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VOLUME MINIMIZING SUBMANIFOLDS IN COMPACT
SYMMETRIC SPACES

BY HIROYUKI TASAKI

In this note we consider two methods in order to investigate volume minimizing
submanifolds in compact symmetric spaces. The first is calibration ([4]) and the second
is integral geometry. We can show that certain submanifolds are volume minimizing in
their real homology classes using calibrations. A calibration is a closed differential form
on a Riemannian manifold which satisfies a certain inequality. A definition of calibrations
will be given in Section 1. On the othor hand we can prove that certain submanifolds
are volume minimizing in its homotopy classes using integral geometry. We shall use a
generalized Poincare's formula in Riemannian homogeneous spaces given by Howard [7].

1. Calibrations

Let M be a Riemannian manifold with a closed p-form φ on M which satisfies the
following inequality:

φ\ξ< vo\ξ

for any oriented tangent p-plane ξ on M. Such a form φ is called a calibration. Then any
compact oriented p-dimensional submanifold TV in M with the property:

φ\pj — Voljy

is volume minimizing in M, that is,

vol(TV) < vol(TV')

for any compact oriented p-dimensional submanifold TV' such that [TV] = [TV7] in the
homology group HP(M\ R). We say that φ calibrates TV. Using Stokes' theorem we get

vol(TV) = / vol v — I Φ= I Φ ̂  I voljy ' — vol(TV').
JN JN JN' JN'

The equality holds if and only if φ\N> = voljv'
The fundamental 2-form of a Kahlar manifold is one of important examples of cli-

brations. It satisfies Wirtnger's inequality, which is stated as follows. Let M be a Kahler
manifold with fundamental 2-form ω. Then

1 k

K .

for 1 < k < dimcM and any oriented tangent 2fc-plane ξ on M. Therefore — ωk is a

calibration on M. The equality holds if any only if ξ is a complex plane with a canonical
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orientation. So it follows that a compact Kahler submanifold of a Kahler manifold is
volume minimizing in its real homology class.

A similar inequality on a quaternionic Kahler manifold is given by Berger [1]. As a
conclusion a compact quaternionic submanifold in it is volume minimizing in its real ho-
mology class. Quaternionic symmetric spaces are classified by Wolf [16] and quaternionic
submanifolds in them are investigated in [14].

We assume that M is a compact symmetric space. We denote by G the identity
component of the group of all isometries of M. We take and fix a point x in M and
denote by K the isotropy subgroup of G at a?, that is,

K = {g G G\g(x) = x}.

Then K acts linearly on the tangent space TX(M) to M at x in the following way.

k υ = (dk)x(v) ϊoιv£Tx(M).

The following isomorphisms are important for constructing calibrations on compact sym-
metric spaces.

H*(M\ R)

= {harmonic p-forms on M}

= {parallel p-forms on M}

= {G-invariant differential p-forms on M}

= {K'-invariant alternating p-forms on TX(M)}

We denote by g and £ the Lie algebras of G and K respectively. Let

0 = * + p

be a canonical direct sum decomposition of g, which satisfies

[*,p]cp, [p,p]c*.
Since the quotient space G/K are diffeomorphic to M, we can identify p and the tangent
space TX(M). The action of K on TX(M) is nothing but the adjoint action of K on p
through the identification. Hence we get

HP(M] R) = {Ad<~(A')-invariant alternating p-forms on p}.

If ω is an AdG(A')-invariant alternating p-form on p, then we can extend ω to a parallel
differential p-form ώ on M. If ω satisfies an inequality ω\ξ < vol^ for any oriented p-plane
ξ in p, then the same inequality holds at each point in M, that is, ώ is a calibration on
M.

Dao Chong Thi [2] constructed a calibration of degree 3 on SU(n} and proved that
517(2) in SU(ri) is volume minimizing in its real homology class. Moreover I constructed a
calibration α of degree 3 on a compact simple Lie group and proved that a 3-dimensional
compact Lie subgroup GI associated with the highest root is volume minimizing in its
real homology class in [13]. Instead of giving an explicit definition of GI, we give some
examples of GI. In the case that G = Sϊ7(n), GI is 517(2) naturally embedded in SU(ri).
In the case that G = 5O(n), GI is SU(2) naturally embedded in 50(4). In the case that
G = 5p(n), GI is 5p(l) naturally embedded in 5p(n).

