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ON THE ORDER OF HOLOMORPHIC CURVES WITH
MAXIMAL DEFICIENCY SUM

NOBUSHIGE TODA

1. Introduction

Let
f:C—P™C)

be a holomorphic curve from C into the n-dimensional complex projective space
P™(C), where n is a positive integer, and let

(fi s [ae): C—C7 = {0}

be a reduced representation of f. We then write f=[f1, -, fnsil-
For a vector a=(a,, ---, a,,;) in C**', we write

n+1 n+1 1/2
(@ =3 a,f, and lal={Z Ia,’}
=1 =1
and put
rl={g 111"
={ 21/ .
Then we define as usual the characteristic function of f as follows.

T(r, fr=p | log f(re*)|d0—log | FO)] .

In addition, put
U(z)= max |f(2)l,
1g7sn+1

then
URZIf@I=(n+1D)"U(2)
and we have

(1) T(r, fr= g\ log Ulret)d6 +0() (see [17).

We suppose that f is transcendental; that is to say,
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T@, ) _
m—=
- lOgv#

We denote the order of f by p(f) and the lower order of f by u(f), respec-
tively :

log T(r, f)

—li —lim inf 28T 1)
p(f)_hrl]ﬂiup—Toér—~ and #(f)—hgjinf .

log r

It is said that f is of regular growth if o(f)=p(f).
We write for a=(a,, -, a,,,) in C*"*'—{0} such that (a, f/)=0

m(r, a, f)—is log '”(““”]{)“' d6 and Ner, a, H=N(r, (al f)).

Then we have
(2) T(r, =N, a, f)+m(r, a, {)+0(1)

(the first fundamental theorem (see [13], p. 76)).
We call the quantity

oa, f)=1— llm L sup 7(17(, af{)

=lim inf mr, @, f)

ree T(r, f)

the deficiency of a with respect to f. It is easy to see that

0=d(a, /=1
by (2) since m(r, a, f)=0. Put
2=dim{(cl, Tty Cn+1)ECnH le + Cn+lfn+l:O}:

then it is easy to see that 0<A<n—1. We say that f is (linearly) non-
degenerate if A=0 and that f is (linearly) degenerate if 2>0.

It is well-known that f is non-degenerate if and only if the Wronskian
W(f1, =+, fasr) Of f1, =+, frs1 is not identically equal to O.

Let X be a subset of C**'—{0} in general position; that is to say, any
n+1 vectors of X are linearly independent. Then it is well-known that the
following defect relation is easily obtained from the fundamental inequality of
H. Cartan ([1]):

The defect relation. If f is non-degenerate,

(3) uezxé(a, fZn+1.

As a generalization of the case of meromorphic functions to holomorphic
curves, it is natural to ask the following problem :
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PROBLEM. What properties does f possess if the equality holds in (3)?

Our main purpose of this paper is to generalize the following well-known
result to holomorphic curves, which gives an answer to a special case of this
problem.

THEOREM A. Let f(2) be a transcendental meromorphic function of order
finite in the complex plane. If

oeo, =1 and 3 da, )=1

then f is of regular growth and the order of f(z) 1s a positive integer ([2], p.
299).

To prove Theorem A, the following result is essential.

THEOREM B. Let f(z) be as in Theorem A. Then for any a,, -+, a,&C
(<o),

Symir, a,, HSm(r, 1/f)+0(og )
(see [3], p. 89).

Our method to obtain a generalization of Theorem A is parallel to the case
of meromorphic functions. We shall first generalize Theorem B by using the
derived holomorphic curve introduced in [12] as an extension of the derivative
of meromorphic functions to holomorphic curves and then we shall give a
generalization of Theorem A.

The first attempt to extend Theorem A to holomorphic curves is the
following result due to Mori ([4]).

THEOREM C. Suppose that f is non-degenerate and p(f)<+oo. If there
exist @, -+, a; (n+1=g<+o0) in X such that
(i) the order of N(r, a,, f) is smaller than p(f) for j=1, -, n,

(i) 3 da, H=n+l,
then p(f) is a positive integer.

Remark 1. 1f (i) and (ii) of this theorem hold, then &(a,, f)=1 (j=1, ---, n)
(see [4], Remark 2).

We prepare several lemmas in Section 2 and give a generalization of
Theorem A for non-degenerate holomorphic curves in Section 3, which contains
Theorem C. In Section 4, we extend a result obtained in Section 3 to moving
targets. In Section 5, we treat the degenerate case.

We use the standard notation of the Nevanlinna theory of meromorphic
functions ([3], [6]).
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2. Lemma

We shall give some lemmas in this section for later use. Let f and X be
as in Section 1.

