an admissible solution $w(z)$. Then by a suitable Möbius transformation with small meromorphic coefficients with respect to $w(z)$

$$
y=\frac{\alpha(z) w+\beta(z)}{\gamma(z) w+\delta(z)}, \quad \alpha(z) \delta(z)-\beta(z) \gamma(z) \not \equiv 0,
$$

the equation (2.19) reduces to the type (1.8) or (1.9).
We note that Lemma 2.8 is originally proved by Steinmetz [8, pp. 51-52]. In fact, if $\eta_{1}=\eta_{2}=\eta_{3}$, then by $y=1 /\left(w-\eta_{1}(z)\right)$ the equation (2.19) reduces to

$$
\left(y^{\prime}-b_{1}(z) y\right)^{2}=a(z) y .
$$

In case, $\eta_{1}=\eta_{3}, \eta_{1} \neq \eta_{2}$, then by $y=\left(w-\eta_{1}(z)\right) /\left(w-\eta_{2}(z)\right)$ we get

$$
\left(y^{\prime}\right)^{2}=a(z)\left(\eta_{2}(z)-\eta_{1}(z)\right)(y-1) y^{2} .
$$

Finally we consider the case $\eta_{j} \neq \eta_{k}, j \neq k$. By Lemma 2.7, $\kappa=\left(\eta_{1}(z)-\eta_{3}(z)\right) /$ $\left(\eta_{2}(z)-\eta_{3}(z)\right)$ is a constant, $\kappa \neq 0$, 1 . Put $y=\left(w-\eta_{1}(z)\right) /\left(w-\eta_{2}(z)\right)$. Then $y(z)$ satisfies

$$
\left(y^{\prime}\right)^{2}=a(z)\left(\eta_{2}(z)-\eta_{3}(z)\right) y(y-1)(y-\kappa) .
$$

## 3. Proof of Theorem 1.1

Proof of Theorem 1.1. We may assume that $\operatorname{deg}_{w} P(z, w)=\operatorname{deg}_{w} Q(z, w)$. Moreover, we can suppose that almost all poles of $w(z)$ are simple and we have

$$
\begin{equation*}
m(r, w)+N_{1}(r, w)=S(r, w) \tag{3.1}
\end{equation*}
$$

(see [2, Proof of Lemma 1, p. 266]). By means of Lemma 2.2,

$$
\begin{equation*}
N(r, 0 ; Q)_{P}=S(r, w) \tag{3.2}
\end{equation*}
$$

where $Q(z):=Q(z, w(z))$ and $P(z):=P(z, w(z))$. Furthermore, we know that the existence of an admissible solution implies that $Q(z, w)$ must be of the form (2.1)-(2.10) in the statements of Lemma 2.1. We prove Theorem 1.1 separately according to the cases above.

First we treat the case $Q(z, w)$ is of the form (2.1) or (2.2). It follows from (1.1) that almost all zeros of $Q(z)$ are zeros of $w^{\prime}(z)$. We have that almost all zeros of $Q(z)$ are double zeros, (see [2, Lemma 2(i), p. 264]). Define

$$
\begin{aligned}
& \varphi_{1}(z):=\frac{w^{\prime}}{\left(w+b_{1}(z)\right)\left(w+b_{2}(z)\right)}, \quad \text { if } Q(z, w) \text { is of the form (2.1), } \\
& \varphi_{2}(z):=\frac{w^{\prime}}{w^{2}+a_{1}(z) w+a_{0}(z)}, \quad \text { if } Q(z, w) \text { is of the form (2.2). }
\end{aligned}
$$

Then almost all zeros of $Q(z)$ are regular points of $\varphi_{j}(z), j=1,2$. It follows from (3.1) that almost all poles of $w(z)$ are also regular points of $\varphi_{j}(z), j=1,2$. Hence we get $N\left(r, \varphi_{j}\right)=S(r, w), j=1,2$. Using the theorem on the logarithmic derivative, from (1.1) we have that $m(r, R)=S(r, w)$ in each case. By Lemma 2.4 (i), we get $m(r, Q)=S(r, w)$. By virtue of Lemma 2.4 (ii), we conclude that $m\left(r, \varphi_{j}\right)=S(r, w), j=1,2$. Therefore, $\varphi_{j}(z), j=1,2$, are small functions with respect to $w(z)$ in both cases. This implies that $w(z)$ satisfies a Riccati equation in each case.

