A MODIFIED DEFECT RELATION FOR HOLOMORPHIC CURVES

by Peichu Hu

1. Introduction and main results.

By a holomorphic curve, we mean a holomorphic mapping

$$
x: V \longrightarrow \boldsymbol{P}_{n}
$$

where V is an open Riemann surface and \boldsymbol{P}_{n} is the n-dimensional complex projective space. In 1927, R. Nevanlinna [3] created a new theory concerning the distribution of values of a holomorphic curve $f: \boldsymbol{C} \rightarrow \boldsymbol{P}_{1}$. Nevanlinna's main result is that f assumes almost all values in \boldsymbol{P}_{1} "equally often", and those values that f fails to assume often enough have total "defect" at most $2 . \mathrm{H}$. Cartan [2] generalized this "defect relation" to holomorphic curves $x: C \rightarrow \boldsymbol{P}_{n}$ counting how often x takes values in hyperplanes. L. Ahlfors [1] later extended Cartan's result to holomorphic curves $x: V \rightarrow \boldsymbol{P}_{n}$, which he cast in a geometric form. H. Wu [5] reorganized Ahlfors' theory in a modern fashion. We freely use the symboles, notations and terminologies from H . Wu [5] except for special declaration.

The purpose of this paper is to modify the Second Main Theorem for holomorphic curves, and furthermore, simplify the defect relation. Let τ be a harmonic exhaustion on V and $\sigma=\tau+\sqrt{-1} \rho$ be the special coordinate function. By a theorem of Gunning and Narasimhan [5, p. 102], there is a holomorphic function γ on V whose differential vanishes nowhere. Thus in every suffliently small open subset of V, the restriction of γ to it is a coordinate function. Define

$$
\begin{aligned}
& H(r)=\left.\frac{1}{2 \pi} \int_{\partial V[t]} \log \left|\frac{d \sigma}{d \gamma}\right| * d \tau\right|_{r_{0}} ^{r}, \\
& T_{k}^{\mathrm{o}}(r)=T_{k}(r)+N_{k}(r),
\end{aligned}
$$

Partially supported by the National Science Foundation.
Key words and phrases. Holomorphic curves, Defect relation.
1980 Math. Subject Classification. 32A22, 30D35.
Received October 30, 1989 ; revised February 23, 1990.

$$
\varepsilon_{k}^{q}= \begin{cases}1, & \text { if } 0 \leqq q \leqq k \\ \frac{(n-q)(k+1)}{(n-k)(q+1)}, & \text { if } k \leqq q \leqq n-1,\end{cases}
$$

Then we obtain
Theorem 1. Let $x: V \rightarrow \boldsymbol{P}_{n}$ be a nondegenerate holomorphic curve and V admits a harmonic exhaustion, then for $k=0, \cdots, n-1$

$$
\begin{equation*}
E(r)+H(r)+S_{k}(r)=N_{k-1}(r)-2 N_{k}(r)+N_{k+1}(r) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
T_{k-1}^{0}-2 T_{k}^{0}+T_{k+1}^{0}=H+\mu(T) \tag{2}
\end{equation*}
$$

and for $k=1, \cdots, n$

$$
\begin{equation*}
N_{k}(r)=(k+1) N_{0}(r)+\frac{k(k+1)}{2}(E(r)+H(r))+\sum_{j=0}^{k-1}(k-j) S_{j}(r) . \tag{3}
\end{equation*}
$$

THEOREM 2. Let $x: V \rightarrow \boldsymbol{P}_{n}$ be a nondegenerate holomorphic curve and V admits a harmonic exhaustion. Let $\left\{A^{q}\right\}$ be a finite system of q-dimensional projective subspaces of \boldsymbol{P}_{n} in general position. Then the generalized compensating terms $m_{k}\left(A^{q}\right)=m_{k}\left(r, A^{q}\right)$ satisfy the following inequality

$$
\begin{equation*}
\sum_{A^{q}} m_{k}\left(A^{q}\right)=\varepsilon_{k}^{q}\binom{n}{q}\left(\frac{n+1}{k+1} T_{k}^{0}-N_{n}+\frac{1}{2}(n+1)(n-k) H\right)+\mu\left(T^{2}\right) . \tag{4}
\end{equation*}
$$