LEMMA 1. (a) T(r, f+/f)<T(r, H)+0Q) (k+j) ([1]).
(b) For any a, b in X such that (a, )0 add (b, )70,

T(r, (a, )/, H<T(r, /)+0) (1.
LEMMA 2. If there are n+1 elements a,, -, @yn,, in X such that
5(a.71 f)zl (]‘:17 Ty n+l);

then f is of regular growth and p(f) 1s equal to either a positive integer or
infinity ([11], Théoréme 3).

Put for any a;eX (=1, ---, n+1)
n+1
> N(r, a,, f)

K(f)= lin;lﬂiuD—]il—T(’rT‘ -

(see [10], Definition 3). Then we have the followings.

LEMMA 3. (1) If p=p(f) ts finite and non-integer,

Isintp| Lo
K(f)gZ-Zp—}-lsin 70l/2 ([11], Théoréme 1).
() If lH)<p(f), for any t#co such that p(f)<t<p(f)
Kzt |sin 7] ([11], Théoréme 4).

n  4-de(r+1)+|sinzc|

Note that f is not always non-degenerate in these two lemmas.
Suppose now that f is non-degenerate. Let d(z) be an entire function such
that the functions

7d (=L -, n) and W(fy, -, fan)/d
are entire functions without common zeros.
DEFINITION ([12]). We call the holomorphic curves induced by the mapping
(f{“‘l’ TN fg‘“’ W(fh e fn+1)): C__,Cn+1
the derived holomorphic curve of f and we write it by f*:

fr=0/d, o f77d, Wy, o, fae)/d].
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Remark 2. When n=1, f* corresponds exactly to the derivative of the
meromorphic function f,/f;.

Remark 3. The definition of f* does not depend on the choice of a
reduced representation of f (Proposition 1 ([12])).

LEMMA 4. When p(f)<oo,
T(r, fH=(n+1T(r, f/)—N(r, 1/d)+0(log )
(Lemma 3 ([12])).

In addition, f* has the following properties:

PrROPOSITION 1 ([12]). (a) f* is transcendental. (b) p(f*)=p(f).
(¢) f* is not always non-degenerate.

3. Non-degenerate case

Let f=[f1, -, fr+s1] and X be as in Section 1. We shall give a generali-
zation of Theorem A when f is non-degenerate in this section. We need
another lemma.

LEMMA 5. Suppose that [ s non-degenerate and p(f)<oco. For any
a, -, a; (n+1=g<) of X, we have

(g—n—1T(r, f)<fq§ N(r, a;, /)—N(@r, 1YW(fy1, =+, fa:1))+0(o0gr)
(see [1]).

Proof. We have only to change slightly the proof of the fundamental
inequality of Cartan ([1], p. 12-p. 15). We make use of the formula

1 (o= 1o F,
271, 18 ‘VVU__f__) 40
= é (r, ) N(r, () 1’ fn+1))+0(1)

instead of the inequality

o, 08 s

used in [1], where F,=(a,, f).
Since the error term S(») used in [1] is equal to a finite sum of integrals
of the form

< 3 Nalr, F+0()
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(k)
h;

1 21:1 .
EESO g h,

cee n n-1
| deroWs 3 kglm(r,

J+ow,

where h, is a ratio of the form F, /F,, (Ji#7.), it is easy to see that
S(r)=0(logr) (r—eo)

since h, is of order finite by Lemma 1 (b) and

m(r, h{®/h,)=0(ogr) (k=1, -, n—1) (see [6]).

COROLLARY 1. Under the same condition as in Lemma 5, if the equality holds
in (3), then
lim_l\l(ry l/W(fl’ ) fnﬁl,,)),:() .

indd T(ry f)
Let {e,, ---, e,,,} be the standard basis of C"*' and put
Xo={a=(ay, -, @n,)EX: ay,,=0}.

Since X is in general position, #X,<n.
We shall generalize Theorem B first.

THEOREM 1. Suppose that f is non-degenerate and po(f)<oo. For any
a, -, a, (1<g<eo) in X—X,, we have the following inequality:

Sym(r, a,, f)<m(r, en.s, H+0(l0g?).
]=l

Proof. We put
(a,, /)=F, (=L -, ) and u(z)=max|f,z)|
and for any z (#0) arbitrarily fixed, let
IF, (DS |Fya)| < =1F, ()] 1=714, », 14=9).
Then there is a positive constant K such that
UR)=KI|F, ()| (k=n+1, -, ¢

(Lemma in [1], p. 11),
|F,, ()| =KU(z) (k=1, -, q)

and since the n-+1-th elements of a, are different from zero,
| fra@| SK{u@)+|F,, ()} (k=1 -, ).

(From now on we denote by K a positive number, which may be different
from each other in each case where it appears.)
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(I) The case when u(z2)<|F, (2).
Since | f|=K|F,,(2)| in this case, we have

e llallllfl
(4) ,=Hl 7| —Z= 2 <K.