We see that if $Q(z, w)$ has a factor $(w-\tau)$, then almost all $\tau$-points of $w(z)$ are of multiplicity two. Thus $w^{\prime}(z)$ has a simple zero at these $\tau$-points, (see [2, Proof of Lemma 2 (ii), p. 267]).

Next, we treat the case $Q(z, w)$ is of the form (2.4) or (2.6). We define

$$
\begin{array}{ll}
\psi_{1}(z):=\frac{\left(w^{\prime}\right)^{2}}{\left(w+b_{1}(z)\right)^{2}\left(w-\tau_{1}\right)\left(w-\tau_{2}\right)}, & \text { if } Q(z, w) \text { is of the form (2.4) } \\
\phi_{2}(z):=\frac{\left(w^{\prime}\right)^{2}}{\left(w-\tau_{1}\right)\left(w-\tau_{2}\right)\left(w-\tau_{3}\right)\left(w-\tau_{4}\right)}, & \text { if } Q(z, w) \text { is of the form (2.6). }
\end{array}
$$

Then almost all zeros of $Q(z)$ are regular point of $\psi_{j}(z), j=1,2$, and almost all poles of $w(z)$ are also regular points, which means that $N\left(r, \psi_{j}\right)=S(r, w), j=1,2$. By the same arguments in the first case, we get $m\left(r, \psi_{j}\right)=S(r, w), j=1,2$. Hence we conclude that $w(z)$ satisfies a binomial equation which is a special form of (1.2).

Finally we consider the case $Q(z, w)$ is of the form (2.5), (2.7), (2.8) or (2.9). We know that almost all $\tau_{1}$-points of $w(z)$ are double points without defect in each case. It gives that if we put $u=1 /\left(w-\tau_{1}\right)$ in (1.1), then almost all poles of $u(z)$ are double poles and we have in each case

$$
\begin{equation*}
m(r, u)+\left(N(r, u)-N_{(2)}(r, u)\right)=S(r, u) . \tag{3.3}
\end{equation*}
$$

It is easy to see that when $Q(z, w)$ is of the form (2.5), (2.7), (2.8) or (2.9) the equation (1.1) transforms into the following equations, respectively:

$$
\begin{array}{ll}
\{u, z\}=\frac{P_{1}(z, u)}{(u+\tilde{b}(z))^{2}}, & \text { if } Q(z, w) \text { is of the form (2.5), } \\
\{u, z\}=\frac{P_{2}(z, u)}{\left(u-\sigma_{1}\right)\left(u-\sigma_{2}\right)}, & \text { if } Q(z, w) \text { is of the form (2.7), } \\
\{u, z\}=\frac{P_{3}(z, u)}{u-\sigma_{1}}, & \text { if } Q(z, w) \text { is of the form (2.8), } \\
\{u, z\}=P_{4}(z, u), & \text { if } Q(z, u) \text { is of the form (2.9), } \tag{3.7}
\end{array}
$$

where $P_{j}(z, u), j=1,2,3,4$, are polynomials in $u$ having small coefficients with respect to $u(z)$ and $\operatorname{deg}_{u} P_{1}(z, u)=3, \operatorname{deg}_{u} P_{2}(z, u)=3, \operatorname{deg}_{u} P_{3}(z, u)=2, \operatorname{deg}_{u} P_{1}(z, u)$ $=1, \tilde{b}(z)$ is a non-constant small function with respect to $u(z), \sigma_{\jmath}, j=1,2$ are constants $\sigma_{1} \neq \sigma_{2}$. Let $z_{0}$ be an admissible pole of $u(z)$. We write $u(z)$ in a neighbourhood of $z_{0}$ as

$$
\begin{equation*}
u(z)=\frac{r_{2}}{\left(z-z_{0}\right)^{2}}+\frac{r_{1}}{z-z_{0}}+a_{0}+\cdots+a_{5}\left(z-z_{0}\right)^{5}+O\left(z-z_{0}\right)^{6}, \quad \text { as } z \rightarrow z_{0} . \tag{3.8}
\end{equation*}
$$

