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ON THE LOCAL BEHAVIOR OF CERTAIN

HOMEOMORPHISMS
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1. Let w(z) be an ACL homeomorphism of the unit disc Uo into itself such
that w(0)=0. At regular points z (=x+iy) we define

wz— — {wx—iwy)> Wi=-^(wx+iwυ)

and the complex dilatation

κ(z)=wE/wz.

Later we will require further that the directional derivatives of w(z) satisfy
certain integrability conditions (Condition 3.1).

It is well known that if \\ιc\U^q<l then w{z) is /f-quasiconformal {K q. c.)
with K=(l+q)/(l —q). As usual we say that w(z) is conformal at z=Q if

\im (w(z)/z)=C, CΦO.
0Z - 0

If |u;(z)|~i4|2r| as z->0, Λ>0 we say that w(z) is asymptotically a rotation on
circles as z-*0 if for an appropriate choice of the arguments

arg w(reiθ2)—arg w{reiθ^)—{θ2—θ^)

tends to zero uniformly in θx and θ2 as r tends to zero.
Our objective is to study the behavior of w(z) as z tends to zero allowing

the possibility that ||/c||oo=l. Our main results are contained in Theorem 1.1
and Theorem 1.2.

THEOREM 1.1. // 9=ai
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(1.3) arg w(reίθ2)—arg w(reiθι)—(θ2—θι)

tends to zero uniformly in βx and θ2 as r tends to 0.

The fact that (1.1) implies (1.2) was proved in [6] for w[z) K q. c. Here
we do not assume /ί-quasiconformality and instead of using Teichmϋller's
Modulsatz we use the technique given by [3; Lemma 3]. This makes possible
the proof that the mapping is asymptotically a rotation, a new result which
provides a significant step in the study of conformality at z=0, as evidenced in
the following statement.

COROLLARY 1.1. If

\κ\2+\&e-2tφtc\ dA
l - k | 2 \z\2<°°

and if

(1.4) lim arg w(reiθ°)=a
r-o

for a particular value ΘQ then w{z) is conformal at z—0, i.e.,

lim (w(z)/z)=C ,

The first significant results in this direction were given by TeichmuUer [8]
who proved that the condition

- k l \z\
-<oo

implies that \w(z)\^A\z\, ^4>0, z—>0 under the assumption that w(z) is differ-
entiable but not necessarily K q. c. He conjectured that this condition was also
sufficient to prove conformality at z=0 as in the following result.

THEOREM 1.2. //

dA
}Juol— I

-<oo

then w(z) is conformal at z~Q, i.e.,

lim (w(z)/z)=C, CΦO.
2 - 0

The first proof of this result was presented by Belinskii [1, 2]. It is usually
referred to as the Teichmuller-Wittich-Belinskii theorem. Lehto [4] gave another
derivation of this result as a consequence of some more general considerations
and in [5] a modified exposition focused more on this particular problem clarifies
some obscurities in Belinskii's work. However, all of the latter development
uses strongly the assumption that the mapping is K q. c.



LOCAL BEHAVIOR OF CERTAIN HOMEOMORPHISMS 203

2. We will utilize the following two variants of [3 ; Lemma 3].

L E M M A 2.1. Let γ3> / = 0 , 1, •••, n, be a set of {closed) Jordan curves separ -
ating 0 from oo. Let

« » - ^ - min log I z I -1, « » = -^- max log | z | -1

u iίΛ $2 ί " ' 1 ) <ίί ; ) , y = l , •••, w. L#f M, be ί/ιg module of the ring domain with
boundary components γ3_ι and γJf y = l , 2, •••, n . Then

Σ Af^«»>-«e>+2-n|3 /(ί^-ίiα))

where f is a monotone increasing function independent of any geometric properties
of the configuration.

The proof is a slight modification of that of [3 ; Lemma 3]. We set

p—l, elsewhere.

It is readily verified that ρ{z) {2π\z\)~ι\dz\ is an admissible metric for the
module problems defining MJy j — \ , •••, n. Therefore

Setting /(ί)=(l/9)ί3(l+(l/3)ί2)"1 we have the result of the lemma.

LEMMA 2.2. Let B={z:ri<\z\<r2], 0 < r i < r 2 . Let γu γ2 be non-intersect-
ing Jordan arcs in B joining its boundary components. Let Qlf Q2 be the two
quadrangles with γu γ2 as one pair of opposite sides, the others being on \z\=ru

\z\—r2. Let δ be the angular oscillation of γlf

δ=max arg z—min arg z

for an assigned branch of the argument. Let M{Qι), M{Q2) be the modules of
Qu Q2 for curves joining the sides on \z\—ru \z\=r2. Then
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where g is a positive non-decreasing function independent of any geometric pro-
perties of the configuration.

