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§1. Introduction.

The Gauss map of complete minimal surfaces in R™ have many properties
which have analogies to value-distribution-theoretic properties of holomorphic
curves in the complex projective space. The author gave some of them in his
papers [5]~[8]. Moreover, in [9] he obtained the following analogy of Nevan-
linna’s unicity theorem ([11]):

THEOREM. Let M and M be two nonflat minimal surfaces immersed in R*
and let G: M—S? and G : M—S? be the Gauss maps of M and M respectively.
Suppose that there is a conformal diffeomorphism @ between M and M. I f M
or M is complete and there are seven disﬁz’nct directions n,, .-+, n;S? such that
G (n)=(G ) (n,) 1<7<T7), then G=G-D.

He gave also more precise results for the case where both of M and M are
complete and have finite total curvature. The purpose of this paper is to give
some generalizations of these results to minimal surfaces in R™ for the case
m>3.

As is well-known, the set of all oriented 2-planes in R™ containing the
origin is canonically identified with the quadric

Qn-o(C) = {(w,:: wa); Wi+ - +wh=0}

in P**(C). For a minimal surface x:=(x;, -, xn): M>R™ immersed in R™
the Gauss map G of M is defined as the map of M into @,_»(C) which maps
each p=M to the point in Qn_,(C) corresponding to the oriented tangent plane
of M at p. We may regard M as a Riemann surface with a conformal metric
and G as a holomorphic map of M into P™ *(C).

As in the case m=3, we consider two nonflat minimal surfaces

x:=(x, -, Xn): M>R™,  %:=(&, -, ¥n): M>R™

and their Gauss maps G : M—P¥(C) and G: A71—>PN(C), where N:=m—1. Sup-
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pose that there is a conformal diffeomorphism @ between M and M. Then
the Gauss map of the minimal surface ¥-@: M—R™ is given by G-®. Consider
the holomorphic maps f:=G:M—P¥(C), g:=G-®: M—>P¥(C) and assume
that they satisfy the following :

ASSUMPTION 1.1. There exist hyperplanes H,, ---, Hy in PY(C) located in
general position such that

(i) Y Hpy=g (Hp+M for every j,

(i) f=g on Ui, [T (H)—K for a compact subset K of M.

The main result is stated as follows:

THEOREM 1.2. Under the above assumption, we have necessarily f=g

(A) if ¢g>m*+m(m—1)/2 for the case where M is complete and has infinite
total curvature or N

B) if g=m*+m(m—1)/2 for the case where K=@ and M and M are both
complete and have finite total curvature.

We shall give some estimates for divisors on an open Riemann surface in
§2 and construct a pseudo-metric with strictly negative curvature associated
with two holomorphic maps f and g into PY(C) satisfying Assumption 1.1 in
§3. After these preparations, in §§4~5 we shall prove some unicity theorems
for holomorphic maps into P¥(C) defined on an open Riemann surfaces with
complete conformal metrics. Theorem 1.2 will be proved in §6.

§2. Some estimates for divisors.

Let M be a Riemann surface. In this paper, a divisor v on A/ means a
map v: M—R whose support Supp (v):={z; v(2)#0} has no accumulation point
in M. We say that a complex-valued function # on M has mild singularities
if it can be written as

1 75
2.1) lu@@)|=lz—a|u*@ 1] |—————
( ( @I |iogT i@l
on a neighborhood of each a=M with a real number ¢, finitely many nonnega-
tive numbers z,, positive C* function u*, v; and nonZero holomorphic functions
g., where z is a holomorphic local coordinate around a. For a function u with
mild singularities, we define the divisor v, of u by

vy(a): =the number ¢ for the representation (2.1)

for each a<=M.

Let f: M—P"C) be a nondegenerate holomorphic map. For acM taking
an open neighborhood D of a contained in the domain of a holomorphic local
coordinate, we choose a reduced representation f:=(f,::--: f,) on D, where
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f.’s are holomorphic functions on D without common zero. Consider the holo-
morphic map

2.2) Fo:=FOAFDA .. AFD®: DSA onn

for 0<k<n, where FO=F:=(f,, -, f») and F®:=(f, ---, f¥) for each
(=0, 1, ---. The norm of F, is given by

Feli=(_ 3 W(fo o, £012)
k|- 0s10< D p2n 190 ) e »
where W(f,, ==+, f.,) denotes the Wronskian of f,, -, f,,. Set v;:=wir,
for 0<k<n. The divisor v, is nothing but the divisor of W(f,, f,, -, fa).
These are globally well-defined on M. Because, for another reduced representa-
tion f:=(f,:--: f.) we can write (fo, -+, f.)=hF with a nowhere vanishing
holomorphic function A and F, is multiplied by A**!, and for another holo-
morphic local coordinate {, F, is multiplied by (dz/d{)*¢*+v/2,
We now take a hyperplane H with f(M)EH given by