We assert that in each case $r_{2}, r_{1}, a_{0}, \ldots, a_{5}$ are written in terms of small functions with respect to $u(z)$, say, $z_{0}$ is an SD1-pole. In fact, we put $P_{1}(z, u)$ $=p_{1}(z) u^{3}+p_{12}(z) u^{2}+p_{11}(z) u+p_{10}(z), P_{2}(z, u)=p_{2}(z) u^{3}+p_{22}(z) u^{2}+p_{21}(z) u+p_{20}(z)$, $P_{3}(z, u)=p_{3}(z) u^{2}+p_{31}(z) u+p_{30}(z)$ and $P_{4}(z, u)=p_{4}(z) u+p_{40}(z), p_{j}(z) \equiv \equiv 0, j=1,2$, 3,4 . Using Test-power test, say, substituting (3.8) into the both sides of (3.4), (3.5), (3.6) and (3.7), we compare the coefficients of $\left(z-z_{0}\right)^{-2}$. Then we see that in each case $r_{2}=-3 /\left(2 p_{j}(z)\right), j=1,2,3,4$. Moreover, comparing the coefficients of $\left(z-z_{0}\right)^{m}, m=-1,0, \ldots, 5$, we get $-2 p_{j}\left(z_{0}\right) r_{1}=S_{-1}^{(j)}\left(r_{2}\right),-p_{j}\left(z_{0}\right) a_{0}=S_{0}^{(j)}\left(r_{2}, r_{1}\right)$, $4 p_{j}\left(z_{0}\right) a_{1}=S_{1}^{(\nu)}\left(r_{2}, r_{1}, a_{0}\right), 15 p_{j}\left(z_{0}\right) a_{2}=S_{2}^{(\nu)}\left(r_{2}, r_{1}, a_{0}, a_{1}\right), 34 p_{j}\left(z_{0}\right) a_{3}=S_{3}^{(\nu)}\left(r_{2}, r_{1}, a_{0}\right.$, $\left.a_{1}, a_{2}\right), 63 p_{j}\left(z_{0}\right) a_{4}=S_{4}^{(j)}\left(r_{2}, r_{1}, a_{0}, a_{1}, a_{2}, a_{3}\right)$ and $104 p_{j}\left(z_{0}\right) a_{5}=S_{5}^{(j)}\left(r_{2}, r_{1}, a_{0}, a_{1}, a_{2}\right.$, $\left.a_{3}, a_{4}\right), j=1,2,3,4$, where $S_{m}^{(j)}$ are polynomials in the indicated arguments with the coefficients that are the values of small functions with respect to $u(z)$ at $z_{0}$. This implies that $r_{2}, r_{1}, a_{0}, \ldots, a_{5}$ are written in terms of small functions with
respect to $u(z)$, say, $z_{0}$ is an SD1-pole in each case. Hence, by Lemma 2.5, $u(z)$ satisfies a first order differential equation of the form (1.2). Therefore, by a simple computation, we see that $w(z)$ also satisfies a differential equation of the form (1.2). Hence, we conclude that unless $Q(z, w)$ is of the form (2.3) or (2.10), then $w(z)$ satisfies a first order differential equation of the form (1.2). Then the assertion follows.

