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ON THE JULIA DIRECTIONS OF THE VALUE

DISTRIBUTION OF HOLOMORPHIC CURVES IN Pn(C)

ZHEN-HAN T U

Abstract

The generalized Picard theorem [4] asserts that any non-constant holo-
morphic map f of C into P n ( C ) misses at most 2n hyperplanes in Pn(C) in
general position. In this paper we shall prove that for a transcendental
holomorphic map f of C into Pn(C) with an asymptotic value in Pn(C),
there exists a ray J(θ)={z=re^τ7ΐθ : 0<r<-h°°} such that /, in any open
sector with vertex z—0 containing the ray /(#), misses at most 2n hyper-
planes in Pn(C) in general position.

1. Introduction

Let f{z) be a non-constant meromorphic function on C. We regard / as
a holomorphic curve in the Riemann sphere P{C) by identifying P(C) with
CU {oo}. Picard proved that / misses at most two values in P{C). Using the
theory of the normal family, G. Julia [5] proved the following result.

THEOREM A. Let f{z) be a transcendental entire function on C. Then
there exists a ray J{θ)—{z=-re^z:τθ : 0 < r < + oo} such that f, in any open sector
with vertex z=Q containing the ray J(θ), misses at most one value in C.

H. Milloux [6] generalized Theorem A to meromorphic functions on C and
proved the following result.

THEOREM B. Let f(z) be a transcendental meromorphic function on C with
an asymptotic value in P(C). Then there exists a ray J(θ)= {z=re^':rTe : 0 < r < + °o}
such that f, in any open sector with vertex z—0 containing the ray J(θ), misses
at most two values in P{C).

The ray J{θ) in Theorem A or Theorem B is called a Julia direction of /.
Since a transcendental entire function always has an asymptotic value oo in
P(C), Theorem B is a generalization of Theorem A. We must note that not
every transcendental meromorphic function has a Julia direction. In fact,
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A. Ostrowski [9] ever gave a transcendental meromorphic function on C with no
Julia direction. Thus the condition that / has an asymptotic value in Theorem
B can not be removed.

Thereafter up to the present, there are many detail researches about the
Julia directions (such as [1], [2] and [12]). But all of these studies have been
restricted to the entire and meromorphic functions on the complex plane. Its
higher dimensional counterpart seems to have been overlooked before.

In this paper, we shall prove the existence of the Julia directions of some
holomorphic curves in Pn(C). We use here standard notations of the theory
of holomorphic curves in Pn(C), see, e.g., [8] and [11].

2. Main result

A holomorphic curve / : C-+Pn(C) is called an entire holomorphic curve in
Pn(C). We say that an entire holomorphic curve / has an asymptotic value in
Pn(C) if there exist a continuous path: z—z(t) ( 0 ^ ί < l ) satisfying lim ί^i^(0=°o

and a reduced representation f(z)=(fo(z),f1(z), ~, fn(z)) such that \imM ft(z(t))
— ax (O^i^n) with the property that (a0, aίy •••, an) induces a point in Pn(C).
We must note that if / has another reduced representation f(z)=(go(z), gι(z),
••-, gn(z)) such that limt->i gt(z(t))=bi (O^i^n) exist and biQφ0 for some iQ, then
(dot a>u ~ , dn) and (b0, b1} •••, bn) induce the same point in Pn(C). If n = l , then
the definition of the asymptotic value of holomorphic curve in Pn(C) is the same
as that of meromorphic function on C.

The generalized Picard theorem [4] asserts that a non-constant entire holo-
morphic curve / misses at most 2n hyperplanes in Pn(C) in general position
(the result was considerably extended in [7] and [10]). In this paper, we shall
prove the following main result.

THEOREM 1. Let f(z) be a transcendental entire holomorphic curve with an
asymptotic value in Pn(C). Then there exists a ray J(θ)= {z=reyzΓΪΘ: 0 < r < + °°}
such that f, in any open sector with vertex z=0 containing J(θ), misses at most
2n hyperplanes in Pn(C) in general position.