H: Cowy+ - +Cpwo,=0.
For each reduced representation f:=(f,:---: f,) we set
(2.3) F=FH):=¢ofo+ - +Cnfn

and define the pull-back of the divisor H via f by v(f, H): =vp, which is well-
defined on M.
We next consider ¢ hyperplanes H,, ---, H, in P*(C) given by

H;Z <w, 44j>55jowo+ +5]nwn:0 (léqu)y

where A;:=(cjo, -, €;n)EC*'—{0}. For REQ:=1{l, 2, ---, g} we denote by
d(R) the dimension of the vector subspace of C"*' generated by {A4,; jER}.
Following [3], we say that H,, ---, H, are in N-subgeneral position if d(R)=
n+1 for all R€Q with #R>=N+1, where #A means the number of elements
of a set A. In particular case N=n, these are said to be in general position.
In [12] E.I. Noachka gave the following theorem :

THEOREM 2.4. For gwen hyperplanes H,, H,, -+, Hy in P"(C) located in N-
subgeneral position, there are some rational numbers w(l), ---, w(q) and 6 satis-
fying the following conditions;

(i) 0<o(NEOZ1 (1Z5=9),

(i) Jéw(j)=n+1+0(q—2N+n—l),

n+1 n+1

SO N ELES s

(iv) if RcQ and 0<#R=<N+1, then T w(j)<d(R).
JER
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For the proof, see [3] or [10, §2.4].

We call constants w(j) (1<7<q) and ¢ with the properties of Theorem 2.4
Nochka weights and a Nochka constant for H,, ---, H, respectively.
Related to Nochka weights, we have the following:

ProPOSITION 2.5. Let H,, ---, H, be hyperplanes in P™(C) located in N-
subgeneral position and let w(l), ---, w(q) be Nochka weights for them, where q>
2N— n-}-l For each RSQ:=1{1, 2, ---, q} withO<#R<N-+1 and real constants
E,, -, E; with E,=1, there are some R'SR such that #R'=d(R’)=d(R) and

I E‘;‘U)g IIE,.

JER JER'

For the proof, see [3] or [10, Proposition 2.4.15].

For later use, we shall give the following estimate for divisors.

PROPOSITION 2.6. Let f be a nondegenerate holomorphic map of a domain
in C into P™(C) with a reduced representation f=(f,: - : f,) and let H,, ---, H,
be hyperplanes in N-subgeneral position with Nochka weights w(1), ---, w(q) respec-
tively. Then,

oumf, Hysv+"0ED,

Proof. For an arbitrary a=M set m,:=y(f, H;)a) and S:={j; m,>0}.
Then #S<N. For, otherwise, f, (0<i<n) are represented as linear combina-
tions of {F(H;); j=S} and so f,, :--, f, have a common zero at a. We choose
a set R with SSRS{l, -+, g} and #R=N+1. Then we see d(R)=n-+1 by the
assumption. Set E] =e¢™;. By Proposition 2.5 there exists some j,, j;, ***, J=
in R such that H,, ---, H, are linearly independent and IIcr £$’ <IIi-0 E,,,
so that

2.7 2 w(j)m; é

2M§

Set ¢, : =F(H;,) and define ¢: :W Since f,, fi, '+, fa are
01 @n

represented as linear combinations of ¢, -, ¢, W(fo, fi, -+, fa) iS @ nonzero
constant multiple of W(¢,, ¢, -+, ¢,). This implies that
(2.8) vo(a)=vn(a)— am,, .

On the other hand, the meromorphic function ¢ is expanded as
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11 1
¢° ¢1 ¢n 0:n ¢( 7 (n)
= = 2 7 Tin
L=l QE% sgn (,‘0 ,'n>¢,il b, di
(/,én) ¢1(n) ¢'§zm
G g P

Since the order of the pole of each ¢{V/¢; is at most /, each term in the above
expansion of ¢ has a pole of order at most n(n+1)/2 at a. Therefore, we
have vy,(a)=—n(n+1)/2. By the use of (2.7) and (2.8) we conclude

The proof of Proposition 2.6 is completed.

§ 3. Pseudo-metrics with strictly negative curvature.

Let M be an open Riemann surface and ds® a pseudo-metric on M, namely,
a metric on M with isolated singularities which is locally written as ds*=
A*|dz|* in terms of a nonnegative real-valued function A with mild singularities
and a holomorphic local coordinate z. We define the divisor of ds® by vgs:=v2
for each local expression ds’=A%*|dz|%, which is globally well-defined on M.
We say that ds? is a continuous pseudo-metric if v,;;=0 everywhere.