## 4. Proof of Theorem 1.2

Proof of Theorem 1.2. In the case $B(z, w) \equiv 0$, the equation (1.2) is a binomial equation. Hence, by the Malmquist-Yosida-Steinmetz theorem, the equation (1.2) reduces into (1.8) or (1.9). Therefore, we may assume that $B(z, w) \not \equiv 0$. Lemma 2.8 insists that if the all roots $\eta(z)$ of $D(z, \eta)=0$ are meromorphic, then (2.15) reduces to the equation (1.8) or (1.9). Hence we shall show that $\eta_{j}(z)$ in (2.16) are meromorphic or (2.15) reduces to (1.9), (1.10) or (1.11). In case there is a double or triple root of $D(z, \eta)=0$, then they are meromorphic. Hence we may assume that $\eta_{j}(z), j=1,2,3$, are all simple roots. It follows from Lemma 2.6 that they satisfy the equation (2.17). We put $u=d_{3}(z) w+d_{2}(z) / 3$ in (2.15) and (2.16). Then we get the equation

$$
\left(u^{\prime}+\tilde{B}(z, u)\right)^{2}=u^{3}+\tilde{d}_{1}(z) u+\tilde{d}_{0}(z),
$$

where $\tilde{B}(z, u)$ is a polynomial in $u$ with degree at most 1 , and $d_{1}, d_{0}$ and the coefficients of $\widetilde{B}(z, u)$ are small functions with respect to $u(z)$. Hence, we also assume that $d_{3}(z) \equiv 1$ and $d_{2}(z) \equiv 0$ in (2.16).

Since $\eta_{j}(z), j=1,2,3$, satisfy the equation (2.17), $y(z):=\eta_{1}(z)+\eta_{2}(z)+\eta_{3}(z)$ satisfies the equation

$$
y^{\prime}+b_{1}(z) y+3 b_{0}(z)=0 .
$$

From the assumption $d_{2}(z) \equiv 0$, we have $y(z) \equiv 0$. This implies that $b_{0}(z) \equiv 0$. Therefore, $\eta_{j}(z)$ are written as

$$
\begin{equation*}
\eta_{j}(z)=C_{j} e^{-\int t_{1}(z) d z}, \quad j=1,2,3 . \tag{4.1}
\end{equation*}
$$

It follows from (4.1) that at least one function element $\eta_{j}(z)$, which does not vanish, is a meromorphic function if and only if all function elements $\eta$, are meromorphic. From (2.15), we get

$$
\begin{equation*}
w^{\prime \prime}=\frac{U(z, w) w^{\prime}+V(z, w)}{2 D(z, w)}, \tag{4.2}
\end{equation*}
$$

where

$$
\begin{align*}
U(z, w)= & -b_{1}(z) w^{3}+\left(d_{1}^{\prime}(z)+b_{1}(z) d_{1}(z)\right) w+d_{0}^{\prime}(z)+2 b_{1}(z) d_{1}(z)  \tag{4.3}\\
= & \left(5 a_{3}(z) b_{1}(z)-a_{3}^{\prime}(z)\right) w^{3}+\left(4 a_{2}(z) b_{1}(z)-4 b_{1}(z)^{3}+2 b_{1}(z) b_{1}^{\prime}(z)-a_{2}^{\prime}(z)\right) w^{2} \\
& +\left(3 a_{1}(z) b_{1}(z)-a_{1}^{\prime}(z)\right) w+2 a_{0}(z) b_{1}(z)-a_{0}^{\prime}(z),
\end{align*}
$$

$V(z, w)$ are polynomials in $w$ having meromorphic coefficients with respect to $w(z)$. From (4.2) and (2.15), we get

$$
\begin{aligned}
& -U(z, w) w^{\prime \prime} w^{\prime}+(V(z, w)-2 U(z, w) B(z, w)) w^{\prime \prime}+U(z, w)^{2} \\
= & \frac{(B(z, w) U(z, w)-V(z, w))^{2}}{D(\boldsymbol{z}, w)} .
\end{aligned}
$$