(II) The case when |F, (2)|<u(2).
Since
IAISK{f112 4 - 1 fo P+ Fy PP 2SS K(n4-1)Pu(z)

in this case, we have

o lallfl _one u@) W WGy )
&) B SE L K e TR Fo
_K u(z)n+l ) ‘W(FJ e F1n+1)|
‘W(fl’ T fn+1)1 IFJ . ]n-}-ll

since W(F,, ---, F,,, )=cW(fy, -+, fn+1) (c#0, constant).
From (4) and (5) we obtain the inequality

ém(r, a, f)

1 u(z)nﬂ W(F,,, -, F,.)
d0 1 nt+i1
<o "log* R e LA m(r, R T S )+ow

ém(?’, €n.i1y f*)+s(r: f);

where P is the summation taken over all combinations (jy, -+, Jas1)

Unwin+1)
chosen from {1, -+, ¢} and
S(r, )= ( M)+0(D
Gy Jn+1) j," Jn+1
=0(logr)

as in the case of Lemma 5. Thus, our proof is complete.

COROLLARY 2. Let f be as in Theorem 1. Then we have

(6) LB e, HSdenn 1,
(7) 2, 0 pstim int 7LD T I i sup L0 <y

T(r, ) = =" T(r, f)

We can easily prove this corollary by Lemma 4 and Theorem 1.
Now, we can prove a generalization of Theorem A, which contains Theo-
rem C.
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THEOREM 2. Suppose that f is non-degenerate, p(f)<oo and

(i) dle;, H)=1 G=1, -+, n).
If there exist a;, -+, ag (n+1=g=< ) in X such that

(i) 3 8a, NH=n+l,
then f is of rvegular growth and p(f) is equal to a positive integer.

Proof. Suppose that X, consists of a;, ---, a@;. Then, 0=</<n. By Corol-
lary 1, we have from (ii)

. N(r, YW (f1, =, fas) _
(8) lim T, ) =0.

By (7) and (ii), we have

g T %) T, f%
(9) 1§n+1—l§j§16(a,, f)élltggonf e P §1”§_,§°‘19 AC) <n-+1.

This relation (9) implies that f* is transcendental,

10) o(f¥=p(f) and u(f*=pf).
From (8) and (9), we have

1D d(enss, =1

and from (i) and (9)

(12) ale, fH=1 (=L, -, n).

By Lemma 2, (10), (11) and (12) imply that f is of regular growth and p(f) is
a positive integer since the set {e;}7& is in general position.

COROLLARY 3. Suppose that f is non-degenerate and p(f)<co. If there are
a, -, a;in X (n+1<g<oo) such that

(i) oa,, =1 G=1, -, n);

() 3 da, H=n+1,
then f is of regular growth and p(f) is equal to a positive integer.

Proof. Put
(a,, )=F, (=1, -, 9

and let M be the (n+1)X(n+1) matrix whose j-th row is a, (j=1, -, n+1).
Then F,, ---, F,,, are linearly independent and have no common zeros, M
is a regular matrix and

t(Fh ) Fn+1)=Mt(f1; ) fn+1)~
Let F be the holomorphic curve induced by (Fy, -, F,,,); that is to say, F=
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[Fy, =+, Fr]. Then
(13) T(r, F)=T(r, /H+0Q1) (11, p. 9),
and so F is transcendental, o(F)=p(f) and p(F)=p(f).

Put
Y={b=aM™: acX}.

Then, Y is in general position, (a, f)=(b, F) and by (13)

(14) da, f)=d(b, F),

where b=aM™ (acX). Let Y ,={bsY : the n+1-th element of b=0} and put
by=a;M™* (=1, -, ¢).

Then, b;=e, (j=1, ---, n+1), Y,={e;, -, e,} and by (14)
(iy ob;, =1 (j=1, -, n);

(iiy él b, F)=n+1.
=
Let P(z) be an entire function such that the functions
F1*/P, -, F3*Y/P, W(Fy, -+, Fn.1)/P
are entire functions without common zeros. Then,
F*=[F{*/P, -, F3"'/P, W(F\, -+, Fu.1)/P].

Applying Theorem 2 to F and Y, we have this corollary.

4. Extension

Let f=[fy, -, fa+1] be a transcendental holomorphic curve from C into
P*»(C). We use the same notation as in Section 1. Let So(r, f) be any quantity
satisfying

Sor, £l=o(T(r, f)) (r—o0)

and [” the field consisting of meromorphic functions a in |z| <o such that
T(T, d)=So(7‘, f)'
Throughout the section we suppose that f is non-degenerate over /. Let

(A . holomorphic curve from C into P*(C)
So(f)={4={as, -, @il guch that T(r, A)=Si(r, f) }

and let H be a subset of S,(f) in general position. It is clear that S,(f)DP*(C).
For A=[a,, -+, a,.,1E8,(f) we set

(Ay f)=a!f1+’ +an+1fn+1 .
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Then, we have the following
PROPOSITION 2. (a) a./a;=I" if a;#0. (b) (4, f)=0.
Proof. (a) Applying Lemma 1 (a) to 4, we have
T(r, ax/a))<T(r, A)+01)=Si(r, f).

