ON THE ORDER OF HOLOMORPHIC CURVES WITH MAXIMAL DEFICIENCY SUM

Nobushige Toda

1. Introduction

Let

$$
f: \boldsymbol{C} \rightarrow P^{n}(\boldsymbol{C})
$$

be a holomorphic curve from \boldsymbol{C} into the n-dimensional complex projective space $P^{n}(\boldsymbol{C})$, where n is a positive integer, and let

$$
\left(f_{1}, \cdots, f_{n+1}\right): \boldsymbol{C} \rightarrow \boldsymbol{C}^{n+1}-\{\mathbf{0}\}
$$

be a reduced representation of f. We then write $f=\left[f_{1}, \cdots, f_{n+1}\right]$.
For a vector $\boldsymbol{a}=\left(a_{1}, \cdots, a_{n+1}\right)$ in \boldsymbol{C}^{n+1}, we write

$$
(\boldsymbol{a}, f)=\sum_{j=1}^{n+1} a_{\jmath} f_{\rho} \quad \text { and } \quad\|\boldsymbol{a}\|=\left\{\sum_{j=1}^{n+1}\left|a_{\jmath}\right|^{2}\right\}^{1 / 2},
$$

and put

$$
\|f(z)\|=\left\{\sum_{j=1}^{n+1}\left|f_{j}(z)\right|^{2}\right\}^{1 / 2} .
$$

Then we define as usual the characteristic function of f as follows.

$$
T(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\|f\left(r e^{i \theta}\right)\right\| d \theta-\log \|f(0)\|
$$

In addition, put

$$
U(z)=\max _{1 \leqq \jmath \leqq n+1}\left|f_{j}(z)\right|
$$

then

$$
U(z) \leqq\|f(z)\| \leqq(n+1)^{1 / 2} U(z)
$$

and we have

$$
\begin{equation*}
T(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log U\left(r e^{i \theta}\right) d \theta+O(1) \quad \text { (see [1]). } \tag{1}
\end{equation*}
$$

We suppose that f is transcendental ; that is to say,
Received August 19, 1994.

$$
\lim _{r \rightarrow \infty} \frac{T(r, f)}{\log r}=+\infty .
$$

We denote the order of f by $\rho(f)$ and the lower order of f by $\mu(f)$, respectively:

$$
\rho(f)=\lim _{r \rightarrow \infty} \sup \frac{\log T(r, f)}{\log r} \text { and } \mu(f)=\liminf _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r} .
$$

It is said that f is of regular growth if $\rho(f)=\mu(f)$.
We write for $\boldsymbol{a}=\left(a_{1}, \cdots, a_{n+1}\right)$ in $\boldsymbol{C}^{n+1}-\{0\}$ such that $(\boldsymbol{a}, f) \not \equiv 0$

$$
m(r, \boldsymbol{a}, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{\|\boldsymbol{a}\|\|f\|}{|(\boldsymbol{a}, f)|} d \theta \quad \text { and } \quad N(r, \boldsymbol{a}, f)=N\left(r, \frac{1}{(\boldsymbol{a}, f)}\right) .
$$

Then we have

$$
\begin{equation*}
T(r, f)=N(r, \boldsymbol{a}, f)+m(r, \boldsymbol{a}, f)+O(1) \tag{2}
\end{equation*}
$$

(the first fundamental theorem (see [13], p. 76)).
We call the quantity

$$
\begin{aligned}
\delta(\boldsymbol{a}, f) & =1-\lim _{r \rightarrow \infty} \sup \frac{N(r, \boldsymbol{a}, f)}{T(r, f)} \\
& =\liminf _{r \rightarrow \infty} \frac{m(r, \boldsymbol{a}, f)}{T(r, f)}
\end{aligned}
$$

the deficiency of \boldsymbol{a} with respect to f. It is easy to see that

$$
0 \leqq \delta(\boldsymbol{a}, f) \leqq 1
$$

by (2) since $m(r, \boldsymbol{a}, f) \geqq 0$. Put

$$
\lambda=\operatorname{dim}\left\{\left(c_{1}, \cdots, c_{n+1}\right) \in \boldsymbol{C}^{n+1}: c_{1} f_{1}+\cdots c_{n+1} f_{n+1}=0\right\},
$$

then it is easy to see that $0 \leqq \lambda \leqq n-1$. We say that f is (linearly) nondegenerate if $\lambda=0$ and that f is (linearly) degenerate if $\lambda>0$.

It is well-known that f is non-degenerate if and only if the Wronskian $W\left(f_{1}, \cdots, f_{n+1}\right)$ of f_{1}, \cdots, f_{n+1} is not identically equal to 0 .

Let X be a subset of $\boldsymbol{C}^{n+1}-\{0\}$ in general position; that is to say, any $n+1$ vectors of X are linearly independent. Then it is well-known that the following defect relation is easily obtained from the fundamental inequality of H. Cartan ([1]):

The defect relation. If f is non-degenerate,

$$
\begin{equation*}
\sum_{a \in X} \delta(\boldsymbol{a}, f) \leqq n+1 \tag{3}
\end{equation*}
$$

As a generalization of the case of meromorphic functions to holomorphic curves, it is natural to ask the following problem:

Problem. What properties does f possess if the equality holds in (3)?
Our main purpose of this paper is to generalize the following well-known result to holomorphic curves, which gives an answer to a special case of this problem.

Theorem A. Let $f(z)$ be a transcendental meromorphic function of order finite in the complex plane. If

$$
\delta(\infty, f)=1 \quad \text { and } \sum_{a \neq \infty} \delta(a, f)=1
$$

then f is of regular growth and the order of $f(z)$ is a positive integer ([2], p. 299).

To prove Theorem A, the following result is essential.
Theorem B. Let $f(z)$ be as in Theorem A. Then for any $a_{1}, \cdots, a_{q} \in \boldsymbol{C}$ $(q<\infty)$,

$$
\sum_{j=1}^{q} m\left(r, a_{\jmath}, f\right) \leqq m\left(r, 1 / f^{\prime}\right)+O(\log r)
$$

(see [3], p. 89).
Our method to obtain a generalization of Theorem A is parallel to the case of meromorphic functions. We shall first generalize Theorem B by using the derived holomorphic curve introduced in [12] as an extension of the derivative of meromorphic functions to holomorphic curves and then we shall give a generalization of Theorem A.

The first attempt to extend Theorem A to holomorphic curves is the following result due to Mori ([4]).

Theorem C. Suppose that f is non-degenerate and $\rho(f)<+\infty$. If there exist $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}(n+1 \leqq q \leqq+\infty)$ in X such that
(i) the order of $N\left(r, \boldsymbol{a}_{j}, f\right)$ is smaller than $\rho(f)$ for $j=1, \cdots, n$,
(ii) $\sum_{j=1}^{q} \delta\left(\boldsymbol{a}_{j}, f\right)=n+1$,
then $\rho(f)$ is a positive integer.
Remark 1. If (i) and (ii) of this theorem hold, then $\delta\left(\boldsymbol{a}_{j}, f\right)=1(j=1, \cdots, n)$ (see [4], Remark 2).

We prepare several lemmas in Section 2 and give a generalization of Theorem A for non-degenerate holomorphic curves in Section 3, which contains Theorem C. In Section 4, we extend a result obtained in Section 3 to moving targets. In Section 5, we treat the degenerate case.

We use the standard notation of the Nevanlinna theory of meromorphic functions ([3], [6]).

2. Lemma

We shall give some lemmas in this section for later use. Let f and X be as in Section 1.

Lemma 1. (a) $T\left(r, f_{k} / f_{\jmath}\right)<T(r, f)+O(1)(k \neq j)([1])$.
(b) For any a, bin X such that $(\boldsymbol{a}, f) \not \equiv 0$ add $(\boldsymbol{b}, f) \not \equiv 0$,

$$
\begin{equation*}
T(r,(\boldsymbol{a}, f) /(\boldsymbol{b}, f))<T(r, f)+O(1) \tag{1}
\end{equation*}
$$

Lemma 2. If there are $n+1$ elements $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n+1}$ in X such that

$$
\delta\left(\boldsymbol{a}_{j}, f\right)=1 \quad(j=1, \cdots, n+1)
$$

then f is of regular growth and $\rho(f)$ is equal to either a positive integer or infinity ([11], Théorème 3).

Put for any $\boldsymbol{a}_{j} \in X \quad(j=1, \cdots, n+1)$

$$
K(f)=\lim _{r \rightarrow \infty} \frac{\sum_{j=1}^{n+1} N\left(r, \boldsymbol{a}_{j}, f\right)}{T(r, f)}
$$

(see [10], Definition 3). Then we have the followings.
Lemma 3. (I) If $\rho=\rho(f)$ is finite and non-integer,

$$
\left.K(f) \geqq \frac{|\sin \pi \rho|}{2 \cdot 2 \rho+|\sin \pi \rho| / 2} \quad \text { ([11], Théorème } 1\right) \text {. }
$$

(II) If $\mu(f)<\rho(f)$, for any $\tau \neq \infty$ such that $\mu(f) \leqq \tau \leqq \rho(f)$

$$
K(f) \geqq \frac{n+1}{n} \cdot \frac{|\sin \pi \tau|}{4 \cdot 4 e(\tau+1)+|\sin \pi \tau|} \quad \text { ([11], Théorème 4). }
$$

Note that f is not always non-degenerate in these two lemmas.
Suppose now that f is non-degenerate. Let $d(z)$ be an entire function such that the functions

$$
f_{j}^{n+1} / d \quad(j=1, \cdots, n) \text { and } W\left(f_{1}, \cdots, f_{n+1}\right) / d
$$

are entire functions without common zeros.
Definition ([12]). We call the holomorphic curves induced by the mapping

$$
\left(f_{1}^{n+1}, \cdots, f_{n}^{n+1}, W\left(f_{1}, \cdots, f_{n+1}\right)\right): \boldsymbol{C} \rightarrow \boldsymbol{C}^{n+1}
$$

the derived holomorphic curve of f and we write it by f^{*} :

$$
f^{*}=\left[f_{1}^{n+1} / d, \cdots, f_{n}^{n+1} / d, W\left(f_{1}, \cdots, f_{n+1}\right) / d\right] .
$$

Remark 2. When $n=1, f^{*}$ corresponds exactly to the derivative of the meromorphic function f_{2} / f_{1}.