In view of Lemma 2.7, we see that $V=B U$ or $D \mid(V-B U)$ as polynomials in $w$, since $\eta_{j}, j=1,2,3$ are simple roots. We get from (4.2),

$$
\begin{equation*}
\left(w^{\prime \prime}-\frac{1}{2} H(z, w)\right)^{2}=\frac{U(z, w)^{2}}{4 D}, \tag{4.4}
\end{equation*}
$$

where $H(z, w)$ is a polynomial in $w$ having small coefficients with respect to $w(z)$. Hence, by Lemma 2.7 and (4.4) we have $D \mid U$ as polynomials in $w$. Write $U(z, w)$ as

$$
\begin{align*}
& U(z, w)=-b_{1}(z) D(z, w)+S(z, w),  \tag{4.5}\\
& S(z, w)=s_{2}(z) w^{2}+s_{1}(z) w+s_{0}(z),
\end{align*}
$$

with

$$
\begin{aligned}
& s_{2}=a_{2} b_{1}-b_{1}^{3}+a_{2}^{\prime}-\frac{a_{3}^{\prime}}{a_{3}} a_{2}+\frac{a_{3}^{\prime}}{a_{3}} b_{1}^{2}-2 b_{1}^{\prime} b_{1}, \\
& s_{1}=2 a_{1} b_{1}+a_{1}^{\prime}-\frac{a_{3}^{\prime}}{a_{3}} a_{1}, \quad s_{0}=3 a_{0} b_{1}+a_{0}^{\prime}-\frac{a_{3}^{\prime}}{a_{3}} a_{0}
\end{aligned}
$$

From our assumptions $d_{3}(z)=-a_{3}(z) \equiv 1$ and $d_{2}(z)=b_{1}(z)^{2}-a_{2}(z) \equiv 0$, we get $s_{2}(z)$ $\equiv 0$ and

$$
\begin{equation*}
s_{1}(z)=2 a_{1}(z) b_{1}(z)+a_{1}^{\prime}(z) \text { and } s_{0}(z)=3 a_{0}(z) b_{1}(z)+a_{0}^{\prime}(z) . \tag{4.6}
\end{equation*}
$$

We have $S(z, w) \equiv 0$, say $s_{1}(z) \equiv s_{2}(z) \equiv 0$. Thus from (4.6), we obtain

$$
a_{1}(z)=C_{1}\left(e^{-\int b_{1}(z) d z}\right)^{2} \quad \text { and } a_{0}(z)=C_{0}\left(e^{-\int b_{1}(z) d z}\right)^{3} .
$$

If $C_{1} \neq 0$ and $C_{0} \neq 0$, then $e^{-\int b_{1}(z) d z}$ is meromorphic. This implies that $D(z, w)$ has a meromorphic function element. If $C_{1} \neq 0$ and $C_{0}=0$, then the equation (1.2) reduces to the equation (1.10). If $C_{1}=0$ and $C_{0} \neq 0$, then the equation (1.2) reduces to the equation (1.11). If $C_{1}=0$ and $C_{0}=0$, then the equation (1.2) reduces to the equation (1.9).

Acknowledgment. I would like to thank Professor Dr. N. Yanagihara and Professor Dr. I. Laine for their suggestions and kind encouragements. I also would like to thank Dr. Y. M. Chiang and Dr. K. Tohge for their helpful discussions. Moreover, I dedicate acknowledgments to the referee for his suggestions and comments.

## References

[1] W.K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[2] K. Ishizaki, Admissible solutions of the Schwarzian differential equations, J. Austral. Math. Soc. Ser. A, 50 (1991), 258-278.
[3] K. Ishizaki, A third order differential equation and representable poles, Nihonkai Math. J., 4 (1993), 201-220.
[4] K. Ishizaki and N. Yanagihara, On admissible solutions of algebraic differential equations, Funkcialaji Ekvacioj, 38 (1995), 433-442.
[5] I. Laine, Nevanlinna Theory and Complex Differential Equations, W. Gruyter, Berlin-New York, 1992.
[6] R. Nevanlinna, Analytic Functions, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
[7] N. Steinmetz, Eigenschaften eindeutiger Lösungen gewöhnlicher Differentialgleichungen im Komplexen, Doctoral Dissertation, Karlsruhe, 1978.
[8] N. Steinmetz, Ein Malmquistscher Satz für algebraische Differentialgleichungen erster Ordnung, J. Reine Angew. Math., 316 (1980), 44-53.

Department of Mathematics
Nippon Institute of Technology
4-1, Gakuendai Miyashiro-machi
Minami-Saitama-gun Saitama-ken 345
Japan