(b) Since there is at least one a;#£0 (1=<;7<n-+1),

a

A, 1 a n+l
Y —a]fl+ + a, fre
is a linear combination of f;, -+, fa,1 Wwith ['-coefficients. As f is non-

degenerate over I, (A, f)/a;#0. That is, (4, f)z0.

We put

_ L AN
m(r, A, f)—z—”s0 Iogl(A, f);da,

which is non-negative as in Section 1 and independent of the choice of reduced
representations of f and A4, and

N(r, A, f)=N(r, 1/(4, f)).
Then we have the first fundamental theorem :
T(r, f)=m(r, A, )+N(r, A, [)+Sir, f).
The defect of A with respect to f is defined as follows:

_em(r, A, f)
o4, f)—l1r}linf——~—T(r’ )

which is equal to
. N(r, A, f)
1—lim sup—3—>2>~
EPTTe

by the first fundamental theorem. Then, 0=d(4, f)<1.
The defect relation ([9], see also [7]):

2,04, fl=n+1.

Similar to Problem in Section 1, we would like to know what properties f
has when the equality of the defect relation holds.
Concerning this, Mori ([5]) has recently proved the following

THEOREM D. Suppose that p(f) is finite and that
N(r, 1/f)=S«(r, f) and T(r, fi/f0)=Sdr, ) (=2, -, n).
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If there exist A, -+, Ay (n+1=q<c0) in H such that
3104y, H=n+1,
then f is of regular growth and p(f) is a positive integer.

The purpose of this section is to improve this theorem by applying the
idea used in the proofs of Theorems 1 and 2 to the case of moving targets in
the usual way (see, for example, [7], [9], [5]). We need the following lemma.

LEMMA 6. For any A=[a,, -+, @n.1] and B=[by, -+, bpu1] of So(f) such
that a;#0, b,=0, put (A, f)=F and (B, f)=G. Then,

F/a,
T(r, e )§2nT(r, £)+Sor, f).

Proof. Since

Ler={3 @sart /{E wrmor)

={3 @rantu ol {E @i o},

F/a, nxl Sy a, by
7(r, G/bs )éé{?j(r’ 12 )+T(r' aj>+T(r’ by )}+O(1)
<2nT(r, f)+Sor, f)
by Lemma 1 (a) and Proposition 2 (a).
For A=[a,, -+, an.,] of H, let a, be the first element not identically

equal to zero. Then we put

f—(-%r ... Gaxi)\_ A= F—14-

A=l )= s gan)s IAL=AY 0,y A={A: A<H)

and for (4, f)=F
F=Fla,=(4, =3, 8,/

Then, it is clear that H is in general position and g,=aj/a, &I by Prop-
osition 2 (a).
Put
Hy={A=[a,, -, @z JEH: ar,,=0}.

Then we have

THEOREM 3. Suppose that p(f)<oco and that
(i) dle, NH=1 (=L -, n).
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If there exist Ay, -+, Ay (n+1=qg=<c0) in H such that
() 304, H=n+1,

then, f is of regular growth and p(f) s equal to a positive integer.

Proof. We may suppose without loss of generality that g=2n41. If the
number of the set Q={A=H:0(A, f)>0} is not greater than 2n, we have
only to add a finite number of A<H such that o(4, /)=0 to @ so that
g=2n+1. This does not affect our result.

Let ¢ be any positive number smaller than 1/4. Then, there exists a finite
number v (=2n+1) such that

(15) 2 &(A,, f)>n+1l—¢.
Put for j=1, -, v

AJ:[aJy ) a]n+1:| and A~,=(g,l, ) gjn+1)'

For any integer p, let V(p) be the vector space generated by

{nIJfI1 lvl gauk nf)l EV) (U, B)Zp, p(5, k)=0 and integer}
k=1 jy=1 k=1 3=1
over C and

d(p)=dimV(p).
Then, V(p) is a subspace of V(p+1) and
lim inf d(p+1)/d(p)=1
Do

since d(p)g(““ﬁ”“’) (see [8], see also [9]).

Note that any element of V(p) belongs to [’ since g1
Let p be so large that the following inequality holds:

(16) d(p+1)/d(p)<l+e/(n+1).
Let
by, 5 bawys bapr+n  bapen
be a basis of V(p+1) such that
by, -, baem
form a basis of V(p). Then, it is clear that the functions
{befr:t=1, -, d(p+1); k=1, -+, n+1}

are linearly independent over C. We put for convenience
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W=W(bifs, bofs, = bacpefass)-
Then, we can prove the following inequality as in [7]:
(17 NG, 1/W)+d(p)Yy—n—DT(r, £)
<d(p) 3N, 4y NFHADIp+D =AY T(r, S, )

since p(f)<oo and logr=>Sy(r, f).
We put

(18) (A, H=F, (=1, -, ).