Remark 3. The definition of f^{*} does not depend on the choice of a reduced representation of f (Proposition 1 ([12])).

Lemma 4. When $\rho(f)<\infty$,

$$
T\left(r, f^{*}\right) \leqq(n+1) T(r, f)-N(r, 1 / d)+O(\log r)
$$

(Lemma 3 ([12])).
In addition, f^{*} has the following properties:
Proposition 1 ([12]). (a) f^{*} is transcendental. (b) $\rho(f *)=\rho(f)$. (c) f^{*} is not always non-degenerate.

3. Non-degenerate case

Let $f=\left[f_{1}, \cdots, f_{n+1}\right]$ and X be as in Section 1 . We shall give a generalization of Theorem A when f is non-degenerate in this section. We need another lemma.

Lemma 5. Suppose that f is non-degenerate and $\rho(f)<\infty$. For any $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}(n+1 \leqq q<\infty)$ of X, we have

$$
(q-n-1) T(r, f)<\sum_{j=1}^{q} N\left(r, \boldsymbol{a}_{j}, f\right)-N\left(r, 1 / W\left(f_{1}, \cdots, f_{n+1}\right)\right)+O(\log r)
$$

(see [1]).
Proof. We have only to change slightly the proof of the fundamental inequality of Cartan ([1], p. 12-p. 15). We make use of the formula

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\frac{F_{1} \cdots F_{q}}{W\left(f_{1}, \cdots, f_{n+1}\right)}\right| d \theta \\
= & \sum_{j=1}^{q} N\left(r, \frac{1}{F_{j}}\right)-N\left(r, \frac{1}{W\left(f_{1}, \cdots, f_{n+1}\right)}\right)+O(1)
\end{aligned}
$$

instead of the inequality

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\frac{F_{1} \cdots F_{q}}{W\left(f_{1}, \cdots, f_{n+1}\right)}\right| \leqq \sum_{j=1}^{q} N_{n}\left(r, F_{j}\right)+O(1)
$$

used in [1], where $F_{J}=(\boldsymbol{a}, f)$.
Since the error term $S(r)$ used in [1] is equal to a finite sum of integrals of the form

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|\frac{W\left(h_{1}^{\prime}, \cdots, h_{n}^{\prime}\right)}{h_{1} \cdots h_{n}}\right| d \theta+O(1) \leqq \sum_{j=1}^{n} \sum_{k=1}^{n-1} m\left(r, \frac{h_{\rho}^{(k)}}{h_{\rho}}\right)+O(1),
$$

where h, is a ratio of the form $F_{\rho_{1}} / F_{\rho_{2}}\left(\jmath_{1} \neq \jmath_{2}\right)$, it is easy to see that

$$
S(r)=O(\log r) \quad(r \rightarrow \infty)
$$

since h_{ρ} is of order finite by Lemma 1 (b) and

$$
m\left(r, h_{\jmath}^{(k)} / h_{\jmath}\right)=O(\log r) \quad(k=1, \cdots, n-1) \quad \text { (see [6]). }
$$

Corollary 1. Under the same condition as in Lemma 5, if the equality holds in (3), then

$$
\lim _{r \rightarrow \infty} \frac{N\left(r, 1 / W\left(f_{1}, \cdots, f_{n+1}\right)\right)}{T(r, f)}=0
$$

Let $\left\{\boldsymbol{e}_{1}, \cdots, \boldsymbol{e}_{n+1}\right\}$ be the standard basis of \boldsymbol{C}^{n+1} and put

$$
X_{0}=\left\{\boldsymbol{a}=\left(a_{1}, \cdots, a_{n+1}\right) \in X: a_{n+1}=0\right\} .
$$

Since X is in general position, $\# X_{0} \leqq n$.
We shall generalize Theorem B first.
Theorem 1. Suppose that f is non-degenerate and $\rho(f)<\infty$. For any $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}(1 \leqq q<\infty)$ in $X-X_{0}$, we have the following inequality:

$$
\sum_{j=1}^{q} m\left(r, \boldsymbol{a}_{j}, f\right) \leqq m\left(r, \boldsymbol{e}_{n+1}, f *\right)+O(\log r)
$$

Proof. We put

$$
\left(\boldsymbol{a}_{j}, f\right)=F_{j} \quad(j=1, \cdots, q) \quad \text { and } \quad u(z)=\max _{1 \leq j \leq n}\left|f_{j}(z)\right|
$$

and for any $z(\neq 0)$ arbitrarily fixed, let

$$
\left|F_{\rho_{1}}(z)\right| \leqq\left|F_{J_{2}}(z)\right| \leqq \cdots \leqq\left|F_{\rho_{q}}(z)\right| \quad\left(1 \leqq \jmath_{1}, \cdots, j_{q} \leqq q\right) .
$$

Then there is a positive constant K such that

$$
U(z) \leqq K\left|F_{\rho_{k}}(z)\right| \quad(k=n+1, \cdots, q)
$$

(Lemma in [1], p. 11),

$$
\left|F_{y_{k}}(z)\right| \leqq K U(z) \quad(k=1, \cdots, q)
$$

and since the $n+1$-th elements of \boldsymbol{a}_{0} are different from zero,

$$
\left|f_{n+1}(z)\right| \leqq K\left\{u(z)+\left|F_{j_{k}}(z)\right|\right\} \quad(k=1, \cdots, q) .
$$

(From now on we denote by K a positive number, which may be different from each other in each case where it appears.)
(I) The case when $u(z) \leqq\left|F_{J_{1}}(z)\right|$.

Since $\|f\| \leqq K\left|F_{J_{1}}(z)\right|$ in this case, we have

$$
\begin{equation*}
\prod_{j=1}^{q} \frac{\left\|\boldsymbol{a}_{j}\right\|\|f\|}{\left|F_{j}\right|} \leqq K \tag{4}
\end{equation*}
$$

(II) The case when $\left|F_{\rho_{1}}(z)\right|<u(z)$.

Since

$$
\|f\| \leqq K\left\{\left|f_{1}\right|^{2}+\cdots+\left|f_{n}\right|^{2}+\left|F_{j_{1}}\right|^{2}\right\}^{1 / 2} \leqq K(n+1)^{1 / 2} u(z)
$$

in this case, we have

$$
\begin{align*}
\prod_{j=1}^{q} \frac{\left\|\boldsymbol{a}_{j}\right\|\|f\|}{\left|F_{j}\right|} & \leqq K \prod_{k=1}^{n+1} \frac{u(z)}{\left|F_{\jmath_{k}}(z)\right|}=K \frac{u(z)^{n+1}}{\left|W\left(f_{1}, \cdots, f_{n+1}\right)\right|} \cdot \frac{\left|W\left(f_{1}, \cdots, f_{n+1}\right)\right|}{\left|F_{\jmath_{1}} \cdots F_{\jmath_{n+1}}\right|} \tag{5}\\
& =K \frac{u(z)^{n+1}}{\left|W\left(f_{1}, \cdots, f_{n+1}\right)\right|} \cdot \frac{\left|W\left(F_{j_{1}}, \cdots, F_{\jmath_{n+1}}\right)\right|}{\left|F_{\jmath_{1}} \cdots F_{\jmath_{n+1}}\right|}
\end{align*}
$$

since $W\left(F_{\jmath_{1}}, \cdots, F_{\rho_{n+1}}\right)=c W\left(f_{1}, \cdots, f_{n+1}\right)(c \neq 0$, constant $)$.
From (4) and (5) we obtain the inequality

$$
\begin{aligned}
& \sum_{j=1}^{q} m\left(r, \boldsymbol{a}_{j}, f\right) \\
\leqq & \frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+} \frac{u(z)^{n+1}}{\left|W\left(f_{1}, \cdots, f_{n+1}\right)\right|} d \theta+\sum_{\left(\rho_{1}, \cdots, j_{n+1}\right)} m\left(r, \frac{W\left(F_{\rho_{1}}, \cdots, F_{\rho_{n+1}}\right)}{F_{\jmath_{1}} \cdots F_{\rho_{n+1}}}\right)+O(1) \\
\leqq & m\left(r, \boldsymbol{e}_{n+1}, f *\right)+S(r, f)
\end{aligned}
$$

where $\sum_{\left(j_{1}, \cdots, j_{n+1}\right)}$ is the summation taken over all combinations (j_{1}, \cdots, j_{n+1}) chosen from $\{1, \cdots, q\}$ and

$$
\begin{aligned}
S(r, f) & =\sum_{\left(\rho_{1}, \cdots, j_{n+1}\right)} m\left(r, \frac{W\left(F_{j_{1}}, \cdots, F_{\rho_{n+1}}\right)}{F_{j_{1}} \cdots F_{j_{n+1}}}\right)+O(1) \\
& =O(\log r)
\end{aligned}
$$

as in the case of Lemma 5. Thus, our proof is complete.
Corollary 2. Let f be as in Theorem 1. Then we have

$$
\begin{gather*}
\frac{1}{n+1} \sum_{a \in X-X_{0}} \delta(\boldsymbol{a}, f) \leqq \delta\left(\boldsymbol{e}_{n+1}, f^{*}\right), \tag{6}\\
\sum_{a \in X-X_{0}} \delta(\boldsymbol{a}, f) \leqq \lim _{r \rightarrow \infty} \inf ^{\frac{T\left(r, f^{*}\right)}{T(r, f)} \leqq \limsup _{r \rightarrow \infty} \frac{T\left(r, f^{*}\right)}{T(r, f)} \leqq n+1} . \tag{7}
\end{gather*}
$$

We can easily prove this corollary by Lemma 4 and Theorem 1.
Now, we can prove a generalization of Theorem A, which contains Theorem C.

