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MEROMORPHIC FUNCTIONS THAT SHARE THREE SETS

HθNG-XUN Yl

Abstract

In this paper, we deal with the problem of uniqueness of meromorphic functions
that share three sets and obtain some unicity theorems which improve some theorems
given by F. Gross and C. F. Osgood, K. Tohge, G. Brosch, G. Jank and N. Terglane,
H. X. Yi and other authors.

1. Introduction and main results

By a meromorphic function we shall always mean a meromorphic function
in the complex plane C. It is assumed that the reader is familiar with the
notations of the Nevanlinna theory that can be found, for instance, in [1], Let h
be a nonconstant meromorphic function and let S be a subset of distinct elements
in C = CU {<*>}. Define

Eh(S) = U iz\h(z) - a = 0},
a<ΞS

where each zero of h(z) — a (or l/h(z) if a = °°) with multiplicity m is repeated
m times in Eh(S) (see [2]). The notation Έh(S) expresses the set which contains
the same points as Eh(S) but without counting multiplicities.

Let / and g be two nonconstant meromorphic functions and 5 be a subset of
distinct elements in C. If Ef(S) = EgiS), we say / and g share the set S CM
(counting multiplicity). If Ef(S) = Eg(S), we say / and g share the set S IM
(ignoring multiplicity). As a special case, let S= {a}_, where aE:C. If Ef({a}) =
Eg({a}), we say / and g share the value a CM. If Ef({a}) = Eg({a}), we say /
and g share the value a IM (see [3]).

In 1982, F. Gross and C. F. Osgood proved the following theorem.

THEOREM A [4]. Let 5i = {-l, 1}, 5 2={0}. If f and g are nonconstant
entire functions of finite order such that f and g share the sets S\ and S2 CM, then

Project supported by the National Natural Science Foundation of China.
1991 Mathematics Subject Classification. Primary 30D35, Secondary 30D30, 30D20.
Key words and phrases. Nevanlinna theory, meromorphic function, shared set, uniqueness

theorem.
Received April 16, 1996; revised August 20, 1996.

22



MEROMORPHIC FUNCTIONS THAT SHARE THREE SETS 23

In 1987, the present author [5] proved that in the preceding theorem the
order restriction of / and g can be removed and obtained the following result.

THEOREM B [5]. Let Sx = {-1, 1}, S2 = {0}, S3 = {«>}. / / / and g are non-

constant meromorphic functions such that f and g share the sets 57(/= 1, 2, 3)
CM, thenf=±gorf-g^±l.

In 1989, G. Brosch [6] also independently proved Theorem B.
Unless stated otherwise, in the following theorems,/and g are two nonconstant

meromorphic functions, St = {1, ω, . . . , of'1}, S2 = {0}, S3 = {<»}, where n is a
positive integer, ω denotes the constant cos(2π/n) + i $in(2π/n).

In 1988, the present author [7] and independently K. Tohge [8] proved the
following theorem which is an extension of the above results.

THEOREM C. Suppose thatf andgshare the sets Sj (7=1, 2, 3) CM. Ifn>2,
then

(i i) / - tg,

where tn = 1 or

(1-2) f g = s,

where 0 and oo are lacunary values of f and g, and sn = 1.

In 1990, the present author [9] gives a short proof of Theorem C.
In 1991, G. Jank and N. Terglane [10] proved the following theorem, which

is an improvement of Theorem C.

THEOREM D. Suppose that f and g share the sets Si and S2 CM and S3 IM. If
n>% then f and g satisfy (1.1) or (1.2).

In this paper, we prove the following results which are improvements and
supplements of the above theorems.

THEOREM 1. Suppose that f and g share the sets Sλ and S3 CM and S2 IM. If
n>2, then f and g satisfy (1.1) or (1.2).

THEOREM 2. Suppose that f and g share the sets Si CM and S2 and S3 IM. If
n > 3, then f and g satisfy (1.1) or (1.2).

THEOREM 3. Suppose that f and g share the sets S2 CM and S\ and S3 IM. If
n>6, then f and g satisfy (1.1) or (1.2).

THEOREM 4. Suppose that f and g share the sets S3 CM and S\ and S2 IM. If
n>6, then f and g satisfy (1.1) or (1.2).
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From Theorem 4 we immediately obtain the following:

COROLLARY. Suppose that f and g share the sets S2 and S3 CM and St IM. If
n>6, then f and g satisfy (1.1) or (1.2).

THEOREM 5. Suppose that f and g share the sets Sly S2 and S3 IM. If n > 7,
then f and g satisfy (1.1) or (1.2).

THEOREM 6. Suppose that f and g are two nonconstant entire functions such
that f and g share the sets 5χ and S2 IM. If n > 4, then f and g satisfy (1.1) or
(1.2).

