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SOME RESULTS ON THE COMPLEX OSCILLATION

THEORY OF SECOND ORDER LINEAR

DIFFERENTIAL EQUATIONS

BY CUN-ZHI HUANG

1. Introduction

We consider the second order linear differential equation

f'+Af=0, (1)

where A is an entire function. For an entire function /, let p{f) be its order,
μ{f) its lower order and λ{f) the exponent of convergence of its zeros. In addition,
we assume that the reader is familiar with the standard notations of Nevanlinna
theory (see [3]).

When A is a polynomial of degree n^l , S. Bank and I. Laine obtained the
following ([1]).

THEOREM A. Let A be a polynomial of degree n^l. If /Ξ£0 is a solution
of (1), then

p(f)=(n+2)/2, (2)

and if fίf f2 are two linearly independent solutions of (1), then

maxW(/ι),i(/,))=(n+2)/2. (3)

If A is transcendental, we apply the lemma on the logarithmic derivative in
Nevanlinna theory to (1) and can deduce that any solution /=i=0 of (1) satisfies

P(f)= oo. (4)

We may hope that
i(/,))=oo, (5)

where fx and / 2 are linearly independent solutions of (1). However, examples
in [1] show that this is not the case. Specifically, for p{A) a positive integer
or infinity, there exist A and independent solutions flf f2 of (1) such that
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When the growth of A is suitably restricted, the following were obtained.

THEOREM B ([6]). Let A be a transcendental entire function of finite order
and of lower order μ gl/2. // fx and f2 are two linearly independent solutions
of (1), then

max W(/i), ;(/,))= oo.

THEOREM C ([5]). Let A be a transcendental entire function of order p(A)<l.
If fx and f2 are two linearly independent solutions of (1), then

Kf if *)=<*>
or

In this paper, we prove

THEOREM 1. Let A be a transcendental entire function of lower order
μ(A)<l. If fι and f2 are two linearly independent solutions of (1), then

λ(f if *)=<*>
or

Remark. Theorem 1 generalizes Theorem B and Theorem C. Furthermore,
we note that the condition p(A) is finite in Theorem B is not necessary.

Before stating Theorem 2, we introduce some definitions. Let

/(*)= Σ anz
n

π=0

be a transcendental entire function. We denote by A~{λk\, M— {μk\ (ft = 1,2, •)
the sequences of exponents n for which an^γ0 and an=0 respectively, arranged
in increasing order. We say that f(z) has Fabry gap if

λn , v

n

Now we have

THEOREM 2. Let A be a transcendental entire function of lower order
μ(A)<oo and have Fabry gap. If / i and f2 are two linearly independent solutions
of (1), then

maxW(/i), Λ(/.))=oo.
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2. Preliminaries

LEMMA 1. Let E be an entire function of finite order, then there exist a
positive integer q and a set J c [ l , °°) of finite linear measure, such that for
Z(ΞJ*, we have

where J*—{2: |Z |CΞΔ}.

This lemma can be deduced from [2],
From [4, Theorem 4], we have

LEMMA 2. Suppose that Λ(z) is an entire function and has Fabry gap such
that for some arbitrarily large R we have

logM(R, A)<Rλ, (6)

where λ is a positive constant. Let ηlf η2 be constants between 0 and 1, then there
exists a subset E of the real axis, such that the logarithmic measure of EΓ\[l, R~]
is at least (l—r)ι)logR-\-O(l), as R->co through values satisfying (6) and such
that we have, for r in E,

log L(r, Λ)>a-V2)logM(r, A),

where L(r, A)= min \A(z)\ and M(r, i4)=max|^4(z)|.