Theorem 2. Suppose that f is non-degenerate, $\rho(f)<\infty$ and
(i) $\delta\left(e_{j}, f\right)=1(j=1, \cdots, n)$.

If there exist $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}(n+1 \leqq q \leqq \infty)$ in X such that
(ii) $\sum_{j=1}^{q} \delta\left(\boldsymbol{a}_{j}, f\right)=n+1$,
then f is of regular growth and $\rho(f)$ is equal to a positive integer.
Proof. Suppose that X_{0} consists of $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{l}$. Then, $0 \leqq l \leqq n$. By Corollary 1 , we have from (ii)

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{N\left(r, 1 / W\left(f_{1}, \cdots, f_{n+1}\right)\right)}{T(r, f)}=0 \tag{8}
\end{equation*}
$$

By (7) and (ii), we have
(9) $\quad 1 \leqq n+1-l \leqq \sum_{j=l+1}^{q} \delta\left(\boldsymbol{a}_{j}, f\right) \leqq \liminf _{r \rightarrow \infty} \frac{T\left(r, f^{*}\right)}{T(r, f)} \leqq \lim _{r \rightarrow \infty} \sup \frac{T\left(r, f^{*}\right)}{T(r, f)} \leqq n+1$.

This relation (9) implies that f^{*} is transcendental,

$$
\begin{equation*}
\rho(f *)=\rho(f) \text { and } \mu\left(f^{*}\right)=\mu(f) \tag{10}
\end{equation*}
$$

From (8) and (9), we have

$$
\begin{equation*}
\delta\left(\boldsymbol{e}_{n+1}, f^{*}\right)=1 \tag{11}
\end{equation*}
$$

and from (i) and (9)

$$
\begin{equation*}
\delta\left(\boldsymbol{e}_{3}, f^{*}\right)=1 \quad(j=1, \cdots, n) \tag{12}
\end{equation*}
$$

By Lemma 2, (10), (11) and (12) imply that f is of regular growth and $\rho(f)$ is a positive integer since the set $\left\{e_{j}\right\}_{j=1}^{n+1}$ is in general position.

Corollary 3. Suppose that f is non-degenerate and $\rho(f)<\infty$. If there are $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}$ in $X(n+1 \leqq q \leqq \infty)$ such that
(i) $\delta\left(a_{j}, f\right)=1(j=1, \cdots, n)$;
(ii) $\sum_{j=1}^{q} \delta\left(a_{j}, f\right)=n+1$,
then f is of regular growth and $\rho(f)$ is equal to a positive integer.
Proof. Put

$$
\left(\boldsymbol{a}_{j}, f\right)=F, \quad(j=1, \cdots, q)
$$

and let M be the $(n+1) \times(n+1)$ matrix whose j-th row is $\boldsymbol{a},(j=1, \cdots, n+1)$.
Then F_{1}, \cdots, F_{n+1} are linearly independent and have no common zeros, M is a regular matrix and

$$
{ }^{t}\left(F_{1}, \cdots, F_{n+1}\right)=M^{t}\left(f_{1}, \cdots, f_{n+1}\right) .
$$

Let F be the holomorphic curve induced by $\left(F_{1}, \cdots, F_{n+1}\right)$; that is to say, $F=$
$\left[F_{1}, \cdots, F_{n+1}\right]$. Then

$$
\begin{equation*}
T(r, F)=T(r, f)+O(1) \tag{13}
\end{equation*}
$$

([1], p. 9),
and so F is transcendental, $\rho(F)=\rho(f)$ and $\mu(F)=\mu(f)$.
Put

$$
Y=\left\{\boldsymbol{b}=\boldsymbol{a} M^{-1}: \boldsymbol{a} \in X\right\} .
$$

Then, Y is in general position, $(\boldsymbol{a}, f)=(\boldsymbol{b}, F)$ and by (13)

$$
\begin{equation*}
\delta(\boldsymbol{a}, f)=\delta(\boldsymbol{b}, F), \tag{14}
\end{equation*}
$$

where $\boldsymbol{b}=\boldsymbol{a} M^{-1}(\boldsymbol{a} \in X)$. Let $Y_{0}=\{\boldsymbol{b} \in Y:$ the $n+1$-th element of $\boldsymbol{b}=0\}$ and put

$$
\boldsymbol{b}_{j}=\boldsymbol{a}_{j} M^{-1} \quad(j=1, \cdots, q)
$$

Then, $\boldsymbol{b}_{j}=\boldsymbol{e}_{\boldsymbol{y}}(j=1, \cdots, n+1), Y_{0}=\left\{\boldsymbol{e}_{1}, \cdots, \boldsymbol{e}_{n}\right\}$ and by (14)
(i) $\delta\left(\boldsymbol{b}_{j}, F\right)=1(j=1, \cdots, n)$;
(ii) $\sum_{j=1}^{q} \delta\left(\boldsymbol{b}_{j}, F\right)=n+1$.

Let $P(z)$ be an entire function such that the functions

$$
F_{1}^{n+1} / P, \cdots, F_{n}^{n+1} / P, W\left(F_{1}, \cdots, F_{n+1}\right) / P
$$

are entire functions without common zeros. Then,

$$
F^{*}=\left[F_{1}^{n+1} / P, \cdots, F_{n}^{n+1} / P, W\left(F_{1}, \cdots, F_{n+1}\right) / P\right] .
$$

Applying Theorem 2 to F and Y, we have this corollary.

4. Extension

Let $f=\left[f_{1}, \cdots, f_{n+1}\right]$ be a transcendental holomorphic curve from \boldsymbol{C} into $P^{n}(\boldsymbol{C})$. We use the same notation as in Section 1. Let $S_{0}(r, f)$ be any quantity satisfying

$$
S_{0}(r, f)=o(T(r, f)) \quad(r \rightarrow \infty)
$$

and Γ the field consisting of meromorphic functions a in $|z|<\infty$ such that $T(r, a)=S_{0}(r, f)$.

Throughout the section we suppose that f is non-degenerate over Γ. Let

$$
\boldsymbol{S}_{0}(f)=\left\{\boldsymbol{A}=\left\{a_{1}, \cdots, a_{n+1}\right]: \begin{array}{l}
\text { holomorphic curve from } \left.\boldsymbol{C} \text { into } P^{n}(\boldsymbol{C})\right\} \\
\text { such that } T(r, \boldsymbol{A})=S_{0}(r, f)
\end{array}\right.
$$

and let H be a subset of $\boldsymbol{S}_{0}(f)$ in general position. It is clear that $\boldsymbol{S}_{0}(f) \supset P^{n}(\boldsymbol{C})$. For $\boldsymbol{A}=\left[a_{1}, \cdots, a_{n+1}\right] \in \boldsymbol{S}_{0}(f)$ we set

$$
(\boldsymbol{A}, f)=a_{1} f_{1}+\cdots+a_{n+1} f_{n+1} .
$$

Then, we have the following
PROPOSITION 2. (a) $a_{k} / a_{j} \in \Gamma$ if $a_{j} \not \equiv 0$. (b) $(\boldsymbol{A}, f) \not \equiv 0$.
Proof. (a) Applying Lemma 1 (a) to A, we have

$$
T\left(r, a_{k} / a_{j}\right)<T(r, \boldsymbol{A})+O(1)=S_{0}(r, f) .
$$

(b) Since there is at least one $a_{j} \not \equiv 0(1 \leqq j \leqq n+1)$,

$$
\frac{(\boldsymbol{A}, f)}{a_{\jmath}}=\frac{a_{1}}{a_{3}} f_{1}+\cdots+\frac{a_{n+1}}{a_{\jmath}} f_{n+1}
$$

is a linear combination of f_{1}, \cdots, f_{n+1} with Γ-coefficients. As f is nondegenerate over $\Gamma,(\boldsymbol{A}, f) / a_{j} \not \equiv 0$. That is, $(\boldsymbol{A}, f) \not \equiv 0$.

We put

$$
m(r, \boldsymbol{A}, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{\|\boldsymbol{A}\|\|f\|}{|(\boldsymbol{A}, f)|} d \theta
$$

which is non-negative as in Section 1 and independent of the choice of reduced representations of f and \boldsymbol{A}, and

$$
N(r, \boldsymbol{A}, f)=N(r, 1 /(\boldsymbol{A}, f))
$$

Then we have the first fundamental theorem:

$$
T(r, f)=m(r, \boldsymbol{A}, f)+N(r, \boldsymbol{A}, f)+S_{0}(r, f) .
$$

The defect of \boldsymbol{A} with respect to f is defined as follows:

$$
\delta(\boldsymbol{A}, f)=\liminf _{r \rightarrow \infty} \frac{m(r, \boldsymbol{A}, f)}{T(r, f)}
$$

which is equal to

$$
1-\limsup _{r \rightarrow \infty} \frac{N(r, \boldsymbol{A}, f)}{T(r, f)}
$$

by the first fundamental theorem. Then, $0 \leqq \delta(\boldsymbol{A}, f) \leqq 1$.
The defect relation ([9], see also [7]):

$$
\sum_{A \in H} \delta(A, f) \leqq n+1
$$

Similar to Problem in Section 1, we would like to know what properties f has when the equality of the defect relation holds.

Concerning this, Mori ([5]) has recently proved the following
Theorem D. Suppose that $\rho(f)$ is finite and that

$$
N\left(r, 1 / f_{1}\right)=S_{0}(r, f) \quad \text { and } \quad T\left(r, f_{j} / f_{1}\right)=S_{0}(r, f) \quad(j=2, \cdots, n) .
$$

If there exist $\boldsymbol{A}_{1}, \cdots, \boldsymbol{A}_{q}(n+1 \leqq q<\infty)$ in H such that

$$
\sum_{j=1}^{q} \delta\left(\boldsymbol{A}_{j}, f\right)=n+1
$$

then f is of regular growth and $\rho(f)$ is a positive integer.
The purpose of this section is to improve this theorem by applying the idea used in the proofs of Theorems 1 and 2 to the case of moving targets in the usual way (see, for example, [7], [9], [5]). We need the following lemma.