We map B slit along γ2 by w=φ(z)=i(\og r2/r1)~1 log z. Let Γ be the image
of γu A and Γ2 the images of γ2 where Γ2 is obtained from Λ by a horizontal
translation of amount 2π (log rjr^f1. Let Q be the quadrangle with Γlf Γ2 as
one pair of opposite sides, the others being on v=0, v=l (w = u+iv). Let

ξi= min u , ξ2=max u .

Let )7=min(f2—ξi, 2π) and set

1/2 in -l,<tt-i-(e 1 +e t )<-|-9

and in all vertical strips obtained from this by horizontal translations of
2ττtt(log r2/ri)~1, n integer,

p(z)=l elsewhere.

It is readily verified that p(z) | dz \ provides an admissible metric for the module
problems corresponding to M{Qλ)f M(Q2) under the mapping φ. Thus

and if we set g(f)=f(f)9 t^2π, g(t)=f(2π), t^2π we have the result of the
lemma.

3. Let w{z) be the mapping introduced in § 1. Let 0 < Γ i < r 2 < l , B(ru r2)—
{z: ri<\z\<r2} and let B*(ru r2) be its image under w{z). We denote by
M(ru r2) the module of the family of curves separating the contours of B(ru r2)
so that

and by M*(rlf r2) the corresponding module for B*(rlt r2).
Let z—rexφ be a regular point for w(z), κ{z) the complex dilatation at this

point so that the expressions

n^z) n2{z)-——r-r-2—
1 \ t C \1 — \fC\

are defined a. e. in Uo.
From this point on we will assume that w{z) satisfies the following con-

dition.
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CONDITION 3.1.

Aϊ(0)= Γ2 hx{rex*)—, h*2(r)= ^\2{γe^)dφ
J ri Y JO

exist a.e. for 0e[O, 2ττ], re[?Ί, r2], 0<ri<r a<l and further

As in [6] it is easily shown that

(3.1)

These lead to the proof of the following lemma

LEMMA 3.1. We have

(3.2)

The Cauchy-Schwarz inequality implies that

and

Therefore for M*(γu Y2)<M(YU r2)

Aϊ(r)—.

M*(γu u)-M(rl9 r2)^-7—2 Ά/f;
 2'\\ h2-l\

4π2 M(ri, r2) JJsίr^rg)

while for M(ru rΛ)^M*(ru r2)

It is seen at once that

A!W-1=2-!

A 2 (*)-l=2-

from which (3.2) follows.
Let Q denote the quadrangle obtained from the domain {rι<\z\<γ2, θx<
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argz<θ2\ by assigning as opposite pairs of sides the boundary sets on radii and
circles. Let M(Q) be the module of Q for curves joining the latter sides. Let
0 be the image of Q under w(z) and M(0) its corresponding module.

LEMMA 3.2. We have

e-2ιt/c\ dAz(3.3)

As before

Applying the Cauchy-Schwarz inequality we get

Since evidently M(Q)=(log r2/rί)-\θ2-01) we find that if M(Q)<M(Q)

from which (3.3) follows. The inequality is trivial in the alternative case.

4. LEMMA 4.1. For the mapping w{z) let

m2(r)=max | w(z) |, mι(r)= min | w{z) |.

Then if w(z) satisfies Condition 3.1 and

/A ,x Γf \κ\%+\&e-uφtc\ dAz

(4.1) \\ <.oo
JJf/o 1—|/c| \z\

we have lim m2(r)/mι(r)=l.

In the contrary case there would exist Λ>0 and a sequence of values \rn}>
r n < l , rn I 0 such that m1(r7 l)>m2(rn +i) and

(4.2) io

For arbitrary ε>0 assume that rγ is sufficiently small that

|/κ:|2-H.&<r2^Λ;| dA, ^
1 — 1 12 TΊJ

for m>n>l. Using the monotonicity property of the module and Lemma 3.1
we conclude that for any integer iV>l

(4.3) ^ l o
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and

(4.4) -i- log -^ Nε^ Σ Λί*(r,+1, r,).
Z7Γ riv J=*i

Applying Lemma 2.1 to the right-hand side of inequality (4.4) we have

>•< ' ^ ^ ^ ^ -

Since by (4.2) /(log m,(r;)/mi(rj))S/(i) from (4.3), (4.4) and (4.5) follows

Z7Γ

and

Dividing by N and letting JV tend to infinity we obtain the contradiction

LEMMA 4.2. Under the conditions of Lemma 4.1 there exists a constant C>0
such that \w(z)\~C\z\ as \z\ tends to 0.

