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1. Introduction

Let M and N be compact connected Riemannian manifolds. We say M is
isospectral to N if the associated Laplace Beltrami operator have the same
eigenvalue spectrum. Does the spectrum of M determine the Riemannian
structure of the manifold? Milnor [5] gave first counter example for the problem,
16-dimensional tori which are isospectral but not isometric. Many examples have
appeared in the past decade. For recent references, refer to [2].

In [3] and [4], we gave many examples of isospectral non-isometric spherical
space forms, lens spaces in [3] and spherical space forms with non-cyclic funda-
mental groups of type I in [4]. There are another space forms of Riemannian
symmetric spaces. Let G, ,(R) be the real Grassmann manifold consisting of all
g-dimensional linear subspaces of R". Note that the dimension of G, ,.(R) is
q(n—q). In this paper we consider space forms I'\\G, .(R) for constructing
isospectral non-isometric examples. The space forms of real Grassmann manifolds
are classified by Wolf in [7]. There are only a few even dimensional space forms
I'\G,, .(R), so in this paper we consider odd dimensional space forms
I'’\G,24(R) where q is odd. The classification states that there is a one to one
correspondence of odd dimensional spherical space forms I'\S**~! and odd
dimensional space forms of real Grassmann manifolds I'\G, 24(R), I'C O(2d)
(there are more space forms of real Grassmann manifolds when g =d). The
correspondence is given by I'\§?¢~! I \Gyg,24(R).

We raised the following question;

For isospectral spherical space forms TY\S**"!, I\$**"! given in [3] or
[4], corresponding space forms I'\G,4(R), I2\Gg24(R) are isospectral?

The main result in this paper is that the above question is yes in cases I, I3
are non-cyclic fundamental groups of type I given in [4].

THEOREM 5. Let I1\Gy24(R) and I3\ G, 24(R) be odd dimensional space
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forms of real Grassmann manifolds with non-cyclic fundamental groups of type I
and I, I, C O (2d). Suppose I'y and I, are irreducible and T is isomorphic to
I. Then I't \Gy 24(R) is isospectral to I\ G, »4(R).

2. Isospectral manifolds

In [6] Sunada gave a method of a general construction for isospectral
manifolds. In this section we give a variation of Sunada’s Theorem for constructing
isospectral space forms of real Grassmann manifolds.

Let M be a compact Riemannian manifold and A the Laplacian acting on
the space of smooth functions on M. We denote E,(M) the eigenspace with
eigenvalue A of A. Let I(M) be the isometry group of M. Let G be a finite
subgroup of I(M). We say G is fixed point free if for each g(# identity) €G, g
acts fixed point freely on M. For a fixed point free finite group G, we have a
smooth compact Riemannian manifold G\ M with induced metric from M. Let
G, and G; be finite subgroups in I(M). We say G; is almost conjugate to G, if
there is a bijection ¢ of G; onto G, satisfying that ¢(g) is conjugate to g in I(M)
for each g € G;.

THEOREM 1. Let Gy and G, be finite fixed point free subgroups of I(M).
Suppose G, is almost conjugate to G,. Then G{\M is isospectral to G,\ M.

Proof. We consider E;(M) as a representation space of I(M).
7 : I(G) »> Aut(Ey(M))
We denote E4(M)(i=1, 2) the subspace of E;(M) consisting of functions fixed

by the G;. Then the elgenspace E;(G:\M) (resp. E;(Go\M)) can be naturally
identified with E}(M) (resp. EA(M)) Then

dim E4(M) = >, Trace(m(g)) (i=1,2).

IGlg

Let ¢ be an almost conjugate map of 61 onto G,. Since g is conjugate to ¢(g),
we have

Trace (7(g)) = Trace (7(¢(g)))-
Thus
dim E}(M) = dim E3(M),

which means
dim E;(G,\M) = dim E;(G>\M). O



SPACE FORMS OF REAL GRASSMANN MANIFOLDS 3

3. Spherical space form with non-cyclic fundamental groups of type I

In this section, we review spherical space forms with non-cyclic fundamental
groups of type I according to [7] and describe the pairs of almost conjugate non-
cyclic groups of type I obtained in [4]. '

DErNiTION 1. A finite subgroup G of the orthogonal group O(n) is said to
be fixed point free if for any g € G(g +# 1,,)g has not 1 for eigenvalue. A finite
fixed point orthogonal representation of a finite group is fixed point free if it is
faithful and its image is a fixed point subgroup of the orthogonal group. A finite
group K is said to be fixed point free if K has a finite fixed point free orthogonal
representation.

The following proposition is a fundamental property for the classification
program of spherical space forms.