DEFINITION 3.1. We define the Ricci form of ds? by
Ric [ds?]: =—dd°[log A*]

for each local expression ygs:=v;, where we mean by [«] the current asso-

ciated with a locally integrable function u and by d and d°(: =(+/—1/47)(5—0))
the differential operators for the currents.

Let f, g be distinct nonconstant holomorphic maps of M into P¥(C) and
consider a nonzero function X(w, &) on C¥*'xC¥*' having the following:

PROPERTY 3.2. [t 1s bilinear with respect to the variables w -and W, and
X w, w)=0 for all w=CY**,

Suppose that they satisfy the following:

ASSUMPTION 3.3. There exist hyperplanes H,, ---, H, in PV(C) located in
general positien such that

(i) Uf, %0 and [(Hp=g "(H)#M for every j,

(il) Af, g)=0 on UL, [~ (H,)—K for a compact subset K of M.
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Take the smallest projective linear subspaces P, and P, of P¥(C) which
include the images f(M) and g(M) respectively. Set n,:=dim P, and n,:=
dim P,. Then the maps f:M—P, and g: M—P, are nondegenerate. We
regard hyperplanes H,N\Py, ---, H,N\P; as hyperplanes in P,;, which are located
in N-subgeneral position. We take Nochka weights (1), ---, ws(¢) and a
Nochka constant §, for these hyperplanes. Similarly, we take w,(1), ---, @,(q)
and 6, for the hyperplanes H,N\P,, -, H/N\P, with respect to the map g.
Choose reduced representations f:= (f,:: fug) g:=(go:: gn,) 0N M in
terms of some homogeneous coordinates on P, and P, respectively. Set F:=
(fo, -+, fry) and G := (g, -, gn,) and consider the maps F, and G, defined
as (2.2) for f and g. Taking unit vectors A,=C"s*!, B;=C"z*' with

H;NP;: (w, Ap=0 (wePy), H;N\Py: <, By=0 (wek,),

we define F(H;):=<F, 4,), G(H,):= <G, B,> and the contact functions ¢{(H,):

=[FVA;I*/ | Fp|? for 0=k<n, and @f(H,):= |G,V A;1*/1G|* for 0<k<n,,

where X\/Y denotes the interior product of vectors X and Y (c.f., [8, §3]).
Set ¢,:=n(n+1)/2, t,:= 3,0, and

(3.4) 7;:=0,(g—2N+n,;—1), 71,:=0,g—2N+n,—1).
Suppose that

(3.5) Irp 4 %%

Choose positive numbers ¢,, ¢, such that Tr>&Tay Tg>8Tn, and

Iyt eaTnyen + Ingt E20ngut <1

3.6)
Tr—&iTa, Te— €T,

and define the functions

___( ‘F‘rf—sla”f“‘an_‘L[:;rﬂFk{61 )1/(”nf+517n/)
703 I, (PO T log (3/p{(H)#r @
Ngi= ( lG‘73—520ng+1lG,_,g—|_:!_—__[:-_go\Gk]52 >1/(ang+52rng)

¢\, (IG(Hy) | TTi% " log (3/ @ (H,))*s@
where & is a sufficiently large positive constant which is specified later. As

is easily seen, n%|dz|® and 9%|dz|* are globally well-defined on M. Take p,
and p, with

’

3.7

’

- L OugheTay L Gugtety,
b+ D=1, Ptérf_ 510'nf+1, pz:rg—ewng“
and define
2
3.8) dr?:= IXF, G)I PipiPe|dz|®.

FIPIG? T
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DEFINITION 3.9. We say that a continuous pseudo-metric ds® has strictly
negative curvature on M if there is a positive constant C such that

—Ric [ds*]=CRy4s2,

where Q.. denotes the area form for ds?, namely, Qg5 := 22(V—1/2)dzNdZ
for each local expression ds*=2%|dz|%.

PROPOSITION 3.10. For a sufficiently large 8, the pseudo-metric dtr® given
by (3.8) s continuous and has strictly negative curvature on M—K.

Proof. We first show that v4.(2)=0 for all z=M. This is obvious if ze¢
o, fFUH)(=\U%, g7 (H,)). Otherwise, since

q q
— XS, H)Z =0,  va,— 20,008, H)=—0,,
=1 =1

by Proposition 2.6, we obtain

Vdrgyl"_pl(ynf wa(])v(f H]))a +$1T
nf ns

+ ol v, — JE:wg(j)y(g, H)) N S

O'ng+ €2Tn,

N VR T

OnpteTu; Onyt&ln,

2).11—“1 .