We also have the equality

$$
\begin{align*}
& \frac{n+1}{k+1} T_{k}^{0}(r)-N_{n}(r)+\frac{1}{2}(n+1)(n-k) H(r) \tag{5}\\
& \quad=\frac{n+1}{k+1} T_{k}(r)-Q_{k}(r)-\frac{1}{2}(n+1)(n-k) E(r)
\end{align*}
$$

where

$$
Q_{k}(r)=\frac{n-k}{k+1} \sum_{j=0}^{k-1}(j+1) S_{j}(r)+\sum_{j=k}^{n-1}(n-j) S_{j}(r) .
$$

Remark. If $\tilde{x}=\left(x_{0}, \cdots, x_{n}\right): V \rightarrow \boldsymbol{C}^{n+1}$ is a reduced representation of x, then

$$
\begin{equation*}
N_{n}(r)=\int_{r_{0}}^{r} n(t, W=0) d t \tag{6}
\end{equation*}
$$

where $W=W\left(x_{0}, \cdots, x_{n}\right)$ is the Wronskian determinant of $x_{j}(j=0, \cdots, n)$ and

$$
n(t, W=0)=\text { sum of the orders of zeroes of } W \text { in } V[t] .
$$

Thus if $V=\boldsymbol{C}$ and $k=0$, (4) is just the Cartan's Second Main Theorem [2], [4].
I learned about differential geometry and complex analysis from H . Wu and
Y.T. Siu, whom I wish to thank for sharing their insights with me.

2. Proof of Theorem 1.

Given a holomorphic curve $x: V \rightarrow \boldsymbol{P}_{n}$, with a reduced representation $\tilde{x}=$ $\left(x_{0}, \cdots, x_{n}\right): V \rightarrow \boldsymbol{C}^{n+1}$. According to H. Wu [5] the quantity X_{z}^{k} is defined as follows: fix a coordinate neighborhood U in V and a coordinate function z on U,

$$
X_{z}^{k}=\tilde{x} \wedge \tilde{x}^{(1)} \wedge \cdots \wedge \tilde{x}^{(k)}, \quad k=0, \cdots, n,
$$

where $X_{2}^{0}=\tilde{x}^{(0)}=\tilde{x}$ and

$$
\tilde{x}^{(i)}=\left(\frac{d^{2} x_{0}}{d z^{2}}, \cdots, \frac{d^{2} x_{n}}{d z^{2}}\right),
$$

Then the following results are well-known [5]

$$
\begin{equation*}
X_{\gamma}^{k}=\left(\frac{d \sigma}{d \gamma}\right)^{k(k+1) / 2} X_{\sigma}^{k} \quad[5, \mathrm{p} .69] \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
T_{k}(r)=\left.\frac{1}{2 \pi} \int_{\left.\partial V_{i} t\right]} \log \left|X_{\gamma}^{k}\right| * d \tau\right|_{r_{0}} ^{r}-N_{k}(r) \quad[5, \text { p. 104] } \tag{8}
\end{equation*}
$$

$$
\begin{align*}
& \quad E(r)+S_{k}(r)+T_{k-1}(r)-2 T_{k}(r)+T_{k+1}(r) \tag{9}\\
& \quad=\left.\frac{1}{2 \pi} \int_{\partial V_{[t]}} \log \frac{\left|X_{\sigma}^{k-1}\right|\left|X_{\sigma}^{k+1}\right|}{\left|X_{\sigma}^{k}\right|^{2}} * d \tau\right|_{r_{0}} ^{r} \quad[5, \text { p. } 130] \\
& E+S_{k}+T_{k-1}-2 T_{k}+T_{k+1}=\mu(T) . \quad[5, \text { p. } 132] \tag{10}
\end{align*}
$$

where (7) holds in $V-V[r(\tau)]-\{$ critical points of $\tau\}$. Since $r_{0} \geqq r(\tau)$ and an integration always ignores finite point sets (the critical points of τ are all isolated), by (7) and (8), we have .

$$
\begin{equation*}
\left.\frac{1}{2 \pi} \int_{\partial V[t]} \log \left|X_{\sigma}^{k}\right| * d \tau\right|_{r_{0}} ^{r}=T_{k}(r)+N_{k}(r)-\frac{1}{2} k(k+1) H(r) . \tag{11}
\end{equation*}
$$

Consequently, (9) and (11) imply (1).
Note that $N_{-1}(r)=0$. So upon (1) summing over k from 0 to $j-1$, we have:

$$
\begin{equation*}
j(E(r)+H(r))+\sum_{i=0}^{j-1} S_{i}(r)=N_{j}(r)-N_{\jmath-1}(r)-N_{0}(r) . \tag{12}
\end{equation*}
$$

Upon summing over j from 1 to k, we finally have (3). (1) and (10) imply (2). q. e. d.