Suppose without loss of generality that H, consists of A4,, ---, 4;. Then,
0<I<n. Let z be a point of C—{0}. We rearrange {F}3_,., as follows.

B ()= Fye) = - <I|F, ()< | F,_ 2],

Whel‘e l+1§]1, ttt jv-léu'
From now on we use S(z, f) as a non-negative function defined on C such
that

L (o= + i6 —
5=\ l0g*S(re®®, 1)d0=5\r, 1),

which may be different from each other in each case when it appears.
It is easy to see by a simple calculation that for k=n+1

(19) Uz)=S(z, f)IF, )
and that for =1, ---, v—I/
(20) |F, (2)|=S(z, /U(2),

where U(z):1 Smgaxll fi(z)|. We then have the following:
Jsn+

o AN o 1AL e
@ (;:ILIH[(AJ, f)]) —v(] i1 [ﬁ]
d(p) “f“ d(p) s v-l ”f” d(p)
( z+1“A]") ( ]ﬁ‘ |) (k n+1|ﬁj |)
I e
S
<S(z, f)(nlﬁ”i)

from (19) since 4;€ HCS(f) and UL| flI<(n+1Y*U. We put
u(z)=max | f(z)|.

It then holds that

(22) | fri(@ S, OUE, @) +u@)} (k=1 -, v—1)
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since ay;,,,70 for any A;cH—H,.
(I) The case when u(z)<|F;(z)|. In this case, from (22)

I71=S@ NHIF,@] (k=1 -, n)

and we have

ISl e
(23) (Ellﬁ‘;k(Z)l) <SGz, 1)

(O) The case when |F 7,(&)| <u(z). In this case, from (22) for k=1
I fI1=S(, flu(z)

and we have

|l \ew uee
2 iE,@) =C D -
(24) ('};Illﬁfk(z)l) =S(= f)<H ‘ﬁ”(z)l) @

Now, F FIPRIN F in+; are linearly independent over I" and it is easy to see
that

{blﬁjli bgﬁ:l, Tty bd(P)FJni'l}

are linearly independent over C. From (18), these functions can be represented
as linear combinations of

{befr: 1st=d(p+1), 1=sk=n+1}
with constant coefficients:
(blﬁhy bzﬁj,y Ty bd(p)ﬁ‘jnq-l):(blfly bsz tty bd(p+1)fn+1)Dx

where D; is a (n+1)d(p+1)X(n+1)d(p) matrix whose elements are constants.
The rank of D, is equal to (n+1)d(p). Let D, be a

(n+1Dd(p+1)X(n+1D{d(p+1)—d(p)}
matrix consisting of constant elements such that the matrix

D=[D,D;,]
is regular. Put

(G, =+, GL)=(b1f1, bafr, 5 bapen frs1)De,
where L=(n+1){d(p+1)—d(p)}, then
O:Fyy o bawr Py G 0y GO=00S1, -+, bacpan frn)D
from which we obtain
(25) Wiy ) Jne)=WOBE,, -, Gr)=(det DW
where W=W(b.f1, -+, bapsvy fnsr)-
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We then have from (25)

1 __IW(]'D ) ]n+1)l‘_ 1 -
n a(p) Wlldet D n d(p)
(kl;Illﬁ’kl) [W1|det D] (,};Illﬁul)

(u@)4® Wy, =, Jas)l
W] |0,F, b, F, -+ Gy

since  |Gy(2)|<S(z, NHUR) (j=1, -, L), |Fri(2)| <SG, fUR) and U<
S(z, f)u(z) in this case. Note that b,/ and det D=0.
Further, by using the inequalities for j=1, ---, L

(26)

=S5(z f)

T(r, G;/b.F, )<2nT(r, ))+So(r, 1),

which we can prove as in Lemma 6 since b, (1<i<d(p-+1)), and by Lemma
6, we have

l 2] |W(]ly ) jn+1)‘
27 —\ logt——3F—"—""d0=0(
@7 ZnSo 08 |b1ﬁ‘]1...GL| (log )

as usual (see [1]) since p(f)<oo.
From (21), (23), (24), (26) and (27), we have

) 1 (on {u(reiﬁ)}(n+1)d(p+l)
< + \ANE A
@) dp) 3 mir, A, H= 5| log A0S, ).
Let g(z) be a meromorphic function such that the functions
1
&(z)
are entire functions without common zeros.
We put

n+1)d(p+1 1 .. _l__
{fi(z)} nrhra@*h (43=1 ..., n) and g(z)W

1 1 1
h*:[—— D@D L (YDA ]
g(fx) g(f) gW

Then, we have the inequality
(29) T(r, R)=(n+Dd(p+DT(r, f)+S«(r, f)

(cf. Lemma 4) by using the inequality

Ner, S(n+Dd(p+1)" 5 N, b)=Si(r, ).