v

On the other hand, by the assumption we have X=0 on \U%., f~'(H,) and hence
yy=1 there. This concludes that dz® is continuous on M.
To complete the proof, we choose a sufficiently large d so that

dde log 7§ 22T 0k Cppd a2l
(3.11) Iny T ETny

Te—€0ng41
4 22 g 2 c 2
dd° log n} ——\ezz_ng Q,+Cnidd°|z|

on M—(KU\J., f!(H,)) for some positive constants C, by the same arguments
as in [8, pp. 31~32], where £,:=dd°log |Fi* and £,:=dd°log |G|®. We
then have

—Ric [dr*]=dd° log |XI*—Q,;—Q,+ p.dd° log n}+ p.dd® log 52
%Q(Pm}-ﬁ-ﬁmﬁ)dd”ﬂz

(P1 T&iO0nger )Qfﬁ_(pz&ﬂgu _1)9

OnyteiTn, T eTn, £

= Cip%PiPedde|z|®.
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Since we have |X]|<C,|F||G| for some constant C,>0, we can conclude that
d7® has strictly negative curvature. The proof of Proposition 3.10 is completed.

§4. Unicity theorems for holomorphic curves.

Let M be an open Riemann surface and ds® a complete conformal metric
on M. We now recall the following definition and result given in [8].

DEFINITION 4.1. Let £, and £, be C> differentiable (1, 1)-currents on M.
For some ¢>0, by £2,<.2, we mean that there exist some divisor v and a
bounded continuous nonnegative function 2 with mild singularities on M such
that v=c¢ everywhere on Supp (v) and

Q,+0v]=02,+dd[log k%],

where [v] denotes the current associated with v. The notation £2,<{; means
that 2,<. 2, for some ¢>0.

THEOREM 4.2. Let M be an open Riemann surface with a complete conformal
metric ds®. If there exists a continuous pseudo-metric dt® on M whose curvature
is strictly negative on M—K for some compact set K such that, for some constant
p with 0<<p<l,

—Ric [ds*]<,-p p(—Ric [dz?])

on M—K, then M is of finite type, namely, biholomorphic with a compact Rie-
mann surface with finitely many points removed.

For the proof, see [8, pp. 24~27].
To state the main result of this section, we give the following :

DEFINITION 4.3. Let f, g: M—PY(C) be nonconstant holomorphic maps.
We say that they satisfy the condition (C),,.,, for some p,, 0, >0 if

—Ric [ds*]1<0.2,+ 0.8,

on M—K for some compact set K.

THEOREM 4.4. Let M be an open Riemann surface with a complete conformal
metric ds® and f, g nonconstant holomorphic maps of M nto PY(C). Suppose
that, for some p., p:>0,

(i) M is not of finite type,

(ii) f and g satisfy the condition (C)p,, pp

(iii) 7y, 7¢>>0 for the numbers v;, 1, defined by (3.4) and Assumption 3.3
holds for some X with Property 3.2.

Then, it holds that
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(01+1) ""! +<p2+1>

K

Proof. The proof is given by reduction to absurdity. Suppose that the
conclusion does not hold. We then have the stituation considered in §3. We
use the previous notations without permission. Set

(4 5) A _l 6107Lf+1 B:— Tx 820'"3.,,1
Ou;tets,’ Ongtetn,’

where ¢, and e, are chosen so that 7,2>¢,0,,,,>0, 7, >&0nge1>0 and

P1+1 Pz+1

(4.6) 1 += B <l1.
Set

pi= Borto—on L Aptoi—ps

YT Ap.t+Bp, T Ap,+Bp,
Then, we see easily
(4.7) p1‘4_1 >0, sz_l,>0, p1+p2:l
and

A—

4.8) pA—1 sz 1 AB—A— B>

01 02 A.02+B.01

Using these constants ¢;, ¢, and a sufficiently large d, we define the functions
n; and 7, by (3.7) and pseudo-metric dz* by (3.8), which is continuous and has
strictly negative on M —K according to Proposition 3.10.
Now, we represent each H, as
H]: c'j0w°+ +L-'ijN:0 .

As in [8, p. 32], taking some holomorphic local coordinate z, for each j, &

(1£7<q, 0<k<n;—1) we choose i,, ---, i, with 0=, < -+ <4, <N such that
¢§k = . 2 EjlW(fl; flp Ty ftk)—::EO )
TR T )

where we set ¢%:= F(H;). We then have |¢3.1%/|F:|*<¢{(H;) and, by the
theorem of identity, ¢,%0 for every holomorphic local coordinate {. Set

P (Hl§]$q osksn -1 |QPFe |7 log®s9(8/¢f(H, )))1/(anf+clrnf
r Tlosesng-1 [ Fel® ’

which is a well-defined function with mild singularities on M—K. Since

|5, | ©ve log® s (0/pf (H,)) e oo (D
- | Fyloie <oiliglx Hlog® v (x )Q te,
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k, is bounded. Set

él = (l Pﬂ,f | IIJ. k | ¢;k | El/q)”“’ﬂf"'sl’ﬂf)
7 H?=l ,P(Hf)lwf(i)

‘on the domain of each holomorphic local coordinate z. Then, we have v, PSS
and 7, leFlAngl, so that

dde log (n k)= AR,+dd logid,]®.