We call J(θ) in Theorem 1 to be a Julia direction of holomorphic curve /.

3. Some lemmas

At first, we give some notations concerning the normal family of holomorphic
curves in Pn(C) (see [3] for reference).

Let F be a family of holomorphic curves of a domain U in C into Pn(C).
We call F to be normal in U if any sequence in F contains a subsequence
{fip)(z)} such that each fm(z) has a reduced representation

/ ( p )(s)=(/ip )(s), fϊv)(z), - , ftfKz))
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in U and \f\p){z)} (O^i^n) converges uniformly on compact subsets of U to a
holomorphic function ft(z) (O^i^n) with (fo(z),fi(z), -•-, fn(z))Φΰ everywhere
in U. This means that (fo(z), fι(z), •••, fn(z)) induces a holomorphic curve of
U into Pn(C). We should note the following basic fact (see (3.2) in [3] for
reference): If there exists another reduced representation

?ipKz)=(gip\z
in U such that

p-*oo

exist and (go(z), gx(z), •••, gn(z))Φθ everywhere in U, then (/<>(*), fx{z), •••, /„(*))
and (go(z), gi(z), •••, ̂ ^(2)) induce the same holomorphic curve of U into Pn(C).
We call F to be normal at a point £ in U if F is normal in some neighborhood
of p in U.

LEMMA 1. Let F be a family of holomorphic curves of a domain U in C
into Pn(C). If F is normal at every point in U, then F is normal in U.

Proof of Lemma 1 follows from the following method: Let {Ei\ be a
sequence of compact subsets of U which satisfies the conditions:

a. If K is a compact subset of U, then K is contained in some Eτ.

b. t / = u r - i £ * .
For any sequence in F, by the Heine-Borel finite covering theorem and diagonal
method we can take a subsequence which converges uniformly on each E% to a
holomorphic curve of U into Pn(C). We obtain Lemma 1.

LEMMA 2. Let F be a family of holomorphic curves of U into Pn(C). If
there exist 2n + l hyperplanes in Pn(C) in general position such that every holo-
morphic curve in F omits these 2n + l hyperplanes, then F is normal in U.

Lemma 2 is a well-known basic result. In fact, combining (1.5.8) and
(1.8.9) in [8], we immediately have Lemma 2.

LEMMA 3. Let f{z) be an entire holomorphic curve in Pn{C) with an
asymptotic value a in Pn(C). If the sequence {f(2nkz)\ converges uniformly on
compact subsets of l / 2 < | z | < 4 to a holomorphic curve g(z) of l / 2 < | z | < 4 into
Pn(C), then g{z)~a in l / 2 < | z | < 4 .

Proof of Lemma 3. Let z=z(t) (0^ί<l) be a continuous path on C satis-
fying limί^i^(ί)=o° and \imt^if(z(t))=a.

For a given r (l/2<r<4), let

Sr={z(=C: \z\=r\.

Then there exist {ίj (0<ίχ<ί 2< ••• <1 and lim^ooί* = l) and {zk\dSr such that
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z(tk)=2n*zk (k=l, 2, •••)• Thus we have

\imf(2n*zk)=limf(z(tk))=a .
fe-»oo yfe-*oo

without loss of generality, we assume limbec Z£=z0 (^5 r ) . Since
converges uniformly on compact subsets of 1/2< |^ |<4 to g(z), we have

g(zo)=\imf(2n>zk)=a.

Since r is arbitrary in l /2<r<4, by the uniqueness theorem of meromorphic
functions in one variable we get g(z)=a in l/2<\z\<4. Lemma 3 is proved.

LEMMA 4. Let f(z) be a transcendental entire holomorphic curve in Pn(C)
with an asymptotic value a in Pn(C). Then the sequence of holomorphic curves
{f(2nz)\ of the domain l/2<\z\<4 into Pn(C) is not normal in l / 2 < | z | < 4 .