We can see that the first conjugate locus F of G determines a closed current of
codimension 3, using the stratified structure of F, which is investigated by Sakai [10]
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and Takeuchi [12]. We denote by * the Hodge star operator on G. *α is a calibration
on G and calibrates the first conjugate locus of G. In particular, the current determined
by F is mass minimizing in its real homology class. It is a general result that *ψ is a
calibration if and only if ψ is a calibration.

This method is useful for some of the other compact symmetric spaces. For example,
the following theorems hold.

THEOREM 1.1 ([3]). SO(m)/SO(p) x SO(m - p) is volume minimizing in its real
homology class in SO(n)/SO(p) x SO(n—p), i f n > m and if p is an even integer which
is greater than or equal to 4.

THEOREM 1.2 ([15]). Sp(m)/Sp(p) x Sp(m — p) is volume minimizing in its real
homology class in Sp(n)/Sp(p) x Sp(n — p)} if n > m.

2. Integral geometry

In this section we shall consider an estimate of the volumes of submanifolds from
below in some compact symmetric spaces from a viewpoint of integral geometry under cut
loci. As an application of this estimate we can prove that Helgason spheres in certain
compact symmetric spaces are volume minimizing in the class of submanifolds whose
inclusion maps are not null homotopic.

We review integral geometry, especially Poincare's formula. We assume that σ, τ are
curves with finite lengths in the plane R2 and M(R2) is the group of isometries of R2

with Haar measure /f/v/(R2)- Then the following formula holds.

JM
= 4L(σ)L(r),

/M(R2) % '

where L(σ) is the length of σ. This is called Poincare's formula. Many mathematicians
Santalo, Chern, Gelfand and others have extended and generalized this formula. Among
them R. Howard generalized it to the case of Riemannian homogeneous spaces. We
take submanifolds M and N in a, Riemannian homogeneous space G/K and assume
diήiM -f dim TV = dim(G/K). The following formula is a special case of that given by
Howard [7].

O JMxN

where σ# is the average of angles between tangent subspaces under the group action.
We shall use this formula later.

Next we give a definition of the cut locus in a compact connected Riemannian
manifold. We assume that M is a compact connected Riemannian manifold and denote
by Exp,p the exponential map at a point # in M. We consider the geodesic t ι—»• jχ(t) =
Έ,xpxtX with unit initial direction^. *γχ is a minimizing geodesic joining x and jχ(t)
for a small t, but there exists the last point jx(te(X)) where this minimizing property
holds. We call such a point the cut point of x along *yχ. The cut locus CX(M) of x in M
is defined by the set of all cut points of x.

CX(M) = { j χ ( t 0 ( X ) ) I X G y*(M), \X\ = 1}.
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Then BX(M] = M - CX(M) is an open ball and M = BX(M) U CX(M). By this decom-
position we obtain the following lemma.

LEMMA 2.1. Let N be a subset of M whose inclusion map is not null homotopic.
Then N Π CX(M) is not empty for any x in M.

From now on we assume that M = G/K is a compact simply connected irreducible
symmetric space. The class of compact symmetric spaces contains all compact simple
Lie groups, all kinds of Grassmann manifolds and etc. The cut locus in M is not a sub-
manifold in general but has a nice structure. There is a submanifold CX(M) which is
open and dense in CX(M) and the singular set CX(M) — CX(M) is stratified by finitely
many submanifolds whose dimensions are less than dim(Cj!(M)). This structure theorem
was obtained by Helgason [6], Sakai [10] and Takeuchi [12]. Now we give a definition of
Helgason spheres in the symmetric space M. A totally geodesic sphere of maximal di-
mension with maximal sectional curvature in M is called a Helgason sphere. Helgason [5]
proved that all of such spheres are conjugate under the action of the identity component
of the group of isometries of M. So we take and fix one Helgason sphere S containing
the origin o in M .

The Helgason sphere has a maximal sectional curvature. So you may expect that its
volume is minimizing in some sense. Ohnita [9] proved that the Helgason sphere is weakly
stable as a minimal submanifold, that is, its second variation of the volume is positive
semidefinite. Moreover it is proved that the Helgason spheres are volume minimizing in
their real homology classes in some symmetric spaces. For example, G\ mentioned in
Section 1 in a compact simple Lie group is a Helgason sphere.