Similarly, we can choose a bounded continuous nonnegative function %,
with mild singularities and a locally defined nonzero meromorphic function ¢,
satisfying the condition v, <y, such that

dde log (nghs)*=BR,+dd log|d|*.

On the other hand, we have dd°log|¢;|*=[vs,] (:=1, 2) by Poincaré-Lelong
formula. Therefore, we obtain

—Ric [de®]+ p.ddf log k}+ p.dd® log k2
=[] =2, =2+ pidd* log (n,k )"+ podde log (9, k,)°
=(pA—1Q;+(p:B—1)2,+ o] .
where vy := vy+ pivg,+ pavg,. By (4.7) and (4.8) this yields that

AB—A—B
A,02+BP1

We have also the inequality vo=vy+ pwa,+ pevy,=r4.20 on M—K and, more-
over, there is a positive constant ¢, with yv,=¢, on Supp (v,). Set

. £,02+B‘2L
" AB—A-B’

Then, 0< p<1 by (4.8) and the identity (4.9) can be rewritten as
012+ 0282,<pc, P(—Ric [d*]).
The assumption (ii) yields that
—Ric [ds*]<0.2,+ 0.2,<p(—Ric [dz*]).

We may write this

(4-9) —Ric [dT2]+dd2 lOg k_zfplkzgpzz (‘Ollgf‘i‘pggg)""[)o’o] .

—Ric [ds*]<,-p p(—Ric [de*]),

because we can choose ¢, and ¢, so that 1—p is sufficiently small. This con-
tradicts Theorem 4.2. The proof of Theorem 4.4 is completed.
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§5. Holomorphic maps defined on a Riemann surface of finite type.

In this section, we give a unicity theorem similar to the previous section
for holomorphic maps into P¥(C) defined on an open Riemann surface M of
finite type which has a complete conformal metric ds2.

DEFINITION 5.1. Let f, g: M—P¥(C) be nonconstant holomorphic maps.
We say that they satisfy the condition (C),,. ,, for p., p.>0 if there is a bounded
continuous nonnegative function k with mild singularities such that

(5.2) —Ric [ds*]<0,2,40:2,+dd° log k*
on M.

THEOREM 5.3. [In the same situation as in Theorem 4.4, suppose that, for
some p,, p:>0,

(i) M is of finite type,

(ii) f and g satisfy the condition (C)py, o,

(iii) 7y, 7.>0 and Assumption 3.3 holds for K:= @ and some X with Pro-
perty 3.2.
Then, it holds that

(041D 2 4 (pe+1) T8 = 1.
g 7

4

Proof. Assume that the conclusion does not hold. We use the same nota-
tions as in the proof of Theorem 4.4, where K := @. Using the same constants
b1, p» and functions 7, n, as i the proof of Theorem 4.4, we construct a
continuous pseudo-metric dz? on M, which has strictly negative curvature on
M. Here, we note that the universal covering surface of A is biholomorphic
with the unit disc. For, there is no continuous pseudo-metric with strictly
negative curvature on a Riemann surface whose universal covering surface is
biholomorphic with C. By the generalized Schwarz’ lemma ([1, pp. 12~14]),
there exists a positive constant C, such that

dr*<Codo%,

where do¢% denotes the Poincaré metric on M. By the assumption, M is bi-
holomorphic with a compact Riemann surface M with finitely many points a,’s
removed. For each a, we take a neighborhood U, of a; which is biholomorphic
with A*:= {z; 0<|z| <1}, where z(a;)=0. The Poincaré metric on the domain
A* is given by

4|dz|*?

dO‘A* = _] 2\_2 l‘O‘gZ‘_Z| 3

By the use of the distance decreasing property of Poincaré metric we have
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ldz|*

47" = Ci oo

for some C,;>0. This implies that, for a neighborhood U} of a, which is rela-
tively compact in U,

SU*er2< +oo.

l
Since M is compact, we have

(5.4) gugmggﬁ_wutm,ﬁ; SU,ZQMK foo.

We now take a nowhere zero holomorphic form @ on M. Since dd°log 5%
=>AQ2; and dd°log ni=BR, by (3.11), we can find subharmonic functions v,
and v, such that

nildz|*=en| F|*|ol® nildz|*=e"|G|*|o]®.
Set v, := log|X|*+ pw:+ pv. and
v:i=vs+H(pA—1—p)) log | FI*+(p.B—1—p) log |G|*,
which is subharmonic by (4.8). We then have
(5.5) dr?=e"| F|*P14-D | G |2 PB-D || *=¢"| F|**1| G |**2|w]* .