This is shown by proving that

(4.6) lim l o g £
ro m2(r)

= C ,

Given ε>0 it follows from the monotonicity property of the module and Lemma
4.1 that there exists δ=δ(e) such that for Q<r1<r2<δ.

M*(rurt)—
2π

<ε

while by Lemma 3.1

M*(rlf r2)—— log — <t

From these and the Cauchy criterion (4.6) follows.

5. For 0<r1<r2, Θ1<θ2<θι+2π the set of points reiθ: rλ<r<r2, Θ1<θ<θ2

becomes a quadrangle on assigning the boundary arcs on r—ru r=r2 as a pair
of opposite sides. It is denoted by Q(ru r2 θu θ2). Its module for the curves
joining this pair of opposite sides is (θt—θ

LEMMA 5.1. // w(z) is a homeomorphism of a punctured neighborhood of
z=0 onto a punctured neighborhood of w—0 with the origins corresponding as
boundary components and satisfies the conditions

(a) \w(z)\~A\z\, A>0, as z—Q,
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(b) given ε>0 there exists R=R(ε) such that for r2<R and for Q the qua-
drangle image of Q(ru r2; Θu θ2) under w(z) with module m{Q) corresponding to
that above

then w(z) is asymptotically a rotation, i.e., the expression (1.3) trends to zero
uniformly in θx and θ2 as r tends to zero.

If this were not the case there would exist δ>0 and a sequence of values
of r I 0 such that for a suitable choice of notation

where φ2=arg w(reiθ2), φι—a.rg w(reiθι). For such values of r we choose r 2 =2r,
ri=(l/2)r and denote

r\— min | w(z)\, r ? = max | w(z)\.
2| =

For r sufficiently small the image of \z\—r under w—w(z) will lie in the ring
r*<\w\<r%. Let Qλ be the quadrangle image of Q{ru r2; θlt θ2), Q2 the qua-
drangle image of Q(ru r2; θ2, ^i+2ττ), γλ the image of the segment {peiθ θ = θu

ri<p<r2}, γ2 the image of the segment {ρeίθ: θ=θ2, rχ<p<r2}. Follow y3 from
w(reίθj) in each sense until we meet respectively \w\=r^, \w\=r%, obtaining
an arc γ^, / = 1 , 2. The arcs γt, γ* together with arcs on \w\=r$, \w\=r%
determine quadrangles Qt, Q% with modules m(Qf), m(Q%) chosen as above such
that m((?ί);>m(Qi), m(Qf)^m(Q2). We consider two cases depending on the
angular oscillation of ff, γ%.

CASE A. The angular oscillation on each of f? and γ% is less than
Then

By condition (b)

Since by condition (a) as r tends to 0, log r%lr\ tends to log 4 for ε sufficiently
small this provides a contradiction.

CASE B. The angular oscillation on one of γΐ, γ% is at least (1/4)3. Then
by Lemma 2.2
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On the other hand by condition (b)

m(&)+m(Q2)>2τr(log 4)" 1 -2ε.

Since by condition (a) as r tends to 0, log rf/r? tends to log 4 for ε sufficiently
small this provides a contradiction.

COROLLARRY 5.1. // w(z) satisfies Condition 3.1 and (4.1) it is asymptotically
a rotation on circles as z tends to 0.

Condition (a) follows from Lemma 4.2, condition (b) from Lemma 3.2.

6. Let Uo be the unit disc Uo slit along the radius {(x, y): 0 ^
We map UQ and its image w(UQ) onto semistrips Si and S2 using in each case
a branch of —log. Let f(o)——\og(w(e~σ)) be the map from 5X to S2 induced
by the mapping w(z). f(σ) is extended throughout the half-plane &σ>0 as a
continuous function by setting

f(σ+2kπi)=f(σ)+2kπi

for every integer k. Setting σ=s-\-it, f{<J)—u{sy t)+iv(s, t) is an ACL homeo-

morphism and lim^c* u(s, 0 = + °°

LEMMA 6.1. //

(6.1) lim(u(s, t)-s)=Λ
S-*oo

for A finite uniformly in t,

(6.2) lim (vis, U)-v{s, ί 1 ) - ( ί a - ί 1 ) ) = 0

uniformly in tx and t2 and

<6 3) SI ϋ_i dsdt<oo
2 usvt—utvs

then there exists a finite value a such that

(6.4) lim (z;(s, t)-t)=a
S-*oo

uniformly in t.