Proof of Lemma 4. Let 5=(α 0 , au •••, an) and f(z)=(fo(z), f^z), •••, fn(z))
be reduced representations of a and f(z) in C respectively. Then we have
some alQφ0 and then flQ(z)^O in C. Since f(z) is a transcendental entire
holomorphic curve, there exists some fJo(z) (O^jo<n) such that fjo(z)/flQ(z) is a
transcendental meromorphic function on C.

I . We assume that fjQ(z)/fto(z) has no pole point in R<\z\<^ for some
R>0. If \f{2nz)} is normal in l / 2 < | z | < 4 , then there exists a subsequence
{f(2nkz)\ which converges uniformly on compact subsets of l / 2 < | z | < 4 to a
holomorphic curve of l / 2 < | z | < 4 into Pn(C). By Lemma 3 we have

lim/(2n*s)==α

in l / 2 < | z | < 4 . Then we have

in 1/2< | 2 | < 4 . Thus we can easily get that the holomorphic function fJo(z)/fH(z)
in R<\z\ <oo is uniformly bounded. Since fJo(z)/ftQ(z) on C is a transcendental
meromorphic function, this is a contradiction.

Π. We assume that there exists {zk\dC such that

* = oo and fJo(zk)/fι(zk)=oo.

Then there exists a subsequence

{fJo(2n»z)/fH(2n*z)}

defined in l / 2 < | z | < 4 such that every fH{2nkZ)/fH{2nkZ) (^=1,2, •••) has at
least one pole point pk in l ^ | z | ^ 2 .

If {/(2n^)} is normal in l / 2 < | z | < 4 , without loss of generality we assume
that {f(2n*z)\ converges uniformly on compact subsets of l / 2 < | z | < 4 to a
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holomorphic curve of l/2<\z\<4 into Pn(C) and limJfc-Oo0*=2o ( l ^ k o l ^ 2 ) . By
Lemma 3 we have \imk^oof(2nkz)=a in l/2<\z\<4. Then {/(2n*s)} converges
uniformly on compact subsets of l / 2 < | z | < 4 to the point a in Pn(C). So we
have

/ ( ί * )

But on the other hand we have

fjo(2nkPk)/Ao(2n*pk)=™ ( f e = l , 2, •••)

and aJo/alQ is finite. This is a contradiction. Hence we get Lemma 4.

4. Proof of Theorem 1

By Lemma 4, we have that {f(2nz)\ is not normal in l/2<\z\<4. By
Lemma 1 there exists at least a point z0 in l/2<\z\<4 such that \f(2nz)} is
not normal at z0.

Considering any a small disc Dr(z0)= {z<=C : | z — z 0 | O } in l/2<\z\<4, by
Lemma 2 we have that there exist at most 2n hyperplanes in Pn(C) in general
position such that every holomorphic curve f(2nz) defined in Dr(z0) misses these
2n hyperplanes.

Since
{f(2nz): \z-zo\<r\

= {f(z):\z-2nz0\<2nr\

C {f(z): I arg z—arg z01< arcsin(r/ \z0|)},

we have that /(z), in any open sector with vertex z=Q containing J(θ0):
= {z^re^^βo: 0 < r < + co} where ^o^arg^o, misses at most 2n hyperplanes in
Pn(C) in general position.

We obtain Theorem 1.

Remark. Let f(z) be an entire holomorphic curve in Pn(C) with a finite
positive order. If the order of Nf(H, r) where H is a hyperplane in Pn(C) is
less than the order of f(z), then H is called a Borel exceptional hyperplane.
By the main result in [7] or [10] we have that f(z) has at most 2n Borel
exceptional hyperplanes in Pn(C) in general position. We call J(θ0) to be a
Borel direction of f(z) if f(z), in any open sector with vertex z—0 containing
the ray J(θ0), has at most 2n Borel exceptional hyperplanes in Pn{C) in general
position. A more interesting problem is to prove the existence of the Borel
directions of some holomorphic curves in Pn(C).ι
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