2. Some lemmas

LEMMA 1 [3]. Let F and G be two nonconstant meromorphic functions such
that F and G share 1, 0, α> IM, then

T(r, F) = O(T(r, G)), T(r, G) = O(T(r, F)),

possibly outside a set of finite Lebesgue measure.

Remark. From Lemma 1, we can see that if F and G share 1, 0, °° IM, then
S(r^ G) = S(r, F). For simplicity, we denote them by S(r) in the following
discussion.

LEMMA 2 [11]. Let h be a nonconstant meromorphic function, then

N0(r, -~) ^ N(T, j j + N(r, h) + S(r, A),

where N0(r, I/ft') denotes the counting function corresponding to the zeros ofh!
that are not zeros of ft.

Remark. It is easy to give the proof of Lemma 2. In fact, let

(2.D H = £

No(r, 1 ) < N(T, j^j < T(r, H) + O(l) < N(T, jj + N(r, h) + S(r, h),

which proves Lemma 2.

Next, we introduce the following notations.
Let F and G be two nonconstant meromorphic functions such that F and G

share 1 IM. Let z0 be a 1-point of F of order p, a 1-point of G of order q. We
denote by Ns(r, l/(F- 1)) the counting function of those 1-points of F where
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p_<q\ NE(r, 1/(F- 1)) the counting function of those 1-points of F where p = q\
NL(r9 1/(F— 1)) the counting function of those 1-points of F where p>q\ each
point in these counting functions is counted only once. In the same way, we can
define Ns(r, 1/(G-1)), NE(ry 1/(G-1)) and NL(r, 1/(G-1)) (see [12] or
[13]). Particularly, if F and G share 1 CM, then

(2.2) %(,, ji-J - NL(r, ̂ ) - »,(,, ^ - NL(r, ̂ L _ ) > 0.

With these notations, it is easy to see that

LEMMA 3. Suppose that F and G are two nonconstant meromorphic functions
such that F and G share 1 IM, then

(2.6) NL(r, j±-^) < N(T, jj + N(r, F) + S(r, F),

(2.7) JVz.(r, ^ - j ) s ϊv(r, -^) + N(r, G) + S(r, G).

Proof Obviously,

From this and Lemma 2, we get (2.6). In the same way we can obtain (2.7).

Let

(2.8) F = fn and G = gn,

where / and g are nonconstant meromorphic functions, n > 2.

LEMMA 4. Lei

< 2 9 > f = F3l-^ΓΊ

F and G are given by (2.8). // ί/ = 0, and F and G share 0 /M, tfien F = G.

Proof. Since [7=0, by integration we have from (2.9)
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(2.10) F - 1 s A(G - 1),

where A is a nonzero constant. We discuss the following two cases.
Case 1. Assume that 0 is not a lacunary value of F. Then there exists z0

such that F(zo) = 0. Since F and G share 0 IM, we have G(z0) = 0. From (2.10)
we get A = l. Thus F= G.

Case 2. Assume that 0 is a lacunary value of F. Since F and G share 0 IM,
0 is a lacunary value of G. If A Φ 1, from (2.10) we know that 1 — A is a lacunary
value of F. Noting F=fn and n > 2 , we have

which is impossible. Thus, 1 — A = 0. From this we obtain F= G.

LEMMA 5. Suppose that U is given by (2.9) and UΦ 0. // F and G share 0
IM, then

(2.11) (n - 1) Jv(V, j ) < JV(r, t/) + S(r, F) + S(r, G).

Proof. Since F and G share 0 IM, we know that / and g share 0 IM. Let z0

be a zero of / of order /?, a zero of g of order g. Then z0 is a zero of F of order
np, a zero of G of order nq. From (2.9) we know that Zo is a zero of U of order
at least n - 1. From this we have

(2.12) (n - 1)

By (2.9) we have

m(r, U) = S(r, F) + 5(r, G).

Combining this and (2.12) we obtain (2.11).

LEMMA 6. Assume that conditions of Lemma 5 are satisfied.

(1) // F and G share 1 and oo CM, then

(2.13) (π - 1) N(T, J) = S(r).

(2) // F and G share 1 CM and oo IM, then

(2.14) (rc - 1) N(T, y ) < ff(r, F) + S(r).

(3) // F and G share 1 IM and oo CM, ίΛerc

(2.15) (n - 3) jv(r, j ) < 27V(r, F) + S(r).



MEROMORPHIC FUNCTIONS THAT SHARE THREE SETS 27

(4) // F and G share 1 and o° IM> then

(2.16) (π - 3) Jv(r, y ) < 3JV(r, F) + 5(r).

Proo/. (1) From (2.9) we have

N(r9 U) = 0.