Now, take the functions A1>0 with ds?=4%|w|? and £ as in Definition 5.1. By
(5.2) there is a subharmonic function w(z=—co) such that

ewllz:kZl FIZle G I 2p2 .
Combining this with (5.5), we obtain
" ¥ds*< Codr?

on M for some positive constant C,. Here, we can apply the result of S, T.
Yau in [15] to see

SMev+de32= +OO’

because M is complete with respect to the metric ds? and v+w is subharmonic.
This contradicts the assertion (5.4). The proof of Theorem 5.3 is completed.

Related to Theorem 5.3, we shall prove more precise unicity theorem of
holomorphic curve for a particular case. To state this, we give the following :

DEFINITION 5.6. Let f be a nonconstant holomorphic map of an open Rie-
mann surface M into PY(C). We say that f has an essential singularity at an
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isolated end of M if we can take a not relatively compact connected open sub-
set D of M, called a neighborhood of the end, such that there is a biholomar-
phic map @ of {z&C ;0<|z| <2} onto an open neighborhood of D satisfying
the condition that @@D)={z; |z|=1}, ®(D)=A*:= {z;0<]|z|<1} and the map
f-@: A*-PY(C) has an essential singularity at the origin.

THEOREM 5.7. Let M be an open Riemann surface and f, g nonconstant
holomorphic maps of M into PY(C) at least one of which has an essential singu-
larity at an isolated end of M. Suppose that 7,, v.>0 and Assumption 3.3 holds
for some X with Property 3.2 on some neighborhood of the end. Then

Ing 4 Tm 51
75 T,

For the proof, we recall the second main theorem in the classical value
distribution theory of holomorphic curves. Let f be a nonconstant holomorphic
map of an open neighborhood of As ..:= {z;s<|z|<+oo} into P¥(C). The
order function of f is defined by

rdt

Tf(r) = SS 7SSSII|<tQI ’

which can be rewritten as
(5.8) T )~ir”lo | F( ”)fda—ig“l | F(se™)| d6+0(log 7)
. sN=5_) log|F(re o ), 1081 F(s g7

with F:=(f,, ---, f.) for a reduced representation f:= (fo:--: fn) ([10, Corol-
lary 3.1.12]). For a divisor v on an open neighborhood of A; .. the counting
function of v is defined by

Ner, v)i= S:(sgagt’)(z))%—t ’

Let H be a hyperplane with f(A;.)ZH. By definition, the counting function
of H for f is given by
N;(r, H):= N, v(f, H)).

According to Jensen’s formula, we have

1

1 (2= )
Ny(r, )=\ "log| F(H)re'")| d0—_

Sz”log |F(HX(s¢')| d8-+0(log 7).

where F(H) is the function defined by (2.3) ([10, Corollary 3.1.8]).
The second main theorem in value distribution theory is stated as follows:

THEOREM 5.9. Let [: As .« PY(C) be a nonconstant holomorphic map and
H,, -+, H, hyperplanes in PV(C) located in general position such that f(As ,.)%&
U, H,. Consider the least projective linear subspace P; which includes the image
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of f and set n;:=dim P;. Take Nochka weights ws(l), ---, w,(q) and a Nochka
constant 0, for f considered as a map into P;. Then,

(5.10) 7 Tsn= b3 ()N (r, H)—N(r, vn,)+0(og (rT((r))
7=1

for all r not including in a set E with SE(I/r)dr< oo, where ¥;=0,(q—2N-+n,—1).

This is given in [12]. The details of the proof are described in [2] (cf.,
[10, Theorem 3.2.127).

Proof of Theorem 5.7. Changing notation if necessary, we may assume
that f has an essential singularity at an isolated end of M. Then there is a
not relatively compact open subset D of M and a map @ satisfying the condi-
tions stated in Definition 5.6. By the identity theorem we have only to prove
that f-@=g-® on A*. On the other hand, A* is biholomorphically equivalent
to A, ... Therefore, there is no harm in assuming that M=A, ,. and f has
an essential singularity at c. By Theorem 5.9 we have (5.10) and, similarly,

1 TH)S 20, (ON,(r, H)—N(r, v,,)+0(10g (4T ,(r)

outside a set £ with SE(I/r)dr< co. On the other hand, by Proposition 2.6 we
get

q . .

lef(])Nf(r, H)—N(r, va)<a,, N(r, min (¥, 1)),

;=

Ige

@ (N(r, H)—=N(r, va )<, N(r, min (5, 1)),

J
where §;:= 2 (f, H;) and ¥, := (g, H;). By Assumption 3.3 we have easily
N(r, min (¥;, )N, X(f, ), N, min@,, D)SN(, X/, 2).