From (28) and (29), we have the following as in the case of (7):
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(30) A 33,04, N} stiming ")
. T(r, h*)
éhryﬂiup T(r’—ﬁ-é(n+l)d(p+l)
and from (15), (16) and (17) we have
31) lirxgqsmup N—,gfi(;l/%<2ed(p) .

From (30) with (15) and 0</<n we have as in the case of (10)
p(f)=p(h*) and u(f)=p(h®).
Suppose further that p(f) is not an integer. Let ¢ satisfy
0<4e<min{l, |sinwp|/(2. 20+ |sin mp|/2)},
where p=p(f). By the hypothesis (i), (15), (30) and (31)

n+1 *
2 N(ry e]r h‘ ) 26

) —1i J=1 —< —
(32) K(h*) hriljoup T e S1—2 <4e

since ¢<1/4. This inequality contradicts with Lemma 3 (1). This shows that
o(f) must be an integer. Due to Corollaire 1 in [11], u(h*) is positive, since

5(9.7’ h*)>0 (]:11 Tty n+l)

by the hypothesis (i), (15), (30) and (31). This implies that p(f) is a positive
integer.
Suppose next that f is not of regular growth. Let ¢ satisfy

. n+1 |sin 77|
0<de<min{L, X 4 de(e+ D)+ | sin 77| }

where p=p(f) and p=p(f). Then, as in the case of (32), we have
K(h*)<4e,

which contradicts with Lemma 3 (II) since o(f)=p(h*), p(f)=p(h*). This
shows that f must be of regular growth.
Our proof is complete.

5. Degenerate case

Let f, X and 2 be as in Section 1. Throughout the section we suppose
that 4>0.

LEMMA 7. Let ai, -+, @nyy be any n+1 elements of X and put
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(ajy f)ZFJ (]:1: Tty n+1>'

Then, the holomorphic curve F wnduced by (Fy, .-+, Fn..) is transcendental. Fur-
ther, if we put

Vi={(dy, -, dps)EC™" 1 d\Fy+ - dp1Fryy =0},
then dim V/=A.

Proof. Since it is known ([1]) that
T(r, F)=T(r, /)+0(1),

it is trivial that F is transcendental since so is f.
Let M be the (n+1)X(n+1) matrix whose j-th row is @, Then, M is
regular and
t(le Uy Fn+l)=Mt(f1: Ty fn+l)-

It is clear that for V= {asC™*': (a, f)=0}
acsV if and only if aM 'V’
and A=dim V=dim V".

By the definition of 4, there are n-+1—2 functions in {fy, .-+, f..:} Which
are linearly independent over C. We suppose without loss of generality that

fi, ©**, fas1-2 are linearly independent over C. Then f,,._z, -, fn+1 can be
represented as linear combinations of f,, -, f,,1_2 with constant coefficients.
Put

U1(2)=]§Jr§133§_] [fi2)]!.
We then have the following.
ProOPOSITION 3. T(r, f)=—21?gzﬂlogUl(rew)dﬂ—}-O(l).

Proof. 1t is trivial that

(33) U,(z2)ZU(z).

On the other hand, since fn.,s_2, =+, fns1 are linear combinations of
f1, *, fas1-2 With constant coefficients, we have
(34) U(z)SKU\(2),

where K is a positive constant. From (1), (33) and (34) we have our result.

From now on we put
n—A=l
for simplicity.
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For any a=(ay, -+, @,,;) of C"** such that (a, f)#0, there exists only one
vector a’=(aj, -+, a}41, 0, -+, 0) of C™*! such that

(a, N)=(a’, [)

since fi,s v, fns1 can be uniquely represented as linear combinations of
f1 ++, fi.1 with constant coefficients. We map a to a’. In this mapping, we

put
Xi={asX: a;,,=0}.

LEMMA 8. (1) The number of vectors of Xi ts at most n.

(II) For any vectors a,,, -+, @,, 1=m=l) of X—X; such that aj,, -, a;, are
linearly independent over C, we can choose e,, -, e, _, from {e;, -, e}
such that
’ 7 ’ 7
€1 s oy Ay 5 Ay

are lineariy independent over C.
(II) There is a subset X} of X{ such that #X{<2 and such that (x) from any
n+1 vectors @y, -, @nyy of X—X{, we can find I+1 vectors a,, -+, a,,, for
which

(alp f): Tt (all+17 f)

are linearly independent over C and a,,.,, -, @,,,, do not belong to Xi.

Proof. (1) Suppose that X; contains n-+1 vectors by, -+, b,,:. Put
by, )=G, (=1, -, n+1).