From this and (2.11) we get (2.13).
(2) From (2.9) we have

JV(r, U) < JV(r, F).

From this and (2.11) we get (2.14).

(3) From (2.9) we have

(2.17) N(r, U) = NL(r, j ^ j + NL(r, ^-^j.

By Lemma 3 we can obtain (2.6) and (2.7). From (2.6), (2.7) and (2.17) we get

N(r, U) < 2N(r9 J) + 2N(r, F) + S(r).

From this and (2.11) we get (2.15).

(4) From (2.9) we have

(2.18) N(r, U) < JV(r, F) + NL(r, j ^

From (2.6), (2.7) and (2.18) we get

tf(r, U) < 2iv(r, y ) + 3ΪV(r, F)
From this and (2.11) we get (2.16).

LEMMA 7. Let

(219) V ( - - ) . ( )
( 2 1 9 ) κ

 V F - I F / \G-I GΓ

where F and G are given by (2.8). // V= 0, and F and G share oo IM, then F=G.

Proof. Since V = 0, by integration we have from (2.19)

(2.20) ! _ l . B _ i L ,
where B is a nonzero constant. We discuss the following two cases.
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Case 1. Assume that oo is not a lacunary value of F. Then there exists z0 such
that lϊF(zo) = 0. Since F and G share oo I M , we have llG(zo) = 0. From (2.20)
we get B = l. Thus F = G.

Case 2. Assuirie that °° is a lacunary value of F. Since F and G share oo IM,
oo is a lacunary value of G. If B Φ 1, from (2.20) we know that 1/(1 — B) is a
lacunary value of F. Noting F—f1 and rc>2, we have

θ(0, *) = — * *

which is impossible. Thus, # = 1. From this we obtain F ^ G.

LEMMA 8. Suppose that V is given by (2.19) and VΦ0. If F and G share oo
IM, then

(2.21) (Λ - 1) N(r9 F) < N(r, V) + 5(r, F) + 5(r, G).

/. Since F and G share oo IM, we know that / and g share oo IM. Let zo
be a pole of / of order /?, a pole of g of order <?. Then zo is a pole of F of order
np, a pole of G of order nq. From (2.19) we have

y _ F G'
F(F - 1) G(G - 1)'

From this we know that z0 is a zero of V of order at least n - 1 . Thus,

(2.22) (/ι - 1) #(r , F) < N(T, ~^j < Γ(r, V)

By (2.19) we have

m(ry V) = 5(r, F) + S(r, G).

Combining this and (2.22) we obtain (2.21).

Using Lemma 8 and proceeding as in the proof of Lemma 6, we can prove
the following lemma.

LEMMA 9. Assume that conditions of Lemma 8 are satisfied.
(1) // F and G share 1 and 0 CM, then

(2.23) (n - 1) N(r, F) = S(r).

(2) // F and G share 1 CM and 0 IM, then

(2.24) (n - 1) JV(r, F) < Jv(r, -^) + 5(r).

(3) // F and G s/wre 1 /M <md 0 CM, then

(2.25) (π - 3) N(r, F) < 2N(T, jj + S(r).
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(4) // F and G share 1 and 0 lMy then

(2.26) (n - 3) N*r, F) < 3Jv(r, j ) + S(r).

LEMMA 10 (see [13] or [14]). Let F and G be two nonconstant meromorphic
functions such that F and G share 1 IM. If

N(T, jj + N(r, F) = S(r, F) and N(T, j^} + #(r, G) = S(r, G),

then F ^ G o r F G - 1 .

Remark. From Lemma 10 we immediately deduce the following result:
Suppose that F and G are given by (2.8), and F and G share 1, 0 and oo IM.

If

(2.27) N(T, i ) + JV(r, F) = S(r),

then / = t g, where tn = 1 or /• g = s, where 0 and oo are lacunary values of / and
g, and sn = 1.

This observation will be used in several proofs of our Theorems.

3. Proof of main results

3.1. Proof of Theorem 1. Let F and G be given by (2.8). If F = G, then
/ = tg, where f1 = 1. Thus, Theorem 1 holds. Next, we suppose FΦG. Since/
and g share the sets 5i and 53 CM and S2 IM, we know from (2.8) that F and G
share the values 1 and oo CM and 0 IM. Let U and V be given by (2.9) and
(2.19) respectively. Noting FΦG, by Lemma 4 and Lemma 7 we have UΦ 0 and
VΦO. By Lemma 6 and Lemma 9 we can obtain (2.13) and (2.24). Noting n >
2, from (2.13) and (2.24) we can obtain (2.27). By Lemma 10 we obtain the
conclusion of Theorem 1.