Lemma 6. For any $\boldsymbol{A}=\left[a_{1}, \cdots, a_{n+1}\right]$ and $\boldsymbol{B}=\left[b_{1}, \cdots, b_{n+1}\right]$ of $\boldsymbol{S}_{0}(f)$ such that $a_{j} \not \equiv 0, b_{k} \not \equiv 0$, put $(\boldsymbol{A}, f)=F$ and $(\boldsymbol{B}, f)=G$. Then,

$$
T\left(r, \frac{F / a_{j}}{G / b_{k}}\right) \leqq 2 n T(r, f)+S_{0}(r, f) .
$$

Proof. Since

$$
\begin{aligned}
& \frac{F / a_{\jmath}}{G / b_{k}}=\left\{\sum_{\nu=1}^{n+1}\left(a_{\nu} / a_{j}\right) f_{\nu}\right\} /\left\{\sum_{\nu=1}^{n+1}\left(b_{\nu} / b_{k}\right) f_{\nu}\right\} \\
&=\left\{\sum_{\nu=1}^{n+1}\left(a_{\nu} / a_{j}\right)\left(f_{\nu} / f_{1}\right)\right\} /\left\{\sum_{\nu=1}^{n+1}\left(b_{\nu} / b_{k}\right)\left(f_{\nu} / f_{1}\right)\right\}, \\
& T\left(r, \frac{F / a_{j}}{G / b_{k}}\right) \leqq \sum_{\nu=1}^{n+1}\left\{2 T\left(r, \frac{f_{\nu}}{f_{1}}\right)+T\left(r, \frac{a_{\nu}}{a_{j}}\right)+T\left(r, \frac{b_{\nu}}{b_{k}}\right)\right\}+O(1) \\
& \leqq 2 n T(r, f)+S_{0}(r, f)
\end{aligned}
$$

by Lemma 1 (a) and Proposition 2 (a).
For $\boldsymbol{A}=\left[a_{1}, \cdots, a_{n+1}\right]$ of H, let $a_{\rho_{0}}$ be the first element not identically equal to zero. Then we put

$$
\tilde{\boldsymbol{A}}=\left(\frac{a_{1}}{a_{\jmath_{0}}}, \cdots, \frac{a_{n+1}}{a_{\rho_{0}}}\right)=\left(g_{1}, \cdots, g_{n+1}\right), \quad\|\tilde{\boldsymbol{A}}\|=\|\boldsymbol{A}\| /\left|a_{\rho_{0}}\right|, \tilde{H}=\{\tilde{\boldsymbol{A}}: \boldsymbol{A} \in H\}
$$

and for $(\boldsymbol{A}, f)=F$

$$
\tilde{F}=F / a_{\rho_{0}}=(\tilde{\boldsymbol{A}}, f)=\sum_{j=1}^{n+1} g_{\jmath} f_{j} .
$$

Then, it is clear that \tilde{H} is in general position and $g_{\jmath}=a_{j} / a_{\rho_{0}} \in \Gamma$ by Proposition 2 (a).

Put

$$
H_{0}=\left\{\boldsymbol{A}=\left[a_{1}, \cdots, a_{n+1}\right] \in H: a_{n+1}=0\right\} .
$$

Then we have
Theorem 3. Suppose that $\rho(f)<\infty$ and that (i) $\delta\left(\boldsymbol{e}_{\rho}, f\right)=1(j=1, \cdots, n)$.

If there exist $\boldsymbol{A}_{1}, \cdots, \boldsymbol{A}_{\boldsymbol{q}}(n+1 \leqq q \leqq \infty)$ in H such that (ii) $\sum_{j=1}^{q} \delta\left(\boldsymbol{A}_{j}, f\right)=n+1$,
then, f is of regular growth and $\rho(f)$ is equal to a positive integer.
Proof. We may suppose without loss of generality that $q \geqq 2 n+1$. If the number of the set $Q=\{\boldsymbol{A} \in H: \delta(\boldsymbol{A}, f)>0\}$ is not greater than $2 n$, we have only to add a finite number of $\boldsymbol{A} \in H$ such that $\delta(\boldsymbol{A}, f)=0$ to Q so that $q \geqq 2 n+1$. This does not affect our result.

Let ε be any positive number smaller than $1 / 4$. Then, there exists a finite number $\nu(\geqq 2 n+1)$ such that

$$
\begin{equation*}
\sum_{j=1}^{\nu} \delta\left(A_{j}, f\right)>n+1-\varepsilon . \tag{15}
\end{equation*}
$$

Put for $j=1, \cdots, \nu$

$$
\boldsymbol{A}_{\jmath}=\left[a_{\rho_{1}}, \cdots, a_{\jmath_{n+1}}\right] \text { and } \tilde{\boldsymbol{A}}_{\jmath}=\left(g_{\rho_{1}}, \cdots, g_{\jmath_{n+1}}\right) .
$$

For any integer p, let $V(p)$ be the vector space generated by

$$
\left\{\prod_{k=1}^{n+1} \prod_{\jmath=1}^{\nu} g_{j k}^{p(\jmath, k)}: \sum_{k=1}^{n+1} \sum_{j=1}^{\nu} p(\jmath, k) \leqq p, p(\jmath, k) \geqq 0 \text { and integer }\right\}
$$

over \boldsymbol{C} and

$$
d(p)=\operatorname{dim} V(p) .
$$

Then, $V(p)$ is a subspace of $V(p+1)$ and

$$
\liminf _{p \rightarrow \infty} d(p+1) / d(p)=1
$$

since $d(p) \leqq\binom{n+1) \nu+p}{p}$ (see [8], see also [9]).
Note that any element of $V(p)$ belongs to Γ since $g_{j k} \in \Gamma$.
Let p be so large that the following inequality holds:

$$
\begin{equation*}
d(p+1) / d(p)<1+\varepsilon /(n+1) . \tag{16}
\end{equation*}
$$

Let

$$
b_{1}, \cdots, b_{d(p)}, b_{d(p)+1}, \cdots, b_{d(p+1)}
$$

be a basis of $V(p+1)$ such that

$$
b_{1}, \cdots, b_{d(p)}
$$

form a basis of $V(p)$. Then, it is clear that the functions

$$
\left\{b_{t} f_{k}: t=1, \cdots, d(p+1) ; k=1, \cdots, n+1\right\}
$$

are linearly independent over \boldsymbol{C}. We put for convenience

$$
W=W\left(b_{1} f_{1}, b_{2} f_{1}, \cdots, b_{d(p+1)} f_{n+1}\right) .
$$

Then, we can prove the following inequality as in [7]:

$$
\begin{align*}
& N(r, 1 / W)+d(p)(\nu-n-1) T(r, f) \tag{17}\\
\leqq & d(p) \sum_{j=1}^{\nu} N\left(r, \boldsymbol{A}_{j}, f\right)+(n+1)\{d(p+1)-d(p)\} T(r, f)+S_{0}(r, f)
\end{align*}
$$

since $\rho(f)<\infty$ and $\log r=S_{0}(r, f)$.
We put

$$
\begin{equation*}
\left(\tilde{\boldsymbol{A}}_{j}, f\right)=\tilde{F}_{j} \quad(j=1, \cdots, \nu) \tag{18}
\end{equation*}
$$

Suppose without loss of generality that H_{0} consists of $\boldsymbol{A}_{1}, \cdots, \boldsymbol{A}_{l}$. Then, $0 \leqq l \leqq n$. Let z be a point of $\boldsymbol{C}-\{0\}$. We rearrange $\left\{\tilde{F}_{j}\right\}_{j=l+1}^{\nu}$ as follows.

$$
\left|\widetilde{F}_{J_{1}}(z)\right| \leqq\left|\widetilde{F}_{J_{2}}(z)\right| \leqq \cdots \leqq\left|\widetilde{F}_{j_{n}}(z)\right| \leqq \cdots \leqq\left|\widetilde{F}_{j_{\nu-l}}(z)\right|,
$$

where $l+1 \leqq j_{1}, \cdots, j_{\nu-l} \leqq \nu$.
From now on we use $S(z, f)$ as a non-negative function defined on \boldsymbol{C} such that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+} S\left(r e^{i \theta}, f\right) d \theta=S_{0}(r, f),
$$

which may be different from each other in each case when it appears.
It is easy to see by a simple calculation that for $k \geqq n+1$

$$
\begin{equation*}
U(z) \leqq S(z, f)\left|\widetilde{F}_{j_{k}}(z)\right| \tag{19}
\end{equation*}
$$

and that for $k=1, \cdots, \nu-l$

$$
\begin{equation*}
\left|\tilde{F}_{j_{k}}(z)\right| \leqq S(z, f) U(z) \tag{20}
\end{equation*}
$$

where $U(z)=\max _{1 \leq j \leq n+1}\left|f_{j}(z)\right|$. We then have the following:

$$
\begin{align*}
\left(\prod_{j=l+1}^{\nu} \frac{\left\|\boldsymbol{A}_{j}\right\|\|f\|}{\left|\left(\boldsymbol{A}_{j}, f\right)\right|}\right)^{d(p)} & =\left(\prod_{j=l+1}^{\nu} \frac{\left\|\tilde{\boldsymbol{A}}_{j}\right\|\|f\|}{\left|\tilde{F}_{j}\right|}\right)^{d(p)} \tag{21}\\
& =\left(\prod_{j=l+1}^{\nu}\left\|\tilde{\boldsymbol{A}}_{j}\right\|\right)^{d(p)}\left(\prod_{k=1}^{n} \frac{\|f\|}{\left|\tilde{F}_{J_{k}}\right|}\right)^{d(p)}\left(\prod_{k=n+1}^{\nu-l} \frac{\|f\|}{\mid \tilde{F}_{j_{k} \mid}}\right)^{d(p)} \\
& \leqq S(z, f)\left(\prod_{k=1}^{n} \frac{\|f\|}{\left|\tilde{F}_{\rho_{k}}\right|}\right)^{d(p)}
\end{align*}
$$

from (19) since $\boldsymbol{A}_{\boldsymbol{j}} \in H \subset \boldsymbol{S}_{0}(f)$ and $U \leqq\|f\| \leqq(n+1)^{1 / 2} U$. We put

$$
u(z)=\max _{1 \leq J \leq n}\left|f_{j}(z)\right| .
$$

It then holds that

$$
\begin{equation*}
\left|f_{n+1}(z)\right| \leqq S(z, f)\left\{\left|\tilde{F}_{J_{k}}(z)\right|+u(z)\right\} \quad(k=1, \cdots, \nu-l) \tag{22}
\end{equation*}
$$

since $a_{f_{n+1}} \not \equiv 0$ for any $A_{j} \in H-H_{0}$.
(I) The case when $u(z) \leqq\left|\widetilde{F}_{j_{1}}(z)\right|$. In this case, from (22)

$$
\|f\| \leqq S(z, f)\left|\tilde{F}_{j_{k}}(z)\right| \quad(k=1, \cdots, n)
$$

and we have

$$
\begin{equation*}
\left(\prod_{k=1}^{n} \frac{\|f\|}{\left|\widetilde{F}_{j_{k}}(z)\right|}\right)^{d(p)} \leqq S(z, f) \tag{23}
\end{equation*}
$$

