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THE SPECTRAL GEOMETRY OF HARMONIC MAPS INTO

XIAOLI CHAO

§0. Introduction

The spectral geometry of the Laplace-Beltrami operator has developed
greatly during the last twenty years. Recently, H. Urakawa use Gilkey's results
about the asymptotic expansion of the trace of the heat kernel of a certain
differential operator of a vector bundle to research the spectral geometry of
harmonic maps into Sn and CPn. In this paper, inspired by these, we firstly
determine a spectral invariant of the Jacobi operator of harmonic maps into
HPn (corollary 3). Using this we obtain some geometric results distinguishing
typical harmonic maps, i.e., isometric minimal immersions and Riemannian
submersions with minimal fibres.

§1. The spectral invariants of the Jacobi operator

Let (M, g) be a m-dimentional compact Riemmanian manifold without
boundary and (N, h) an n-dimentional Riemannian manifold. A smooth map
φ:(M, g)-+(N, h) is said to be harmonic if it is a critical point of the energy
E{φ) defined by

(1) E(φ) = f e(φ)vg

(2)

M

e(φ) = - Σ h(φ*eh
2/Γi

where φ* is the differential of φ. Namely, for every vector field V along φ

d

dt t=0
E(φt) = 0.

Here φt: M—> N is a one parameter family of smooth maps with φ0 = φ and
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d

dt t=o
φt(x) =

for every point x E M.
The second variation formula of the energy E(φ) for a harmonic map φ is

given by

E(φt) = f h(V, JφV)vg.<3 > ϊ
Here Jφ is a differential operator (called the Jacobi operator) acting on the space
Γ(E) of sections of the induced bundle E= φ'^TN. The operator Jφ is of the
form

m

(4) JΦV = $*'ΫV-Σ Rh(Φ*eh V)φ*eh V E

Here V is the connection of E which is defined by

for VEΓ(E), I E TM, and the Levi-Civita connection yh of (JV, ft). # Λ is the
curvature tensor of (N, ft) whose sign is the same as Jf?̂  Note that V is
compatible with the metric ft. Define the endomorphism L for our E by

m

(5) L(V) = Σ Rh(Φ*et, V)φ*h V G Γ(E).

Then we have

(6) Tr(L) = Ίvg(φ*ph).

We denote also the spectrum of the Jacobi operator Jφ of the harmonic map φ
by

(7) Spec(/0) = {λx < λ2 < λ, < f °°}

Then the traceZ(ί) = exp(-/λ/) of the heat kernel for the Jacobi operator Jφ has
the asymptotic expansion

Z(t) ~ (4πt)-m/2 {a0 (Jφ) + <n(Jφ)t + a2(Jφ)t2 + •}.

Moreover we have

THEOREM 1 ([U]). For a harmonic map φ: (Mn, g)^>(Nn, h),
ao(jφ) = n Vol(M)

_ w r r

(8) β l l Φ _ 6

n " V ' + "

M
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+ UθίM <- 3 °HΛH 2 + ωτsττAΦ* PH) + 180||L||2)vg

where, for X, YE TXM, (φ*Rh)x,γ is the endomorphism of Tφ^N given by (0*

From now on, we assume that the target manifold is quaternionic space
form Q(c) with quaternionic sectional curvature c. The Riemannian curvature
tensor R of Q(c) is of the form

(9) R(X, Y)Z = - -7\h(Y, Z)X - h(X, Z)Y

3 ϊ

+ Σ [(Z, JtY)JtX - (Z, JtX)JtY + 2(X, JtY)JtZ]
ί = l J

where {/i, J2, J3} is a canonical local basis of quaternionic Kahler structure of
Q(c). Then for a harmonic map φ: (Λf", g)-^Q(c), we obtain

(10) Tr(L) = 2{n + 2)ce{φ)

since ph = (n 4- 2)ch. Moreover let {e[, ..., e'n, J\eΊ, . . . , J\e'n, J2eΊ, . . . , J2e'm
/3ei, .. .^J^e'n} be a local orthonormal field on Qn(c). Then since

m n

W\\2= Σ Σ

Tr(L2)= Σ Σ

+ Σ

by a straightforward computation we obtain

||i?^||2 = c Ue(φf - \\φ*hf + (In

(11)