ProposiTioN 1(See [7]).: Let K be a finite fixed point free group. Let m
and m, be fixed point free representations of degree 2d. Then the spherical space
forms m(K)\S*~! is isometric fo m(K)N\S* if and only if my is equivalent
to 7, modulo automorphisms of K.

A finite fixed point free group G is said to be of type I if all the Sylow
subgroups of G are cyclic. A finite fixed point free group of type I is not so
special becourse of the following.

Prorosition 2 (See [7]). The fundamental group of every (4k + 1)-dimensional
spherical space form is of type I.

For any integer m, K,,, denotes the multiplicative group of residue classes
modulo m of integers prime to m. The order of K,, is denoted by ¢(m), so
called Euler function. For two integers a and b, we denote by (a, b) the greatest
common divisor of a and b.

We describe finite fixed point free groups of type 1. Let m, n, d, n’ and r be
positive integers satisfying

(r=—1)n,m) =1,
r* =1 (mod m),
1) d is the order of the residue class of r in K,,,,
n = n'd,
n' is divisible by any prime divisor of d.

For such integers m, n, d, n’ and r, we have the finite group I';(m, n, r) of

order N =mn generated by two elements A and B with defining relations

() A™ = B" = 1and BAB™! = A".



4 AKIRA IKEDA
Remark. The following four conditions are equivalent for the I'y(m, n, r)
(@) I'(m, n, r) is cyclic, (i) A =1, (iii) r=1 (mod m), and (iv) d=1. ]
We define automorphisms of I;(m, n, r). Whenever s, ¢ and u are integers
with (s, m)=1=(t, n) and t=1 (mod d), we put
3) Ys,,u(A) = A° and vy, (B) = B' A,

Then we can see easily v, , defines an automorphism of I'y(m, n, r).

PropositioN 3 (see [7]). Let K=TI4m, n, r), and let R(6) denote the
rotation matrix on the plane;

@ R(®) = (

Given integers k, | with (k, m)=1=(l, n), let m, be the representation of
degree 2d of K defined by

cos 20 sin 2m9>
— sin 270 cos 276/)°

R(k/m) 0 0
®  omaay=| R ;
0 0 R(kr*=m)
and
0 I 0 .. 0
0 w1 0
(6) T, (B) = e 0
: P I
R(n'y 0 - 0 0

where each matrix is a block matrix consisting of 2 X 2-matrices, I is the unit
2 X 2-matrices and all other components are zero. Then the m; is irreducible
and a real representation of K is fixed point free if and only if it is equivalent to
a sum of these representations m ;. 7 is equivalent to my p if and only if there
exist numbers e=*1 and ¢c=0, 1, ..., d—1 such that k' =kr° (mod m) and

"=el(modn') . my; o Ys,, is equivalent to wy 4 where v, , is the automorphism
of K.

Remark. Any irreducible fixed point free representation of I';(m, n, r) has
the same degree 2d. O

The following two Lemmas are obtained in [4]. Their proofs are necessary
for constructing explicit examples of isospectral non-isometric space forms of
real Grassmann manifolds. So we give their proofs.

LemMA 1(See [4]). Let K=TI4m, n, r) be a finite fixed point free group of
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type I with n' = d. Then the number of isometry classes in (2d — 1)-dimensional
spherical space forms with the same fundamental groups K is at least 2 if and only
ifd=5o0r d>6.

Proof. Let m;; and m. ; be fixed point free representations of K. Then 7
is equivalent to ;' modulo automorphisms if and only if there exists an integer
t with (¢, n) =1, t=1 (mod d) and ¢= xt¢’ (mod n’'). Since n' = d, the number
of isometry classes in (2d — 1)-dimensional spherical space forms with the funda-
mental groups K is ¢(d)/2. Let d = p® p® ... p* be the prime decomposition of
d. It is well known that

¢(d) = (p — p* (™ - p7Y) ... (% - p*7Y).

From this formula, it is easy to see that ¢(d)/2=2 if and only if d =5 or d > 6.
o

Remark. The proof of Lemma 2.5 in [4] is incorrect.

LemMma 2 (See [4]). For fixed d=2, there are infinitely many finite fixed
point free groups I,(m, n, r) of type I with n' =d.

Proof. It is well known that there are infinitely many prime numbers of the
form kd + 1. Let m=kd + 1 be a prime number. Then K,, is a cyclic group of
order kd. So there exists an integer r whose order in K,, is d. Put n=d?, then
we have a finite fixed point free group of type I, I'y(m, n, r) = Iy(m, d?, r).0

THEOREM 2. Let G, G’ be finite fixed point free non-cyclic groups of type 1
in O(2d). Suppose G, G’ are irreducible and that G is isomorphic to G'. Then G
is almost conjugate to G'.