(II) The case when $\left|\tilde{F}_{j_{1}}(z)\right|<u(z)$. In this case, from (22) for $k=1$
and we have

$$
\begin{equation*}
\left(\prod_{k=1}^{n} \frac{\|f\|}{\left|\widetilde{F}_{j_{k}}(z)\right|}\right)^{d(p)} \leqq S(z, f) \frac{u(z)^{n d(p)}}{\left(\prod_{k=1}^{n}\left|\widetilde{F}_{j_{k}}(z)\right|\right)^{d(p)}} . \tag{24}
\end{equation*}
$$

Now, $\tilde{F}_{j_{1}}, \cdots, \tilde{F}_{j_{n+1}}$ are linearly independent over Γ and it is easy to see that

$$
\left\{b_{1} \tilde{F}_{j_{1}}, b_{2} \widetilde{F}_{j_{1}}, \cdots, b_{d(p)} \tilde{F}_{j_{n+1}}\right\}
$$

are linearly independent over \boldsymbol{C}. From (18), these functions can be represented as linear combinations of

$$
\left\{b_{t} f_{k}: 1 \leqq t \leqq d(p+1), 1 \leqq k \leqq n+1\right\}
$$

with constant coefficients:

$$
\left(b_{1} \tilde{F}_{j_{1}}, b_{2} \tilde{F}_{j_{1}}, \cdots, b_{d(p)} \widetilde{F}_{j_{n+1}}\right)=\left(b_{1} f_{1}, b_{2} f_{1}, \cdots, b_{d(p+1)} f_{n+1}\right) D_{1}
$$

where D_{1} is a $(n+1) d(p+1) \times(n+1) d(p)$ matrix whose elements are constants. The rank of D_{1} is equal to $(n+1) d(p)$. Let D_{2} be a

$$
(n+1) d(p+1) \times(n+1)\{d(p+1)-d(p)\}
$$

matrix consisting of constant elements such that the matrix

$$
D=\left[D_{1} D_{2}\right]
$$

is regular. Put

$$
\left(G_{1}, \cdots, G_{L}\right)=\left(b_{1} f_{1}, b_{2} f_{1}, \cdots, b_{d(p+1)} f_{n+1}\right) D_{2}
$$

where $L=(n+1)\{d(p+1)-d(p)\}$, then

$$
\left(b_{1} \tilde{F}_{j_{1}}, \cdots, b_{d(p)} \tilde{F}_{j_{n+1}}, G_{1}, \cdots, G_{L}\right)=\left(b_{1} f_{1}, \cdots, b_{d(p+1)} f_{n+1}\right) D
$$

from which we obtain

$$
\begin{equation*}
W\left(j_{1}, \cdots, j_{n+1}\right) \equiv W\left(b_{1} \tilde{F}_{\jmath_{1}}, \cdots, G_{L}\right)=(\operatorname{det} D) W \tag{25}
\end{equation*}
$$

where $W=W\left(b_{1} f_{1}, \cdots, b_{d(p+1)} f_{n+1}\right)$.

We then have from (25)

$$
\begin{align*}
\frac{1}{\left(\prod_{k=1}^{n}\left|\tilde{F}_{J_{k}}\right|\right)^{d(p)}} & =\frac{\left|W\left(j_{1}, \cdots, \jmath_{n+1}\right)\right|}{|W||\operatorname{det} D|} \cdot \frac{1}{\left(\prod_{k=1}^{n}\left|\tilde{F}_{j_{k}}\right|\right)^{d(p)}} \tag{26}\\
& \leqq S(z, f) \frac{(u(z))^{L+d(p)}}{|W|} \cdot \frac{\left|W\left(j_{1}, \cdots, j_{n+1}\right)\right|}{\left|b_{1} \widetilde{F}_{J_{1}} \cdot b_{2} \tilde{F}_{\rho_{1}} \cdots G_{L}\right|}
\end{align*}
$$

since $\left|G_{j}(z)\right| \leqq S(z, f) U(z) \quad(j=1, \cdots, L), \quad\left|\tilde{F}_{n+1}(z)\right| \leqq S(z, f) U(z) \quad$ and $\quad U(z) \leqq$ $S(z, f) u(z)$ in this case. Note that $b_{j} \in \Gamma$ and $\operatorname{det} D \neq 0$.

Further, by using the inequalities for $\jmath=1, \cdots, L$

$$
T\left(r, G_{j} / b_{1} \tilde{F}_{J_{1}}\right) \leqq 2 n T(r, f)+S_{0}(r, f),
$$

which we can prove as in Lemma 6 since $b_{t} \in \Gamma(1 \leqq t \leqq d(p+1))$, and by Lemma 6 , we have

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+} \frac{\left|W\left(j_{1}, \cdots, j_{n+1}\right)\right|}{\left|b_{1} \tilde{F}_{j_{1}} \cdots G_{L}\right|} d \theta=O(\log r) \tag{27}
\end{equation*}
$$

as usual (see [1]) since $\rho(f)<\infty$.
From (21), (23), (24), (26) and (27), we have

$$
\begin{equation*}
d(p) \sum_{j=l+1}^{\nu} m\left(r, \boldsymbol{A}_{\jmath}, f\right) \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}+\frac{\left.\left\{u\left(r e^{i \theta}\right)\right\}\right\}^{(n+1) d(p+1)}}{|W|} d \theta+S_{0}(r, f) \tag{28}
\end{equation*}
$$

Let $g(z)$ be a meromorphic function such that the functions

$$
\frac{1}{g(z)}\left\{f_{j}(z)\right\}^{(n+1) d(p+1)} \quad(\jmath=1, \cdots, n) \quad \text { and } \quad \frac{1}{g(z)} W
$$

are entire functions without common zeros.
We put

$$
h^{*}=\left[\frac{1}{g}\left(f_{1}\right)^{(n+1) d(p+1)}, \cdots, \frac{1}{g}\left(f_{n}\right)^{(n+1) d(p+1)}, \frac{1}{g} W\right]
$$

Then, we have the inequality

$$
\begin{equation*}
T\left(r, h^{*}\right) \leqq(n+1) d(p+1) T(r, f)+S_{0}(r, f) \tag{29}
\end{equation*}
$$

(cf. Lemma 4) by using the inequality

$$
N(r, g) \leqq(n+1) d(p+1) \sum_{t=1}^{d(p+1)} N\left(r, b_{t}\right)=S_{0}(r, f) .
$$

From (28) and (29), we have the following as in the case of (7):

$$
\begin{align*}
d(p)\left\{\sum_{j=l+1}^{\nu} \delta\left(A_{j}, f\right)\right\} & \leqq \liminf _{r \rightarrow \infty} \frac{T\left(r, h^{*}\right)}{T(r, f)} \tag{30}\\
& \leqq \limsup _{r \rightarrow \infty} \frac{T\left(r, h^{*}\right)}{T(r, f)} \leqq(n+1) d(p+1)
\end{align*}
$$

and from (15), (16) and (17) we have

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup \frac{N(r, 1 / W)}{T(r, f)}<2 \varepsilon d(p) . \tag{31}
\end{equation*}
$$

From (30) with (15) and $0 \leqq l \leqq n$ we have as in the case of (10)

$$
\rho(f)=\rho\left(h^{*}\right) \quad \text { and } \quad \mu(f)=\mu\left(h^{*}\right)
$$

Suppose further that $\rho(f)$ is not an integer. Let ε satisfy

$$
0<4 \varepsilon<\min \{1,|\sin \pi \rho| /(2.2 \rho+|\sin \pi \rho| / 2)\},
$$

where $\rho=\rho(f)$. By the hypothesis (i), (15), (30) and (31)
since $\varepsilon<1 / 4$. This inequality contradicts with Lemma 3 (I). This shows that $\rho(f)$ must be an integer. Due to Corollaire 1 in [11], $\mu\left(h^{*}\right)$ is positive, since

$$
\delta\left(e^{\prime}, h^{*}\right)>0 \quad(\jmath=1, \cdots, n+1)
$$

by the hypothesis (i), (15), (30) and (31). This implies that $\rho(f)$ is a positive integer.

Suppose next that f is not of regular growth. Let ε satisfy

$$
0<4 \varepsilon<\min \left\{1, \max _{\mu \leq \tau \leq \rho} \frac{n+1}{n} \cdot \frac{|\sin \pi \tau|}{4.4 e(\tau+1)+|\sin \pi \tau|}\right\}
$$

where $\mu=\mu(f)$ and $\rho=\rho(f)$. Then, as in the case of (32), we have

$$
K\left(h^{*}\right)<4 \varepsilon,
$$

which contradicts with Lemma 3 (II) since $\rho(f)=\rho\left(h^{*}\right), \mu(f)=\mu\left(h^{*}\right)$. This shows that f must be of regular growth.