Tr(L2) = ^ U(n + 4)e(φ)2 + 7\\φ*h\\2 + 3 Σ||φ*Φ,||2)

where Φt(X, Y) = h(X, JtY), for vector field X, Y on β(c). Hence we have

THEOREM 2. Let φ be a harmonic map of a compact Riemannian manifold
(M, g) into a quaternionic space form Q(c). Then the coefficients ao(Jφ), a^Jψ)
and a2(Jφ) of the asymptotic expansion for the Jacobi operator Jφ are
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ao(Jφ) = 4nvol(M)

(12) β l ( / ) = ^ ί v + 2(π + 2)ce(tf>)

= ϊδlM

 (5τlg ~ 2|I/O*"2 + 2 | | i ? « l | 2 ) v «
— ί {2(3n + ll)c2e(0)2 + H|k*Λ||2 - (n - 4)
12 J A/ I

COROLLARY 3. Lei 0, φ' 6e ίwo harmonic maps of a compact Riemannian
manifold (M, g) with constant scalar curvature into Q(c)(c 4 0). Assume that

Sρec(/Φ) = Spec(JV)

Then we have

E(φ) = E(φ')

and

(13) ί (2(3n + U)c2e(φ)2 + U\\φ*h\\2 - (n - 4) Σ ||Ψ*Φ t | |
2}vβ

f2(3n + ll)c2e(φ)2 + ll | |φ'*Λ| | 2 - (n - 4) Σ ||tf>'*Φ,= ί f
For analogous results for the Jacobi operator associated with minimal sub-

manifolds or Riemannian foliations see [D] [H] and [NTV].

§2. Isometric minimal immersions into HPn(c)

Let M be a submanifold of HF1^)
(1) M is called quaternionic if JTpMC TpM for all JE?Γp, p^M.
(2) M is called tota/Zy raz/ if JTPM1 TpM for all / G 2Γp, /? G M.
(3) M is called totally complex if there exists a one-dimensional subspace F

of 2ΓP such that /ΓpM C TPM for all / E V and /7>M X ΓPM for all J(ΞV±C?Γp,

p
Where 2Γ is a quaternionic Kahler structure of HPn(c), i.e., a rank 3
vector subbundle of End( Γ//Fι(c)) with the following properties:

(1) For each p E Q(c) there exists an open neighborhood U(p) of p and
sections Jl9 J2, J3 of 2Γ over HF1^) such that for all I E {1, 2, 3}:

(i) /? = -w, <ΛΛΓ, y> = - <^? J£Y)

(ii) JiJi+1 = Ji+2 = ~Jl+iJi(i mod 3)

(2) 2Γ is a parallel subbundle of
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THEOREM 4. Let φ, φ' be isometric minimal immersion of a compact
Riemmannian manifold (M, g) into quaternionic projective space (//P"(c), h).
Assume that Spec(/^) = Spec(/φ,). Ifφis totally real (resp. quaternionic), then so
is φ'.

Proof. Since φ and φ1 are isometric immersions, we have.

e(φ) = e(φ') = dim(M)/2

\\φ*h\\2= ||φ'*Λ||2 = dim(M).

Then, by Corollary 3, the condition Spec(/φ) = Spec(Jφ>) yields

f Σ|μ*φ,||2v,= f Σ \\Φ'*φt\\\-
J M t J M t

(i) If φ is totally real, i.e. | |0*Φ,| | 2 = O, (t= 1, 2, 3), then we have

| |φ'*Φ, | | 2 = 0, V*.

On the other hand, from the definition of Φf, we get
m

0= \\φ'*Φt\\2= Σ KKefiWe,)2

m

= Σ KPJ&ej, J&ej)
i

= Σ KPJtφ\ep PWej), Vί

JtΦ'^j = 0,7 = 1, . . . , m, Vί

<=> h(φ'mX, J&Y), for all X, 7 6 ΓM, Vί

<£> φ' is totally real

where {eh i = 1 . . . , m) is an orthonormal basis of TXM, XΈLM, dim(M) = m.
P is the orthogonal projection of Tφ>{x)N onto φ^T^M with respect to h.

(ii) If φ is quaternionic, then

Λ<kΓM C φJM, Vί.

Hence

ί Σ \\φ'*Φt\\\ = ί Σ lk*Φ,||2vg = 3mvol(M).
JM t JM t

On the other hand, since

0< ||φ'*Φ,||2= Σ KPJtφ'fy )

m

< Σ KhΦ\ep J&ej) = m, Vί
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we get, for each t

\\φ>*φtf = m
tφ'jej = Jtφίej, j = 1, . . . , m

r

Λ C φkΎxM, Vx e M.