A calibration is a representative of the de Rham cohomology. So we cannot change
the coefficient of homology and cohomology to another ring when we use calibrations. If
the real homology class represented by the Helgason sphere vanishes, then we cannot use
calibrations to consider the volume minimizing property of it. In M — SO(n+k)/SO(n) x
SO(k) (n,& > 3), the dimension of the Helgason sphere is 2, but #2(M;R) = {0}. In
order to consider the volume minimizing property of the Helgason sphere in such a case
we use the cut locus.

We take a canonical direct sum decomposition

of the Lie algebra g of G and identify p with T0(M). We denote by s the tnagent space
to S at o and by PS : p — > 5 the orthogonal projection from p to s and p = dim S. In the
formula

l(NngC0)dμG(g) = ί
JN*CG

we consider an estimate of σ# . For a p-dimensional subspace V with orthonormal basis
Vι , . . . , Vp in p, we obtain

= j
JKK

In order to estimate the above integral formula we consider the following four conditions
concerning the cut locus and the Helgason sphere in M.
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1. There exists a positive constant C such that

\Ps(Ad(k)v)\*>dμκ(k) = C\V\P for all v E p.
IK

2. For any k in K, the map Ps : Ad(k)s — > 5 is conformal, that is, there is a
nonnegative constant Ck which satisfies

(Λ(Ad(t)tι),P,(Ad(i)t;)) = C*(u,t;) for tι,t; G s.

3. J(5 Π gC0(M)) = I for almost all g G G.
4. The inclusion map of S to M is not null homotopic.
Then we obtain the following theorem.

THEOREM 2.2. Let N be a p-dimensional submanifold of finite volume in M .
is satisfied, then we obtain

I %(NngC0(M))dμG(g) < Cvol(N)vol(C0(M)).
JG

//(l)-(4) are satisfied, then

vol(S) < Cv^(Co) j I(N Π 9C0)dμG(g) < vol(JV)

for N whose inclusion map is not null homotopic. In particular, a Helgason sphere is
volume minimizing in the class of submanifolds of dimension p whose inclusion maps
are not null homotopic.

It is known that a compact symmetric space of rank one satisfies all of (l)-(4).
Therefore the conclusions of Theorem 2.2 hold for a compact symmetric space M of
rank one.

If M is a compact irreducible Hermitian symmetric space, a Helgason sphere in M
is isomorphic to a complex projective line. We can show all of (l)-(4) for M, using some
results on compact Hermitian symmetric spaces. In this case the conclusions of Theorem
2.2 also hold.

We consider compact quaternionic symmetric spaces. The class of them contains
SO(n+4)/SO(4)xSO(n), p»(H) = Sp(n+l)/Sp(l)xSp(n),SU(n+2)/S(U(2)xU(n)),

If M is a compact quaternionic symmetric space except quaternionic projective
spaces, a Helgason sphere in M is isometric to a standard 2-sphere and has some nice
properties to prove (l)-(4). Although I asserted that it satisfies (l)-(4), I found a gap
of my proof of (4) after the workshop and have not yet given a complete proof of it . The
reason why we treat the compact quaternionic summetric spaces is that they are simply
connected and the second homotopy groups of them are isomorphic to Z2 except for
Pn(H) and SU(n + 2)/5(ί/(2) x U(n)). So we cannot consider the volume minimizing
property of the Helgason sphere in its real homology class.

We give an outline of the proof of Theorem 2.2.

I \Ps(Ad(k)vl)λ APs(Ad(k)Vp)\dμκ(k)
JK
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K
p l/pp ί r

<Π / \P.
»=ι \Jκ

by Holder's inequality. If (1) is satisfied, then we get

< Cvol(N)vol(C0).
G

Now we assume that (l)-(4) are satisfied. If N = 5, then the above equalities hold and
we obtain

vol(G) - / t(SngC0)dμG(g) = Cvol(S)vol(C0).
JG

Therefore vol(S) = — — Ί /^ . If the inclusion map of TV is not null homotopic, then by

Lemma 2.1 we get

vol(G)< / KNΠgC0)dμG(g)
JG

and

vol(S) < „ * I %(Nn9C0)dμG(g) < vol(AΓ).
u(^o) JGΓGvol(C0

Recently Le Hong Van [8] showed that a certain sub-Grassmann manifold in a Grass-
mann manifold is volume minimizing in its integral homology class using the method of
integral geometry.
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