3. Proof of Theorem 1

Let /i and f2 be two linearly independent solutions of (1). Set E—fλf2,
then we note as in [1] that

-4A=(c/E)2-(E'/E)2+2(E"/E), (7)

where c is the constant Wronskian of fx and / 2 . Applying Nevanlinna theory
to (7), we have

T(r, E)=N(r, l / £ ) + y T ( r , A)+O(log(rT(r, £))) (8)

as r->oo outside a set of finite measure.
We assume that ρ(E)<oo. Since μ(A)<l, A{z) must have infinitely many

zeros. Let au α2, ••• , aq+ι be q+1 zeros of A(z) with q as in Lemma 1. Define

then H is entire and of lower order μ(H)—μ(A)<l.
Set
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D(H)={z:\H(z)\>l}>

D(E)={z:\E(z)\>l\.

Since H(z) and E(z) are transcendental, there exist z^C (i=l, 2) such that

\H(z1)\>ef

\E(z2)\>e.

Let Ωι (Ω2) be the connected component of D(H) (D(E)) containing the point
Zι(z2). By the maximum modulus principle, we conclude that 42i(z = l, 2) are
unbounded.

Set

r o = = m a x { l , \zx\, \z2\) .

Let θit(i=l, 2; r0£t<oo) be the part of the circle 1*1=* in Ωx and tθi(t) the
linear measure of θit.

By Lemma 1 and (7), we deduce that

β , Z<EΞD(E)-Δ*. (9)

But for z(ΞD(H)—d* and \z\ sufficiently large, we have

\\«+ί

j + ί . (10)

From (9) and (10), we have for r0 ' large enough

(D(E)-J*)Γ\(D(H)-J*)Γ\{z: \z\>ro'}=φ. (11)

(11) implies

Θ1(t)+Θ2(t)^2πy mΔ. (12)

By a theorem of Tsuji [7], we have

( J 2 r o j^)gM{r} H). (13)

(13) gives

Set

and

Sα/2)r dt ,

-j^ry ^log log M(r, H)+log(9V 2 ) . (14)

G(r)=hu, \-λ-Δ
L c* A

then, from (14), we have
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j (15)

Similarly

j ^ ^ l o g log M(r, £)+log(9VT). (16)

By Cauchy-Schwarz inequality

d t

From (12) and (17) with j = l, we obtain

jGcr)

2π-θλ(t)
t

dt

4M MLdt[
ί?Cr) t JGCO t

f at

jGCr) I _dt_
Jatritθtd

It
r, t

[ 1 '

Since J is of finite linear measure, from (16) and (19), we obtain

logr

^^Lf'flt (18)

(18) and (17) with ί=2 give
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Inequalities (15) and (20) give

which implies

gZ. (21)

We assert that ρ{E)— oo implies >l(£)=oo. If λ(E)<oof we would arrive at
a contradiction.

Let E=PeQ where P is a canonical product formed by the zeros of E and
Q is an entire function, then ρ(P)<oo. Since p(E)=oo, Q must be transcendental.
From here, we conclude that μ(E)=oo.

For any a>l, we have by (8)

~T(r, E)^N(ar, l/E)+~T(arf A), (r large enough). (22)

(22), μ(A)<l and λ{E)<oo imply

μ(E)<oo.

This gives a contradiction.
Similarly, we can prove that if p(E)<ooy then λ{E)—ρ{E). From (21), we

have

We have completed the proof of Theorem 1.

4. Proof of Theorem 2

Applying the Wiman-Valiron theory to (7), we conclude that there exists a
set D in [1, oo) of finite logarithmic measure such that if r^D and z is a point
on \z\=r at which \E(z)\=M(r, E), then

^ ) 2 , (23)

where v(r) denotes the central index of E. It follows from Lemma 2 that there
exists a sequence rn-»oo such that rn<^E—D

L(rn, A)£M(rn, A)1'*. (24)

From (23) and (24), we have for any positive integer N

rnN^^ιAf ( 2 5 )

which implies

' " v = oo .



COMPLEX OSCILLATION 319

The proof of Theorem 2 can be completed in the same way as that of Theorem 1.
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