Then φ' is also quaternionic.

3. Spectral characterization of harmonic Riemannian submersions

In this section, we study spectral characterization of harmonic Riemannian
submersions among the set of all harmonic morphisms.

A smooth map φ: M^>N is a harmonic morphisms if for every harmonic
function r on open subset U in N, v © φ is a harmonic function on φ~ι(U)
provided that φ~\U) Φ φ.

LEMMA 5 ([F] or [I]) (i). Ifdim(M) < dim(iV), every harmonic morphism is
constant.

(ii) // dim(M) > dim(N), a smooth map φ: (M, g)-»(iV, h) is a harmonic
morphism if and only if φ is horizontal weakly conformal and harmonic.

Here a smooth φ: (Λί, g)-*(N, h) is horizontal weakly conformal if (i) the
differential φ^x: TXM^> T^N is surjective at the point x with e(φ)(x) Φ 0, and
(ii) there exists a smooth function λ on M such that if e(φ)(x) Φ 0, the pull back
φ*h satisfies

φ*h(X, Y) = λ2(x)g(X, Y), Z j e / / ,

where Hx is the orthogonal complement of the kernel of the differential φ^x with
respect to gx, xE:M. It is known that the set {xEM: e(φ)(x) Φ0} is open and
dense in M and the function λ2 is given by

λ2 = 2e(φ)dim(N)-1

and \\φ*h\\2 = dim(N)λ4. A smooth map φ: (M, g)^>(N, h) is a Riemannian
submersion if it is horizontal weakly conformal with λ = 1, i.e., e(φ) = dim(JV)/2,
everywhere M.

Now we have

THEOREM 6. Let (M, g) be a compact Riemannian manifold whose scalar
curvature is constant φ, φ' be harmonic morphisms of (M, g) into (HF1, h) with
Spec(/^) = Spec(/0'). // φ is Riemannian submersion, then so is φf.

Proof. At each point XELM with e(φ)(x)Φ0, we can define a linear
transformation Jt of Hx into itself such that Jt ° φ φ = φ^ © Jt and Jf = - / , / = 1, 2,
3, where {7χ, 72> ^3} is a canonical basis of quaternionic Kahler structure of

Then
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g(Jtx, y) = o , i , y e HX, Vί
Λ ° Λ+i = Λ+i ° Λ = Λ+2> (* mod 3).

So we can choose {eh !&, J2eh J3eh i = 1, . . . , n} as an orthonormal basis of
(Hx, gx). Then we have

II^Φill 2 = Σ {Φ*Φi(eh e})
2 + 2φ*Φ1(ei, J^)2 + φ*Φ1(J1ei, J^)2

Iφtφ^, J2ej)2 + 2φ*Φ1(J1ei, /2e,)2 + φ*Φ1(J2ei, J#j?

2φ*Φ1(ei, J3ej)2 + 2φ*Φ1(J1ehJ3ei)
2 + 2φ*Φ1(J2ei, J2ej)2

= Σ {h(φteh φjiej)
2 + 2h(φteh φ^2

+ 2h(φmeh φj3ej)2 + 2h{φjxeh φj3e,)2 + h{φj2eh φj3e>>2

+ 2h(φteh φj2ej)2 + 2h{φjxeh φj2ejf + 2h(φj2eh φj2ej)2

+ h(φj3eh ΦM)2}

= \\Φ*h\\2.

Similarly, we have \\φ*Φ2\\2=\\φ*h\\2, \\Φ*Φ3f=\\φ*h\\2. Since Spec(7^) =
( ) and φ is a Riemannian submersion, then, by Corollary 3, we have

E(φ') = E(φ)

ί \2(3n + l\)c2e(φ')2 + n\\φ'*hf - (n - 4) Σ ||0'*Φ;||2]vg

= ί J2(3« + U)c2e(φ)2 + U\\φ*h\\2 - (« - 4) Σ

From these, we get

e(φ)
e(φ')

= 2«,\\φ*h\\2 = 4n

= 2nλ2, \\φ'*h\\2 = 4nλ4.

L
{

χ2 = ί vs
J M

J M

Therefore we get λ = 1 everywhere M by the Cauchy-Schwarz inequality.
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