We assume that (6.4) does not hold for a certain t. Then there exist
sequences {s£υ} and {s(

n

2)}, n=l, 2, •••, tending to <χ>, s^υ<s42), such that
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δ(t)= lim (v(s™, t)-v(sίί\ t))Φ0.
n

Because of (6.2), δ(t)=δ, independent of t. We may assume <5>0, the case where
δ<0 is handled analogously. Let ε>0 be a fixed small number and let N=N(ε)
be big enough so that for n>N

(6.5)

for any t,

(6.6)

for any tu ί2,

(6.7)

for any t and

(6.8)

\u(siί\ ί ) - s i < J - i 4 | < ί , ι = l , 2,

\v(s«\ U)-tK ί = l , 2,

-v(sιnι\ β - 3 > -sί?\ t)-v(sιnι\

Let Si and s2 stand for s(

n

l) and s^2) for a fixed

<r=g(P,q)=(P, P+Q)

Consider the map

it maps the rectangle Q={(p, q): sί<p<s2, 0<q<2π} onto a parallelogram P in
the <7-plane. Denote by P* the image of P under / and let h—f°g.

We study the module M(Γ*) of the family of curves Z7*—{Γ*}o<g<2π> where
γξ is the image under h of the horizontal segment Iq={(p, q): sι<p<s2, q fixed,
0<q<2π}. By [7; Theorem 14] we have

where Jh denotes the Jacobian of the map h. Since

rr W W jj
JJQ Jh JJ

and by the Cauchy-Schwarz inequality

(u.+uMv.+v£dAβ
UsVt—UtVs

it follows from (6.8) that

(6.9)

An estimate for M(Γ*) from above can be obtained using the definition of the
module of a curve family. Using (6.5), (6.6), (6.7) we conclude that

area



LOCAL BEHAVIOR OF CERTAIN HOMEOMORPHISMS 211

(length r*γ^((s,-s1)-2ε)2+((s2-s1)--3ε+δ)2, 0<<K2π

so that

^2π((s2-sΛ)+2ε)

Since

- s 2

π
comparing (6.9) and (6.10) we obtain

2π(s2-sι)
2+2π(s2-s1)(δ-5ε)+2ε2£2π(s2-sι)

2+(4π+l)ε(s2-s1)+2ε2

and

which for ε sufficiently small provides a contradiction.
The proof of Theorem 1.2 is now immediate. The hypothesis there implies

(1.1) so that (1.2) and (1.3) hold. Transforming to the logarithmic plane as
above we obtain (6.1) and (6.2). If κ0 is the complex dilatation fά/fσ, we obtain

(6.11) \[ γ^-\~TϊdΛ<><00 '

Since

(us+ut)
2+(vs+yt)

2 usvt—utvs 1— \κo\
2 1— \κo\

2

it is clear that (6.11) implies (6.3) so that by Lemma 6.1

lim(arg w(reiθ)— β)=a

uniformly with respect to θ and finally

Urn (arg w{z)—arg z) = — a

completing the proof.

7. Let S be the strip in the σ-plane, σ=s-\-it, defined by

and let f(σ) be an ACL homeomorphism of 5 onto itself with 1, l+2τrι and <χ>
as fixed points. We denote by κQ the complex dilatation fδ/fa. We assume
that for 1 < S I < S 2 < ° ° the following integrals exist

dA [[
<9iσ<$2)r\S 1 — I KQ\ JJ(s1<^<r<s2)Λ'S r 1 -— |

THEOREM 7.1. //
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(7.1)

then

(7.2) f(σ)=A+s+it+o(l)

as s-+co uniformly in t.

We may assume that f(s+2πi)=f(s), s real, since this can be attained by
reflecting the strip in a horizontal side and adjusting the dimensions without
affecting the conditions on /, in particular (7.1). Then w(z)=exp(—f(\og z'1))
is a homeomorphism from Uo onto itself with M/(0)=0 and complex dilatation K.
From (7.1) follows

iθ *\ r\ AK) a/iz

- \ f c \ 2 \ z \ 2

Since w(z) maps the radius {(x, y):0^x<l, y=0\ onto itself from Corollary 1.1
follows that w(z)^Cz as z tends to 0, CφO, which implies (7.2).

Theorem 7.1 is a stronger result than the following strip variant of the
Teichmϋller-Wittich-Belinski theorem.

THEOREM 7.2. // / satisfies the condition

(7.3)

then

as s-^oo uniformly in t.

Indeed (7.3) implies (7.2) but the mapping defined by f=h°g where g(σ)=
s+i(t+\og s) maps S onto a strip S and h maps 5 conformally onto S has
complex dilatation

l+2ιs

This satisfies condition (7.2) without satisfying (7.3).
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