3.2. Proof of Theorem 2. Let F and G be given by (2.8). If F = G, then
/=ίg, where ίn = l. Thus, Theorem 2 holds. Next, we suppose F ^ G . Since/
and g share the sets S2 and S3 IM and Si CM, we know from (2.8) that F and G
share the values 0 and oo IM and 1 CM. Let U and V be given by (2.9) and
(2.19) respectively. By Lemma 6 and Lemma 9 we can obtain (2.14) and
(2.24). Noting n > 3, from (2.14) and (2.24) we can obtain (2.27). By Lemma
10 we obtain the conclusion of Theorem 2.

3.3. Proof of Theorem 3. Let F and G be given by (2.8). If F=G, then
/ = tg, where tn = 1. Thus, Theorem 3 holds. Next, we suppose FΦG. Since/
and g share the sets 5i and 5 3 IM and 5 2 CM, we know from (2.8) that F and G
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share the values 1 and °° IM and 0 CM. Let U and V be given by (2.9) and
(2.19) respectively. By Lemma 6 and Lemma 9 we can obtain (2.16) and
(2.25). Noting n> 6, from (2.16) and (2.25) we can obtain (2.27). By Lemma
10 we obtain the conclusion of Theorem 3.

3.4. Proof of Theorem 4. Let F and G be given by (2.8). If F= G, then
/ = tg, where tn = l. Thus, Theorem 4 holds. Next, we suppose FΦG. Since/
and g share the sets St and S2 IM and S3 CM, we know from (2.8) that F and G
share the values 1 and 0 IM and o° CM. Let U and V be given by (2.9) and
(2.19) respectively. By Lemma 6 and Lemma 9 we can obtain (2.15) and
(2.26). Noting rc>6, from (2.15) and (2.26) we can obtain (2.27). By Lemma
10 we obtain the conclusion of Theorem 4.

3.5. Proof of Theorem 5. Let F and G be given by (2.8). If F = G, then
f=tg, where tn = l. Thus, Theorem 5 holds. Next, we suppose FΦG. Since/
and g share the sets Sx, S2 and S3 IM, we know from (2.8) that F and G share
the values 1, 0 and <*> IM. Let U and V be given by (2.9) and (2.19) respectively.
By Lemma 6 and Lemma 9 we can obtain (2.16) and (2.26). Noting n > 7 ,
from (2.16) and (2.26) we can obtain (2.27). By Lemma 10 we obtain the
conclusion of Theorem 5.

3.6. Proof of Theorem 6. Let F and G be given by (2.8). If F = G, then
/ = tg, where tn = l. Thus, Theorem 6 holds. Next, we suppose FΦG. Since/
and g are nonconstant entire functions such that / and g share the sets Si, S2 IM,
we know from (2.8) that F and G are nonconstant entire functions such that F
and G share the values 1 and 0 IM. Let U and V be given by (2.9) and (2.19)
respectively. By Lemma 6 we can obtain

(3.1) (n - 3) N(T, J) = S(r).

Noting rc>4, from (3.1) we can obtain (2.27). By Lemma 10 we obtain the
conclusion of Theorem 6.

4. Concluding Remarks

4.1. Remark 1. In the same manner as the above, it is easy to give the
proofs of Theorem C and Theorem D. Next we proceed to prove Theorem D.

Let F and G be given by (2.8). If F= G, then / = tg, where tn = 1. Thus,
Theorem D holds. Next, we suppose FΦG. Since/and g share the sets St and
S2 CM and S3 IM, we know from (2.8) that F and G share the values 1 and 0
CM and oo IM. Let U and V be given by (2.9) and (2.19) respectively. By
Lemma 6 and Lemma 9 we can obtain (2.14) and (2.23). Noting n > 2 , from
(2.14) and (2.23) we can obtain (2.27). By Lemma 10 we obtain the conclusion
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of Theorem D.

4.2. Remark 2. It is clear that Theorem 1 follows from Theorem D by
letting /—»IIf and g—> II g, that Theorem D follows from Theorem 1 by letting
/—»1// and g—»II g. Thus, Theorem D and Theorem 1 are equivalent to each
other. Similarly, Theorem 3 and Theorem 4 are equivalent to each other, and
also Lemma 6 and Lemma 9.

4.3. Remark 3. Let f(z) = l-3ez + 3e2z - e3z and g(z) = 3e'z - 3e~2z. It
is easy to see that this example shows that the assumption "n > 2" in Theorem 1
is best possible. However, whether the assumption "n > 3" in Theorem 2, the
assumption "rc>6" in Theorem 3, Theorem 4 and its corollary, the assumption
"n > 7" in Theorem 5, the assumption "n > 4" in Theorem 6 are best possible or
not, is still an open question to be resolved.

Acknowledgement. I am grateful to the referee for valuable suggestions
and comments.
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