Proof. By Proposition 3, G, G’ are isomorphic to a finite fixed point free
group I';(m, n, r). We may assume G = m «K) and G' = m; 1(K), where m;;
and m;  are fixed point free representations of K as in Proposition 3. We define
the map ¢ of G into G’ by

$(m,/A°BY) = Pp(m1(A°BY)).

Then ¢ is clearly one to one onto map. Then by the proof of Theorem 1 in [7],
for each g € G the characteristic polynomial of g is identical to the characteristic

polynomial of ¢(g);
Q) det(zlyy — g) = det(zla — $(8))-
This means that g is conjugate to ¢(g) in O(2d). o

Combining Lemma 1, Lemma 2 and Theorem 2, there are many pairs of
almost conjugate but not conjugate non-cyclic groups of type 1.
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4. 0Odd dimensional space forms of real Grassmann manifolds which are
isospectral but not isometric

The classification of space forms of real Grassmann manifolds is obtained in
[7]. Let n and q be integers with n =4, 0< g <n. Then G, ,(R) denotes the real
Grassmann manifold over R of all g-dimentional linear subspaces of R". The
orthogonal group O(n) acts naturally on G, ,(R). Furthermore we always have
an isometry f:

() B : Ggu(R) = Gugn(R) by  B(P) =P

In particular, B € I(G4,24(R)). There are only a few space forms of real Grassmann
manifolds in even dimension, so we consider odd dimensional space forms
I'\\G, »(R). Since the dimension of I'\\G, ,(R) is g(n — q), we denote an odd
dimensional real Grassmann manifold by G, ,,(R) where ¢ is odd.

TueoreM 3 (See [7]). The isometry group I(G,,4(R)) of odd dimensional
real Grassmann manifold G, »4(R) is

_ [0@d) if g4,
1(Gg24(R)) = {0(2d) Up-0Q@2d) ifg=d.

THEOREM 4 (See [7]). Let M be an odd dimensional real Grassmann manifold.
Then the isometry classes of manifolds I'\\M, I'€ O(2d), are in one to one
correspondence with the isometry classes of (2d — 1)-dimensional spherical space

forms. The correspondence is given by IN\\M— I'\\$?¢71,

By Theorem 3 and Theorem 4, if g # d then the isometry classes of odd
dimensional space forms I"\\G, »4(R) are in one to one correspondence with the
isometry classes of spherical space forms I'\S>*~L. If g =d, there are another
space forms I'\\G 24(R) with I' not containing in O(2d). For details, see [7]. In
this paper, we consider only I'\G,24(R) with I'C O(2d).

Combining Theorem 1, Theorem 2 and Theorem 4, we have

THEOREM 5. Let I''\G,24(R) and I;\G, 24(R) be odd dimensional space
forms of real Grassmann manifolds with non-cyclic fundamental groups of type 1
and I, I, C O(2d). Suppose I'y and T, are irreducible and I is isomorphic to
I;. Then I7\Gy24(R) is isospectral to I';\Gg24(R).

THEOREM 6. Let I''\G,24(R) and I\ G, 24(R) be odd dimensional space
forms of real Grassmann manifolds with non-cyclic fundamental groups of type 1
and Iy, I, C O(2d). Suppose I is isomorphic to I, and d is odd prime. Then
I''\\G,24(R) is isospectral to I, \G, 24(R).

Proof. 1f d is odd, then 2d —1=1 (mod 4). Combining Proposition 2 with
Theorem 4, Iy, I, are of type 1. Moreover if d is odd prime and I, I, are not
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cyclic, then I, I, are irreducible by Proposition 3. Hence by Theorem 5, we
have I';\\G, 24(R) is isospectral to I\ Gy 24(R). o

Combining Theorem 5 with Lemma 1 and Lemma 2, we have

THEOREM 7. Let d=15 or d>6 and let q be an odd number with 1 <q=d.
For fixed such integers d and q, there are infinitely many pairs of space forms
I''\G4,24(R), I;\Gy,24(R) which are isospectral but not isometric.

5. Examples

Using proofs of Lemma 1 and Lemma 2, We can easily construct explicit
examples of pairs of space forms of real Grassmann manifolds which are isospectral
but not isometric. Here we give two examples.

(1)d=5and g=3, 5.
Put K= F5(11, 25, 3), Fl =711 (K) and Fz = Jtl,Z(K)'
Then I'1\G,,10(R) is isospectral to I3\ Gg,10(R) (g9=3, 5).

(2)d=7and ¢=3,5, 7.
Put K= F7(29, 49, 4), Fl = Jl'l,l(K), Fz = ﬂl’z(K) and F3 = .7171’3(K).
Then the three space forms of real Grassmann manifolds I'1\Gg,14(R), >\
G, 14(R) and I3\ G, 14(R) (q =3, 5, 7) are mutually isospectral but not isometric
to each other.
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