Our proof is complete.

5. Degenerate case

Let f, X and λ be as in Section 1. Throughout the section we suppose that $\lambda>0$.

Lemma 7. Let $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n+1}$ be any $n+1$ elements of X and put

$$
\left(\boldsymbol{a}_{j}, f\right)=F, \quad(j=1, \cdots, n+1) .
$$

Then, the holomorphic curve F induced by $\left(F_{1}, \cdots, F_{n+1}\right)$ is transcendental. Further, if we put

$$
V^{\prime}=\left\{\left(d_{1}, \cdots, d_{n+1}\right) \in \boldsymbol{C}^{n+1}: d_{1} F_{1}+\cdots d_{n+1} F_{n+1}=0\right\}
$$

then $\operatorname{dim} V^{\prime}=\lambda$.
Proof. Since it is known ([1]) that

$$
T(r, F)=T(r, f)+O(1)
$$

it is trivial that F is transcendental since so is f.
Let M be the $(n+1) \times(n+1)$ matrix whose \jmath-th row is \boldsymbol{a}_{ρ}. Then, M is regular and

$$
{ }^{t}\left(F_{1}, \cdots, F_{n+1}\right)=M^{t}\left(f_{1}, \cdots, f_{n+1}\right) .
$$

It is clear that for $V=\left\{\boldsymbol{a} \varepsilon \boldsymbol{C}^{n+1}:(\boldsymbol{a}, f)=0\right\}$

$$
\boldsymbol{a} \in V \text { if and only if } \boldsymbol{a} M^{-1} \in V^{\prime}
$$

and $\lambda=\operatorname{dim} V=\operatorname{dim} V^{\prime}$.
By the definition of λ, there are $n+1-\lambda$ functions in $\left\{f_{1}, \cdots, f_{n+1}\right\}$ which are linearly independent over \boldsymbol{C}. We suppose without loss of generality that $f_{1}, \cdots, f_{n+1-\lambda}$ are linearly independent over C. Then $f_{n+2-\lambda}, \cdots, f_{n+1}$ can be represented as linear combinations of $f_{1}, \cdots, f_{n+1-\lambda}$ with constant coefficients. Put

$$
U_{1}(z)=\max _{1 \leqq j \leqq n+1-\lambda}\left|f_{j}(z)\right| .
$$

We then have the following.
PRoposition 3. $\quad T(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log U_{1}\left(r e^{i \theta}\right) d \theta+O(1)$.
Proof. It is trivial that

$$
\begin{equation*}
U_{1}(z) \leqq U(z) . \tag{33}
\end{equation*}
$$

On the other hand, since $f_{n+2-\lambda}, \cdots, f_{n+1}$ are linear combinations of $f_{1}, \cdots, f_{n+1-\lambda}$ with constant coefficients, we have

$$
\begin{equation*}
U(z) \leqq K U_{1}(z) \tag{34}
\end{equation*}
$$

where K is a positive constant. From (1), (33) and (34) we have our result.
From now on we put

$$
n-\lambda=l
$$

for simplicity.

For any $\boldsymbol{a}=\left(a_{1}, \cdots, a_{n+1}\right)$ of \boldsymbol{C}^{n+1} such that $(\boldsymbol{a}, f) \neq 0$, there exists only one vector $\boldsymbol{a}^{\prime}=\left(a_{1}^{\prime}, \cdots, a_{\imath+1}^{\prime}, 0, \cdots, 0\right)$ of \boldsymbol{C}^{n+1} such that

$$
(\boldsymbol{a}, f)=\left(\boldsymbol{a}^{\prime}, f\right)
$$

since f_{l+2}, \cdots, f_{n+1} can be uniquely represented as linear combinations of f_{1}, \cdots, f_{l+1} with constant coefficients. We map \boldsymbol{a} to \boldsymbol{a}^{\prime}. In this mapping, we put

$$
X_{0}^{\prime}=\left\{\boldsymbol{a} \in X: a_{\iota_{+1}^{\prime}}^{\prime}=0\right\} .
$$

Lemma 8. (I) The number of vectors of X_{0}^{\prime} is at most n.
(II) For any vectors $\boldsymbol{a}_{\rho_{1}}, \cdots, \boldsymbol{a}_{\jmath_{m}}(1 \leqq m \leqq l)$ of $X-X_{0}^{\prime}$ such that $\boldsymbol{a}_{\rho_{1}}^{\prime}, \cdots, \boldsymbol{a}_{\rho_{m}}^{\prime}$ are linearly independent over \boldsymbol{C}, we can choose $\boldsymbol{e}_{i_{1}}, \cdots, \boldsymbol{e}_{\imath_{l+1}-m}$ from $\left\{\boldsymbol{e}_{1}, \cdots, \boldsymbol{e}_{l}\right\}$ such that

$$
\boldsymbol{e}_{\imath_{1}}^{\prime}, \cdots, \boldsymbol{e}_{\imath_{l+1-}-m}^{\prime}, \boldsymbol{a}_{s_{1}}^{\prime}, \cdots, \boldsymbol{a}_{\imath_{m}}^{\prime}
$$

are linearly independent over \boldsymbol{C}.
(III) There is a subset $X_{0}^{\prime \prime}$ of X_{0}^{\prime} such that $\# X_{0}^{\prime \prime} \leqq \lambda$ and such that (*) from any $n+1$ vectors $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n+1}$ of $X-X_{0}^{\prime \prime}$, we can find $l+1$ vectors $\boldsymbol{a}_{\rho_{1}}, \cdots, \boldsymbol{a}_{j_{l+1}}$ for which

$$
\left(\boldsymbol{a}_{J_{1}}, f\right), \cdots,\left(\boldsymbol{a}_{J_{l+1}}, f\right)
$$

are linearly independent over \boldsymbol{C} and $\boldsymbol{a}_{J_{l+2}}, \cdots, \boldsymbol{a}_{J_{n+1}}$ do not belong to X_{0}^{\prime}.
Proof. (I) Suppose that X_{0}^{\prime} contains $n+1$ vectors $\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{n+1}$. Put

$$
\left(\boldsymbol{b}_{j}, f\right)=G, \quad(j=1, \cdots, n+1) .
$$

By Lemma 7, there are $l+1$ functions (say, G_{1}, \cdots, G_{l+1}) in $\left\{G_{1}, \cdots, G_{n+1}\right\}$ and linearly independent over C. There is a regular matrix B such that

$$
{ }^{t}\left(G_{1}, \cdots, G_{l+1}\right)=B^{t}\left(f_{1}, \cdots, f_{l+1}\right) .
$$

On the other hand,
where

$$
G_{\jmath}=\left(\boldsymbol{b}_{j}^{\prime}, f\right) \quad(j=1, \cdots, n+1),
$$

$$
\boldsymbol{b}_{j}^{\prime}=\left(b_{j_{1}}^{\prime}, \cdots, b_{j_{l}}^{\prime}, 0, \cdots, 0\right) \quad(\jmath=1, \cdots, n+1)
$$

This means that the $l+1$-th column of B is 0 and B is not regular.
This is a contradiction. X_{0}^{\prime} contains at most n vectors.
(II) This is because the rank of $m \times(l+1)$ matrix whose k-th row is $\boldsymbol{a}_{\rho_{k}}^{\prime}$ is equal to m.
(III) $X_{0}^{\prime \prime}=\emptyset$ when $X_{0}^{\prime}=\emptyset$. Otherwise, let $X_{0}^{\prime}=\left\{\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{p}\right\} \quad(1 \leqq p \leqq n), B^{\prime}$ the $p \times(l+1)$ matrix whose j-th row is $\boldsymbol{b}_{j}^{\prime}$ and $s=\operatorname{rank} B^{\prime}$. Then $1 \leqq s \leqq \min (p, l+1)$. We may suppose without loss of generality that $\boldsymbol{b}_{k+1}^{\prime}, \cdots, \boldsymbol{b}_{p}^{\prime}$ are linearly independent over \boldsymbol{C}. Then, $k \leqq \lambda$. In fact, for any $\boldsymbol{b}_{p+1}, \cdots, \boldsymbol{b}_{n+1} \in X-X_{0}$, there are $l+1$ linearly independent vectors in $\left\{\boldsymbol{b}_{1}^{\prime}, \cdots, \boldsymbol{b}_{n+1}^{\prime}\right\}$ and so it must be $n+1-k \geqq$ $l+1$. That is, $k \leqq \lambda$. Put

$$
X_{0}^{\prime \prime}=\left\{\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{k}\right\}
$$

Then, it is easy to see that $X_{0}^{\prime \prime}$ has the desired property (*).
LEMMA 9. Suppose that $f_{1}, \cdots, f_{l+1}(l=n-\lambda)$ are linearly independent over \boldsymbol{C} and $\rho(f)<\infty$. Then for any $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}(n+1 \leqq q<\infty)$ of $X-X_{0}^{\prime \prime}$, we have

$$
\sum_{j=1}^{q} m\left(r, \boldsymbol{a}_{\jmath}, f\right) \leqq(n+1) T(r, f)+\lambda \sum_{j=1}^{l} N\left(r, \boldsymbol{e}_{\jmath}, f\right)-(\lambda+1) N(r, 1 / W)+O(\log r)
$$

where $W=W\left(f_{1}, \cdots, f_{l+1}\right)$.
Proof. Put

$$
\left(\boldsymbol{a}_{j}, f\right)=F_{3} \quad(j=1, \cdots, q)
$$

For any $z(\neq 0)$, let

$$
\left|F_{j_{1}}(z)\right|, \cdots,\left|F_{j_{n+1}}(z)\right|
$$

be the least $n+1$ values of $\left\{\left|F_{j}(z)\right|\right\}_{j=1}^{q}$ and let $\left|F_{\rho_{n+2}}(z)\right|, \cdots,\left|F_{j_{q}}(z)\right|$ be others. For a positive constant K, it holds that