By Lemma 7, there are [+1 functions (say, Gy, -+, Giy1) in {Gy, ==+, Gayi} and
linearly independent over C. There is a regular matrix B such that

t(Gl: T Gl+l):Bt(f1) ) fl+1)'

On the other hand,

G]:(b;? f) (]=17 R n+1)x
where
b.;:(b}p ) b;p 0, -, 0) (J:L <oy ntl).

This means that the /+1-th column of B is 0 and B is not regular.

This is a contradiction. Xj contains at most 7 vectors.
(II) This is because the rank of mX(/+1) matrix whose k-th row is aj, is
equal to m.
() X¢=0 when X;=0. Otherwise, let Xo={b,, ---, by} (1<p=<n), B’ the
pX(+1) matrix whose j-th row is b; and s=rank B’. Then 1<s<min(p, [+1).

We may suppose without loss of generality that b;,,, ---, b} are linearly inde-
pendent over C. Then, £<A. In fact, for any b,.,, -+, bp,, EX—X,, there are
[+1 linearly independent vectors in {b{, ---, by.,} and so it must be n+1—Fk=

!+1. That is, £<A. Put
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(I)/: {bl, Tty bk}
Then, it is easy to see that X7 has the desired property (x).

LEMMA 9. Suppose that fi, -+, fi.1 (I=n—2R) are linearly independent over
C and p(f)<oo. Then for any ai, -, @ (n+1=<g<o0) of X—X{, we have

;:)lm(r, a, H<(n+DT(r, f)—l—XnglN(r, e, [)—(A+1)N(r, 1/W)+0(logr),
where W=W(fy, -, fis1)-

Proof. Put
(a,’lf f)':F] (]":ly ) Q)-
For any z (0), let
[Fy (D), -, |F;,. (2]

be the least n+1 values of {|Fy(2)|}%-; and let |F, ., (&), ---, ]F;q(z)| be others.
For a positive constant K, it holds that

|F@ISK max [F, ()]

and
IF)| <K[fI =L -, ¢q

as in Proof of Theorem 1, since U(z)Z| f(2)|| £(n+1)"2U(z). At the point z

< aslllfl g IS net | £l

Hop =K p, =KL iF,
— IIf”n+1 IW(FJP “'JF]H-I)' n+1 |W<f1) Tty fl; F]i!
_KIW’AH' 1+1 '2}12 lF]ii T

where we suppose without loss of generality that F,, -, F,,, are linearly
independent over C and F,, (=[+2, ---, n+1) do not belong to X; by Lemma 8
(). Integrating both sides of this inequality from zero to 2w with respect to

0 (z=re'%), we have this lemma as in Lemma 5, since for i=/[+2, -+, n+1
W(fl’ ) fl’ F]i>=f f W(fl; tty fly Fji)
F,, ! t fi fuFy, :
THEOREM 4. Suppose that fi, -+, 1.1 are linearly independent over C and
o(f)<co. Let a;, -, a;, (n+A+1=<g<co) be any elements of X such that
XiNnia,, -, a=1{a,, -, ar}. Then we have

CON S E I )
S(n+A+1T(r, f)+2§N(n e,, [)—QA+1LN(r, 1/W)+0(logr),
where W=W(f,, -+, f141) and Xl is the set obtained in Lemma 8 (I).
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Further if d(e,, f)=1 (=1, -+, 1), then

(36) 38, NSntl+ 3 o@, Hn+i+l,

Proof. We first note that 0<k<1 by Lemma 8 (II). Applying Lemma 9
to {@ps1, =+, @}, we have

(37) 2 mr a, )
S(HDT(, N+AZNG, € =@+ DN (7, 77)+00og 7).

Adding >%_,m(r, a,, f) to both sides of (37), using
m(r, a;, ST (r, [)+0(1)
and noting 2<21, we have (35).

If dle, f)=1 (j=1, ---, 1), then from (37) we have

Zq‘, da, fl=n+1.

I=F+1

Adding X%.,d(a,, f) to both sides of this inequality, we obtain (36).

COROLLARY 4. Suppose that f,, ---, fi.1 are linearly independent over C,
o(f)<eo and that
(i) d(e, f)=1 (=1, -, D).

If there exist a,, -+, a; (n+A+1<g<c0) mn X such that
(ii) Z"; a, f)=n-+i+1

and such that

Xinday, -, ajt ={ay, -, a;},
then
(a) k=2 and 5(“], f)=1 (]:1! ) 'z)y
. N(r, /W)
® e sy

Proof. (a) From the hypothesis (ii) and (36), we have

k
n+z+1=]é5(a,, HEnt+1+ 3 a, HSnta+l,

so that we have
k=21 and d&a, f)=1 (3=1, -, 2).