By (5.8) and the bilinearity of %,

IV(T, )Jx(f_g))éTf(r)'f‘Tg(r)'*‘O(log 7‘) .
These imply that

GAD  TAD+TDS( T+ )T T ) +0U0g (T T 4(r).

g
On the other hand, since f has an essential singularity at oo, it holds that

lim lo—g r

R oS S s
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({10, Proposition 3.3.3]). Dividing both sides of (5.11) by T,(»)+T,(r) and
tending » to oo, we can conclude that

O'nf g,
AL te >,
Ts Te

This gives Theorem 5.7.

§6. Unicity theorems for the Gauss maps of
complete minimal surfaces.

In this section, we shall give some unicity theorems for the Gauss map of
complete minimal surfaces in R™ by applying the results in the previous sections.
Consider two nonflat minimal surfaces

x:=(xXy, >, Xm): M>R™, 2:=(%, -, ¥n): M—>R™

and let G and G be the Gauss maps of M and M respectively. Assume that
there is a conformal diffeomorphism @ of A onto M. We may regard M and
M as Riemann surfaces and @ as a biholomorphic isomorphism between M and
M. Consider the maps

fi=G:M—PYC), gi=G-®:M-PYC),

where N:= m—1, and holomorphic forms w, :=~8x1 on M and &,:= 0%, on M.
As is well-known, the Gauss maps of M and M are represented as

6.1) G=(: 10n), G=@: 16,

and the induced metrics of M and M are given by

(6.2) ds’=2(lo:|*+ - +lwal®),  d5*=2(1a.*+ - +|&nl®)
respectively (e.g., [13]). We can easily obtain the following :
(6.3) —Ric [ds*]=—Ric [@*(d5*)]=02,=82, .

Therefore, f and g satisfy the condition (C),/s, /s, Wwhere we may take K=@
in Definition 4.3 and hence the condition (C)is, 1,2 is also satisfied.

THEOREM 6.4. In the above situation, assume that x: M—R™ is complete
and has infinite total curvature and that f and g satisfy Assumption 1.1. If ¢>
mi*+m(m—1)/2, then f=g.

For a paricular case where f has an essential singularity at an isolated end,
the same conclusion holds under the only assumption q>m?.

Proof. Assume that fz=g under the assumption of the first part of Theo-
rem 6.4. For reduced representations f=(f,: :fn,) and g=(g,: - : gn), the
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function
X(wy, ) wn); By, -, Bm)) = wl;—w;W,
satisfies Assumption 3.3 for some distinct indices 7, ;. Setting p,=p,:= 1/2,
we apply Theorem 4.4 to see

ny(ny;+1) n ng(ng+1)
20 ,(g—N+n,;—1)  20,(¢g—N+n,—1)

On the other hand, by Theorem 2.4 (iii) we see

ny(ny+1) <nf(2N—nf+1)

and, since 1<n,<N and ¢>(N+1)’>, we have

N(N+1) n,2N—n,+1)

¢g—N—1 ¢—2N+n,—1

_ WN=n)(N=n;+1)g—(N+1)2N—n,+1)) ~0
(¢—N—1)g—2N+n,—1) =0

These are also true if 6§, and n, are replaced by 6, and n, respectively. Thus,
we obtain

=2
=3

©5) ny(n,+1) <N(N-}-l) ng(ng+1)_<N(N+1)
’ 0:(g—2N+n;—1) = qg—N—1"  0,(¢g—2N+n,—1) —¢g—N—1"
and so
N(N+1)>g
g—N—1—3"

This leads to an absurd conclusion

T

The first part of Theorem 6.4 is completely proved.

The proof of the latter half is also given by reduction to absurdity. Suppose
that f#g, and take some X with Property 3.2 which satisfies Assumption 3.3.
By assumption, f has an essential singularity at an isolated end and ¢>(N-1)%.
Then, since 7, 7,>0 for the constants 7, and 7, defined by (3.4), we can apply
Theorem 5.7 to get

ny(ny+1) ng(ng+1) >1
20 (g—N4n;—1)  20,(g—N+n,—1) ="'

The assertions (6.5) remains valid in this case too. By (6.6) we conclude

N(N+1)>1
g—N—1"""

(6.6)
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This contradicts the assumption for ¢g. The proof of Theorem 6.4 is completed.

THEOREM 6.7. In the same situation as in Theorem 6.4, suppose that M, M
are both complete and have finite total curvature. If f and g satisfy Assumption
1.1 for K=@ and q=zm*+m(m—1)/2, then f=g.