$$
\|f(z)\| \leqq K \max _{1 \leqq i \leqq n+1}\left|F_{J_{i}}(z)\right|
$$

and

$$
\left|F_{j}(z)\right| \leqq K\|f(z)\| \quad(j=1, \cdots, q)
$$

as in Proof of Theorem 1, since $U(z) \leqq\|f(z)\| \leqq(n+1)^{1 / 2} U(z)$. At the point z

$$
\begin{aligned}
\prod_{\jmath=1}^{q} \frac{\left\|a_{j}\right\|\|f\|}{\left|F_{\jmath}\right|} & =K \prod_{\imath=1}^{q} \frac{\|f\|}{\left|F_{\jmath_{i}}\right|} \leqq K \prod_{\imath=1}^{n+1} \frac{\|f\|}{\left|F_{\jmath_{\imath}}\right|} \\
& =K \frac{\|f\|^{n+1}}{|W|^{\lambda+1}} \cdot \frac{\left|W\left(F_{\jmath_{1}}, \cdots, F_{\jmath_{l+1}}\right)\right|}{\prod_{i=1}^{l+1}\left|F_{\jmath_{i}}\right|} \cdot \prod_{\imath=l+2}^{n+1} \frac{\mid W\left(f_{1}, \cdots, f_{l}, F_{\jmath_{i}} \mid\right.}{\left|F_{\jmath_{i}}\right|}
\end{aligned}
$$

where we suppose without loss of generality that $F_{j_{1}}, \cdots, F_{j_{l+1}}$ are linearly independent over C and $F_{\jmath_{i}}(i=l+2, \cdots, n+1)$ do not belong to X_{0}^{\prime} by Lemma 8 (III). Integrating both sides of this inequality from zero to 2π with respect to $\theta\left(z=r e^{i \theta}\right)$, we have this lemma as in Lemma 5 , since for $i=l+2, \cdots, n+1$

$$
\frac{W\left(f_{1}, \cdots, f_{l}, F_{\jmath_{i}}\right)}{F_{\jmath_{i}}}=f_{1} \cdots f_{l} \frac{W\left(f_{1}, \cdots, f_{l}, F_{j_{i}}\right)}{f_{1} \cdots f_{l} \cdot F_{\jmath_{i}}}
$$

THEOREM 4. Suppose that f_{1}, \cdots, f_{l+1} are linearly independent over \boldsymbol{C} and $\rho(f)<\infty$. Let $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}(n+\lambda+1 \leqq q<\infty)$ be any elements of X such that $X_{0}^{\prime \prime} \cap\left\{\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}\right\}=\left\{\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{k}\right\}$. Then we have

$$
\begin{align*}
& \sum_{j=1}^{q} m\left(r, \boldsymbol{a}_{j}, f\right) \tag{35}\\
\leqq & (n+\lambda+1) T(r, f)+\lambda \sum_{j=1}^{l} N\left(r, \boldsymbol{e}_{\jmath}, f\right)-(\lambda+1) N(r, 1 / W)+O(\log r)
\end{align*}
$$

where $W=W\left(f_{1}, \cdots, f_{l+1}\right)$ and $X_{0}^{\prime \prime}$ is the set obtained in Lemma 8 (III).

Further if $\delta\left(\boldsymbol{e}_{\jmath}, f\right)=1(\jmath=1, \cdots, l)$, then

$$
\begin{equation*}
\sum_{j=1}^{q} \delta\left(\boldsymbol{a}_{j}, f\right) \leqq n+1+\sum_{j=1}^{k} \delta\left(\boldsymbol{a}_{j}, f\right) \leqq n+\lambda+1 \tag{36}
\end{equation*}
$$

Proof. We first note that $0 \leqq k \leqq \lambda$ by Lemma 8 (III). Applying Lemma 9 to $\left\{\boldsymbol{a}_{k+1}, \cdots, \boldsymbol{a}_{q}\right\}$, we have

$$
\begin{align*}
& \sum_{j=k+1}^{q} m\left(r, \boldsymbol{a}_{j}, f\right) \tag{37}\\
\leqq & (n+1) T(r, f)+\lambda \sum_{j=1}^{l} N\left(r, \boldsymbol{e}_{j}, f\right)-(\lambda+1) N\left(r, \frac{1}{W}\right)+O(\log r) .
\end{align*}
$$

Adding $\sum_{j=1}^{k} m\left(r, \boldsymbol{a}_{\jmath}, f\right)$ to both sides of (37), using

$$
m\left(r, \boldsymbol{a}_{s}, f\right) \leqq T(r, f)+O(1)
$$

and noting $k \leqq \lambda$, we have (35).
If $\delta\left(\boldsymbol{e}_{j}, f\right)=1(j=1, \cdots, l)$, then from (37) we have

$$
\sum_{\jmath=k+1}^{q} \delta\left(\boldsymbol{a}_{\jmath}, f\right) \leqq n+1 .
$$

Adding $\sum_{j=1}^{k} \delta\left(\boldsymbol{a}_{j}, f\right)$ to both sides of this inequality, we obtain (36).
Corollary 4. Suppose that f_{1}, \cdots, f_{l+1} are linearly independent over \boldsymbol{C}, $\rho(f)<\infty$ and that
(i) $\delta\left(e_{,}, f\right)=1(j=1, \cdots, l)$.

If there exist $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}(n+\lambda+1 \leqq q \leqq \infty)$ in X such that
(ii) $\sum_{j=1}^{q} \delta\left(a_{j}, f\right)=n+\lambda+1$
and such that

$$
X_{0}^{\prime \prime} \cap\left\{\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}\right\}=\left\{\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{k}\right\}
$$

then
(a) $k=\lambda$ and $\delta\left(\boldsymbol{a}_{j}, f\right)=1(j=1, \cdots, \lambda)$;
(b) $\lim _{r \rightarrow \infty} \frac{N(r, 1 / W)}{T(r, f)}=0$.

Proof. (a) From the hypothesis (ii) and (36), we have

$$
n+\lambda+1=\sum_{j=1}^{q} \delta\left(\boldsymbol{a}_{j}, f\right) \leqq n+1+\sum_{j=1}^{k} \delta\left(\boldsymbol{a}_{j}, f\right) \leqq n+\lambda+1
$$

so that we have

$$
k=\lambda \quad \text { and } \quad \delta\left(\boldsymbol{a}_{\jmath}, f\right)=1 \quad(\jmath=1, \cdots, \lambda) .
$$

(b) From (35) of Theorem 4 and the hypothesis (i), we have

$$
\sum_{j=1}^{q} \delta\left(\boldsymbol{a}_{J}, f\right)+(\lambda+1) \lim _{r \rightarrow \infty} \sup \frac{N(r, 1 / W)}{T(r, f)} \leqq n+\lambda+1
$$

so that by the hypothesis (ii) we obtain

$$
\lim _{r \rightarrow \infty} \frac{N(r, 1 / W)}{T(r, f)}=0 .
$$

Suppose that f_{1}, \cdots, f_{l+1} are linearly independent over \boldsymbol{C}. Let f^{*} be the holomorphic curve induced by the mapping

$$
\left(f_{1}^{l+1}, \cdots, f_{l}^{l+1}, W\right): \boldsymbol{C} \rightarrow \boldsymbol{C}^{l+1},
$$

where $W=W\left(f_{1}, \cdots, f_{l+1}\right)$ is the Wronskian of f_{1}, \cdots, f_{l+1}.
Note that there is an entire function $d(z)$ such that the functions f_{ρ}^{l+1} / d ($j=1, \cdots, l$) and W / d have no common zeros.

Let $\left\{\tilde{\boldsymbol{e}}_{1}, \cdots, \tilde{\boldsymbol{e}}_{l+1}\right\}$ be the standard basis of \boldsymbol{C}^{l+1}. Then, we have
Theorem 5. Suppose that $\rho(f)<\infty$. For any $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}(n+1 \leqq q<\infty)$ in $X-X_{0}^{\prime}$, we have

$$
\sum_{j=1}^{q} m\left(r, \boldsymbol{a}_{3}, f\right) \leqq(\lambda+1) m\left(r, \tilde{\boldsymbol{e}}_{l+1}, f^{*}\right)+O(\log r) .
$$

Proof. Put

$$
\left(\boldsymbol{a}_{\jmath}, f\right)=F_{j} \quad(j=1, \cdots, q) \quad \text { and } \quad u(z)=\max _{1 \leqq \jmath \leq l}\left|f_{j}(z)\right| .
$$

For any $z(\neq 0)$ arbitrarily fixed, let

$$
\left|F_{\jmath_{1}}(z)\right| \leqq\left|F_{\jmath_{2}}(z)\right| \leqq \cdots \leqq\left|F_{\jmath_{q}}(z)\right| \quad\left(1 \leqq \jmath_{1}, \cdots, \jmath_{q} \leqq q\right) .
$$

Then

$$
\|z(f)\| \leqq K\left|F_{\rho_{k}}(z)\right| \quad(k=n+1, \cdots, q)
$$

(see Lemme in [1], p. 11),

$$
\left|F_{\jmath_{k}}(z)\right| \leqq K\|f(z)\| \quad(k=1, \cdots, q)
$$

and since the $l+1$-th elements of vectors $\boldsymbol{a}_{j}^{\prime}$ are different from zero,

$$
\left|f_{l+1}(z)\right| \leqq K\left\{u(z)+\left|F_{j_{k}}(z)\right|\right\} \quad(k=1, \cdots, q) .
$$

(I) The case when $u(z) \leqq\left|F_{\rho_{1}}(z)\right|$.
Since $\|f(z)\| \leqq K\left|F_{\rho_{1}}(z)\right|$ in this case, we have

$$
\begin{equation*}
\prod_{j=1}^{q} \frac{\left\|\boldsymbol{a}_{j}\right\|\|f\|}{\left|F_{j}\right|} \leqq K \tag{38}
\end{equation*}
$$

(II) The case when $\left|F_{\rho_{1}}(z)\right|<u(z)$.