(b) From (35) of Theorem 4 and the hypothesis (i), we have

N(r, 1/W)
T(r, 1)

i}la(a,, £)+(+1) lim sup <n+i+l,
1= T-00
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so that by the hypothesis (ii) we obtain

lim N(r, 1/W)

o,

Suppose that f,, ---, f;,, are linearly independent over C. Let f* be the
holomorphic curve induced by the mapping

(Y, e, fIL, W) 00,

where W=W(f,, ---, fi.1) is the Wronskian of f,, -+, fi.1.

Note that there is an entire function d(z) such that the functions fi*'/d
(7=1, ---, ) and W/d have no common zeros.

Let {é,, ---, e;.,} be the standard basis of C'**. Then, we have

THEOREM 5. Suppose that p(f)<oco. For any a,, -, aq (n+1=g<) in
X—Xi, we have

S m(r, @), HSA+Dmr, @, SH+0(logr).

Proof. Put
(a,, /)=F, (=1, -, q) and u(z)=max| f(z)|.
For any z (+0) arbitrarily fixed, let

lel(z)l§|Fjg(z)|§ élF]q(Z)I (léjh Tty ]ng)'

Then
Iz HISKIF, ()] (k=n+1, -, g)

(see Lemme in [17, p. 11),
|F, =Kl f(a)] (k=1, -, q)
and since the /+1-th elements of vectors a; are different from zero,

[fin@|=K{u@)+|F, (2|} (k=L -, q).

(I) The case when uw(z)<|F, (2)].
Since || f(2)|<K|F,,(2)| in this case, we have

o lajllf]
(38) O7F

=K.

(I) The case when |F, (2)| <u(2).
We can find linearly independent !/ functions from {F,, ---, F, } including F,,.

Let H, (=F,), -, Hi (|H\(2)|<|Hy(2)|< --- <|Hy(2)]) be those functions and
{F.?‘) Tty an}—{Hl) Tty Hl}: {Hllrl; Tty Hn}'
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Then, since H,eX—X;, we have

IAl=KAL 1P+ o2 e ] fol P T HL PP < Ku(2).

Let e,, be a vector in {e,, ---, e;} such that
e, by, o, by,
are linearly independent over C (see Lemma 8 (II)), where
(bj,, )=H, (k=1, -, D).
Then, for a non-zero constant ¢
W(fay Hyy -, H)=cW(fy, ) fra).

We put W=W(f,, -+, fi.1). Then,
L4

(39) g, =8 T H
<K u(z)l+1 . |W(f10’ Hl) Tty Hl)v!
=T T
and for k=I[+1, -, n
(40) -‘"I;‘:'ng if wz)< |Hi(2)|
since [ FISK{|filt4 - + | fol*+ | H, |9 = K| Hy(2)| and if |Hy(@)| <u(z)
WAL UL WL _ o u@ W (Fs -, fi, H)l
4D AR N Ty A

By using (38), (39), (40), (41) and the following inequality

o el fl_ b 1AL a IF)
D AR LYy AR LWy

W@ N AW (foy oy H) 2 (W, -, Hy)
<K fmax(E557 1)) Fu Hil a3 I fi Hil

we obtain the inequality
Symlr, @, A+, e, S9+0(log )
since p(f)<oo.

COROLLARY 5. Under the same assumption as in Theorem 5, we have

L S ba, H=0@n, ),

(42) GFDAFD) sexs
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/%) i sup L L7

m sup —

L
oa, f)<11m1nf T(,f) =lim sup 7= ~<[+1.

43 (A+1)a eX X

We can prove this corollary by Theorem 5 and Lemma 4 as in the case of
Corollary 2 in Section 3.

THEOREM 6. Suppose that f,, -+, fi.1 are linearly independent over C,
o(f)<oo and that

(i) dCe;,, H=1 (j=1, -, D).
If there exist a,, -+, ay (n+A+1=<g<o0) in X such that

.o q
(ii) ,‘2"‘15(‘1” fl=n+i+1,
then f 1s of regular growth and p(f) is equal to a positive integer.
Proof. By Lemma 8 (1), X{ contains at most n vectors. We may suppose
without loss of generality that
Xi={a, -, ay} (O=p=n).

Then from the hypothesis (ii), we have

(44) AHlEntatl—p< S da, f).

J=p+1

(43) and (44) imply that

(45) p(f)=p(f*) and  p(f)=p(f*).
The hypothesis (i), (43) and (44) imply that

(46) ae, fMH=1 (=L -, .
Further, Corollary 4 (b), (43) and (44) imply that

(47) 0@, f¥)=1.

By Lemma 2, (45), (46) and (47) imply that f is of regular growth and p(f)
is equal to a positive integer.
As in Corollary 3, we have the following

COROLLARY 6. Suppose that p(f)<oco. If there exist a,, ---, @, (n+i+1
<g< ) in X such that
(i) oa, /=1 G=1, -, n),
(ii) ,éa(“” Fl=n+a+1,
then f is of regular growth and o(f) is equal to a positive integer.
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