Proof. Assume that fz=g and take some X with Property 3.2 which satisfies
Assumption 3.3. For our purpose, we may replace #: M—R™ by %@ : M—R™
and so we may assume that M=M and @ is the identity map. By Chern-
Osserman’s theorem ([4]), we may set M=M—{a,, -, ax} for a compact Rie-
mann surface M and the forms w, := dx,, @, := 0%, (1<i<m) are meromorphically
extended to M. The induced metrics ds?, d§® are also extended to M as pseudo-
metrics. We consider the numbers n,, n,, w,(j)'s, w,(j)’s, 0;, 0,, 7, and 7,
defined in §3. The assertion (6.5) holds in this case too. The assumption
implies that
gy N(Nil)_<l Ty N(N+1) <1

Ty = 2¢g—N-DT 3"

7¢e 2(g—N—-1)=73"

Choose sufficiently small positive rational numbers ¢, and ¢, such that the con-
stants A and B defined by (4.5) are both larger than 3—e¢ for an arbitrarily
pre-assigned positive number e. Settign p,=p,=1/2, we define the pseudo-
metric dz? by (3.8), whose curvature is strictly negative on M.

Now, we choose a nonzero vector (c;, -+, ¢») such that

FMUgM)EHy := {(wy: i wa); G+ - +Cawn=0},
(6.8) .= (,"1(01+ te +C‘m0)m-}i-0 )
vo(@)=vas(ar)), vol@)=vas(a;) (1ZUZK).

Choose the functions ¢, for f as in §4 and ¢, similarly for g and set

g (LECHDIT 08 g T s i 2y
1= L FHp) 5o

’

* . <[G(Ho) [Ta 72941 |Gy | T, 0 [$s] eZ/q)”‘”"g”z?“e)
e = e, |G(H))[“s ‘

We define a new pseudo-metric by

2.____&]}___ s ,
d¢*:= lF(Ho)l2|G(Ho)‘27}f7}g|dZ| .

Here, we may assume that all exponents appearing in the above are rational
numbers. As is easily seen, d¢” is a well-defined pseudo-metric on M. On the
other hand, for an arbitrary s-ple meromorphic form ¢ on M it holds that
Speit va(P)=s2r—2). For a sufficiently large integer s, we can find an s-ple
meromorphic form p=¢,(dz)* such that d¢*=|¢,|**|dz|* for each holomorphic
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local coordinate z. It follows that
6.9) Eﬁvw(p)=2r -2,
where 7 denotes the genus of M. If we take a nonzero holo_{_norphic function
g with y,=min{y,,; 1<i<m} in a neighborhood of each acM, we have
Vo=Vg+Vo/g=vas+u(f, Hp)
on M. We define the degree of f by
dyi= 3 u(f, H)(2),

2eH

which does not depend on the choice of the hyperplane H,. We then have

(6.10) 2 —2= S vu(2)= X vas2)+d,= éudmwd, ,

zeM zEM

where we used the fact that y;,=0 on M. Similarly, we get
K
(6.11) 2r—2= Evdi(al)‘l‘dg .
Comparing the definition of d¢* and dr*, we have

A B
Vagp= Vdr+(§ _1)VF(H°)+('§_1)VG(H°)+VO )
where
-8 (Lo
Yo o= Z(Unf+€Tnf)(q J-ley¢jk Oggnfylel)
12 1
— (= 52 — >0.
+2(O'ng+82‘ng)<q _/.Elev¢1'k oslgngymkl):o

Since v4.=0 on M by Proposition 3.10, we have by the use of (6.9)

gw,(al): Svada)— 2 vad?

€M
é,g—{yd‘/’(z)_ 2 <<% —1)VF<H0)(Z)+<% _l)VG(HO)(Z))

zeM
:2r—2—(%—1)df—(%—1)dg .
Since

df+dg

1 K
27"“2=§ > (as(a)+vas(a)+
i= 2

by (6.10) and (6.11), we obtain
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éudr(dz)éé(é}lvds(dl)‘l‘vdg(a,))-—(%_%)df_(%_%>dg '

On the other hand, according to Chern-Osserman’s theorem ([4, Lemma 2]),

(6.12)

vas(p)=—2,  vas(p=—2 (1=IZK).

This gives

é ve(a)< —2K— _;'((A—B)df‘i‘(B—B;)dg) .

Here, if we choose a sufficiently small positive ¢, ¢, and ¢, then every term
of the right hand side except the first may be assumed to be smaller than an
arbitrarily small pre-assigned positive number. This implies that there is some
I, with va(a,)<—1. It follows that

SMdeﬂ:-l‘OO .

On the other hand, by the same argument as in the proof of Theorem 5.3 we

can show SMd.Qd,z<oo because (3.6) holds in this case too. This is a contra-

diction. We have Theorem 6.7.
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