We can find linearly independent l functions from $\left\{F_{\rho_{1}}, \cdots, F_{\rho_{n}}\right\}$ including $F_{\rho_{1}}$. Let $H_{1}\left(=F_{\rho_{1}}\right), \cdots, H_{l}\left(\left|H_{1}(z)\right| \leqq\left|H_{2}(z)\right| \leqq \cdots \leqq\left|H_{l}(z)\right|\right)$ be those functions and

$$
\left\{F_{\jmath_{1}}, \cdots, F_{\jmath_{n}}\right\}-\left\{H_{1}, \cdots, H_{l}\right\}=\left\{H_{l+1}, \cdots, H_{n}\right\} .
$$

Then, since $H_{1} \in X-X_{0}^{\prime}$, we have

$$
\|f\| \leqq K\left\{\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+\cdots+\left|f_{l}\right|^{2}+\left|H_{1}\right|^{2}\right\}^{1 / 2} \leqq K u(z) .
$$

Let $\boldsymbol{e}_{\imath_{0}}$ be a vector in $\left\{\boldsymbol{e}_{1}, \cdots, \boldsymbol{e}_{l}\right\}$ such that

$$
\boldsymbol{e}_{2_{0}}^{\prime}, \boldsymbol{b}_{j_{1}^{\prime}}^{\prime}, \cdots, \boldsymbol{b}_{j_{l}}^{\prime}
$$

are linearly independent over \boldsymbol{C} (see Lemma 8 (II)), where

$$
\left(\boldsymbol{b}_{\boldsymbol{j}_{k}}, f\right)=H_{k} \quad(k=1, \cdots, l) .
$$

Then, for a non-zero constant c

$$
W\left(f_{\imath_{0}}, H_{1}, \cdots, H_{l}\right)=c W\left(f_{1}, \cdots, f_{l+1}\right)
$$

We put $W=W\left(f_{1}, \cdots, f_{l+1}\right)$. Then,

$$
\begin{align*}
\prod_{k=1}^{l} \frac{\|f\|}{\left|H_{k}\right|} & \leqq K \frac{u(z)^{l}}{|W|} \cdot \frac{|W|}{\left|H_{1} \cdots H_{l}\right|} \tag{39}\\
& \leqq K \frac{u(z)^{l+1}}{|W|} \cdot \frac{\left|W\left(f_{2_{0}}, H_{1}, \cdots, H_{l}\right)\right|}{\left|f_{2_{0}} \cdot H_{1} \cdots H_{l}\right|}
\end{align*}
$$

and for $k=l+1, \cdots, n$

$$
\begin{equation*}
\frac{\|f\|}{\left|H_{k}\right|} \leqq K \quad \text { if } u(z) \leqq\left|H_{k}(z)\right| \tag{40}
\end{equation*}
$$

since $\|f\| \leqq K\left\{\left|f_{1}\right|^{2}+\cdots+\left|f_{l}\right|^{2}+\left|H_{k}\right|^{2}\right\}^{1 / 2} \leqq K\left|H_{k}(z)\right|$ and if $\left|H_{k}(z)\right|<u(z)$

$$
\begin{equation*}
\frac{\|f\|}{\left|H_{k}\right|}=\frac{\|f\|}{|W|} \cdot \frac{|W|}{\left|H_{k}\right|} \leqq K \frac{u(z)^{l+1}}{|W|} \cdot \frac{\left|W\left(f_{1}, \cdots, f_{l}, H_{k}\right)\right|}{\left|f_{1} \cdots f_{l} \cdot H_{k}\right|} \tag{41}
\end{equation*}
$$

By using (38), (39), (40), (41) and the following inequality

$$
\begin{aligned}
\sum_{j=1}^{q} \frac{\left\|\boldsymbol{a}_{j}\right\|\|f\|}{\left|F_{j}\right|} & \leqq K \prod_{k=1}^{l} \frac{\|f\|}{\left|H_{k}\right|} \cdot \prod_{k=l+1}^{n}\left|H_{k}\right| \\
& \leqq K\left\{\max \left(\frac{u(z)^{l+1}}{|W|}, 1\right)\right\}^{\lambda+1} \frac{\left|W\left(f_{2_{0}}, \cdots, H_{l}\right)\right|}{\left|f_{2_{0}} \cdots H_{l}\right|} \prod_{k=l+1}^{n} \frac{\left|W\left(f_{1}, \cdots, H_{k}\right)\right|}{\left|f_{1} \cdots H_{k}\right|}
\end{aligned}
$$

we obtain the inequality

$$
\sum_{j=1}^{q} m\left(r, \boldsymbol{a}_{j}, f\right) \leqq(\lambda+1) m\left(r, \tilde{\boldsymbol{e}}_{l+1}, f^{*}\right)+O(\log r)
$$

since $\rho(f)<\infty$.
Corollary 5. Under the same assumption as in Theorem 5, we have

$$
\begin{equation*}
\frac{1}{(\lambda+1)(l+1)} \sum_{\boldsymbol{a} \in X-X_{0}^{\prime}} \delta(\boldsymbol{a}, f) \leqq \delta\left(\tilde{\boldsymbol{e}}_{l+1}, f^{*}\right), \tag{42}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{(\lambda+1)} \sum_{\boldsymbol{a} \in X_{X} X_{0}^{\prime}} \delta(\boldsymbol{a}, f) \leqq \liminf _{r \rightarrow \infty} \frac{T\left(r, f^{*}\right)}{T(r, f)} \leqq \limsup _{r \rightarrow \infty} \frac{T\left(r, f^{*}\right)}{T(r, f)} \leqq l+1 . \tag{43}
\end{equation*}
$$

We can prove this corollary by Theorem 5 and Lemma 4 as in the case of Corollary 2 in Section 3.

Theorem 6. Suppose that f_{1}, \cdots, f_{l+1} are linearly independent over \boldsymbol{C}, $\rho(f)<\infty$ and that
(i) $\delta\left(\boldsymbol{e}_{,}, f\right)=1(j=1, \cdots, l)$.

If there exist $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}(n+\lambda+1 \leqq q \leqq \infty)$ in X such that
(ii) $\sum_{j=1}^{q} \delta\left(\boldsymbol{a}_{j}, f\right)=n+\lambda+1$,
then f is of regular growth and $\rho(f)$ is equal to a positive integer.
Proof. By Lemma 8 (I), X_{0}^{\prime} contains at most n vectors. We may suppose without loss of generality that

$$
X_{0}^{\prime}=\left\{\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{p}\right\} \quad(0 \leqq p \leqq n)
$$

Then from the hypothesis (ii), we have

$$
\begin{equation*}
\lambda+1 \leqq n+\lambda+1-p \leqq \sum_{j=p+1}^{q} \delta\left(\boldsymbol{a}_{\jmath}, f\right) \tag{44}
\end{equation*}
$$

(43) and (44) imply that

$$
\begin{equation*}
\rho(f)=\rho\left(f^{*}\right) \quad \text { and } \quad \mu(f)=\mu\left(f^{*}\right) \tag{45}
\end{equation*}
$$

The hypothesis (i), (43) and (44) imply that

$$
\begin{equation*}
\delta\left(\tilde{\boldsymbol{e}}_{j}, f *\right)=1 \quad(j=1, \cdots, l) \tag{46}
\end{equation*}
$$

Further, Corollary 4 (b), (43) and (44) imply that

$$
\begin{equation*}
\delta\left(\tilde{\boldsymbol{e}}_{l+1}, f^{*}\right)=1 \tag{47}
\end{equation*}
$$

By Lemma 2, (45), (46) and (47) imply that f is of regular growth and $\rho(f)$ is equal to a positive integer.

As in Corollary 3, we have the following
Corollary 6. Suppose that $\rho(f)<\infty$. If there exist $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}(n+\lambda+1$ $\leqq q \leqq \infty$) in X such that
(i) $\delta\left(\boldsymbol{a}_{,}, f\right)=1(j=1, \cdots, n)$,
(ii) $\sum_{j=1}^{q} \delta\left(\boldsymbol{a}_{\nu}, f\right)=n+\lambda+1$,
then f is of regular growth and $\rho(f)$ is equal to a positive integer.

References

[1] H. Cartan, Sur les zéros des combinaisons linéaires de p fonctions holomorphes données, Mathematica, 7 (1933), 5-31.
[2] A. Edrei and W.H.J. Fuchs, On the growth of meromorphic functions with deficient values, Trans. Amer. Math. Soc., 93 (1959), 292-328.
[3] W.K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[4] S. Mori, Holomorphic curves with maximal deficiency sum, Kodai Math. J., 2 (1979), 116-122.
[5] S. Mori, Order of a holomorphic curve with maximal deficiency sum for moving targets, Surikaisekikenkyusho-Kokyuroku, 819 (1993), 25-34.
[6] R. Nevanlinna, Le Théorème de Picard-Borel et la Théorie des Fonctions Méromorphes, Gauthier-Villars, Paris, 1929.
[7] M. Shirosaki, Another proof of the defect relation for moving targets, Tôhoku Math. J., 43 (1991), 355-360.
[8] N. Steinmetz, Eine Verallgemeinerung des zweiten Nevanlinnaschen Hauptsatzes, J. Reine Angew. Math., 368 (1986), 134-141.
[9] W. Stoll, An extension of the theorem of Steinmetz-Nevanlinna to holomorphic curves, Math. Ann., 282 (1988), 185-222.
[10] N. Toda, Sur une relation entre la croissance et le nombre de valeurs déficientes de fonctions algébroïdes ou de systèmes, Kodai Math. Sem. Rep., 22 (1970), 114121.
[11] N. Toda, Sur la croissance de fonctions algébroïdes à valeurs déficientes, Kodai Math. Sem. Rep., 22 (1970), 324-337.
[12] N. Toda, An extension of the derivative of meromorphic functions to holomorphic curves, Proc. Japan Acad. Ser. A Math. Sci., 70 (1994), 159-163.
[13] H. Weyl and F.J. Weyl, Meromorphic Functions and Analytic Curves, Ann. Math. Studies, 12, Princeton, 1943.

Department of Mathematics
Nagoya Institute of Technology
Gokiso, Showa-ku, Nagoya 466
Japan