3. Preliminary lemmas.

To prove Theorem 2 we need some lemmas.
Lemma $1[5, \mathrm{p} .131]$. (i) If $\psi_{1} \leqq \psi$ off a compact set and $\varphi \leqq \varphi_{1}$ off a compact
set, then $\phi=\mu(\varphi)$ implies $\psi_{1}=\mu\left(\varphi_{1}\right)$.
(ii) If $\phi=\mu(\varphi)$, then $\phi+O(1)=\mu(\varphi)$.
(iii) If C is a positive constant and $\psi=\mu(\varphi)$, then

$$
C \psi=\mu(\varphi) .
$$

(iv) If $\psi=\mu(\varphi)$ and ψ_{1} is positive off a compact set, then

$$
\phi-\psi_{1}=\mu(\varphi) .
$$

(v) Suppose $\psi=\mu(\varphi)$ and $\phi_{1}=\mu(\varphi)$. then $\phi+\psi_{1}=\mu(\varphi)$.

Remark. We say $\phi=\mu(\varphi)$ for two continuous functions φ and ψ if and only if

$$
\int_{r_{0}}^{r} d s \int_{r_{0}}^{s} \exp \{K \psi(t)\} d t<C \varphi(r)+C^{\prime} \quad[5, \text { p. 131] }
$$

for some positive constants K, C and C^{\prime}.
Lemma 2. For $k=0, \cdots, n-2$,

$$
\begin{equation*}
(k+1) T_{k+1}^{0}=(k+2) T_{k}^{0}+\frac{1}{2}(k+1)(k+2) H+\mu(T) \tag{13}
\end{equation*}
$$

and for $k=1, \cdots, n-1$,

$$
\begin{equation*}
(n-k) T_{k-1}^{0}=(n-k+1) T_{k}^{0}+\frac{1}{2}(n-k)(n-k+1) H-N_{n}+\mu(T) . \tag{14}
\end{equation*}
$$

Proof. By (2) and Lemma 1 (iii), we have

$$
\begin{equation*}
(k+1)\left(T_{k-1}^{0}-2 T_{k}^{0}+T_{k+1}^{0}-H\right)=\mu(T) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
(n-k)\left(T_{k-1}^{0}-2 T_{k}^{0}+T_{k+1}^{0}-H\right)=\mu(T) . \tag{16}
\end{equation*}
$$

Upon (15) and (16) summing over k from 0 to k and k to $n-1$ respectively, and using Lemma 1 (v), we get (13) and (14). q.e.d.

Corollary 1. If $j \geqq k$, then

$$
\begin{equation*}
(k+1) T_{\jmath}^{0}=(j+1) T_{k}^{0}+\frac{1}{2}(j-k)(k+1)(j+1) H+\mu(T) . \tag{17}
\end{equation*}
$$

If $j \leqq k$, then

$$
\begin{equation*}
(n-k) T_{j}^{0}=(n-j) T_{k}^{0}+\frac{1}{2}(k-j)(n-k)(n-j) H-(k-j) N_{n}+\mu(T) . \tag{18}
\end{equation*}
$$

Proof. Straightforward induction from the lemma.

Corollary 2. If

$$
H_{k}=\lim _{r \rightarrow \infty} \sup \frac{H(r)}{T_{k}^{0}(r)}<+\infty,
$$

where we assume that V has an infinite harmonic exhaustion and that x is nondegenerate, then there exists a positive constant c such that

$$
\begin{equation*}
\| T_{k}^{0}(r) \leqq T^{0}(r) \leqq c T_{k}^{0}(r), \tag{19}
\end{equation*}
$$

where $T^{0}(r)=\max \left\{T_{0}^{0}(r), \cdots, T_{n-1}^{0}(r)\right\}$, and the sign "\|" in front of an inequality means that the inequality is only valid in $[0, \infty)-I$ with $\int_{I} d \log t<\infty$.

Proof. We know that $\psi=\mu(\varphi)$ implies

$$
\begin{equation*}
\| \psi(r)<\lambda \log \left(C \varphi(r)+C^{\prime}\right) \tag{20}
\end{equation*}
$$

for a constant $\lambda>1$ ([5], (4.62)). Hence (17) and (18) imply

$$
\begin{aligned}
\|(k+1) T_{j}^{0}(r) & <(j+1) T_{k}^{0}(r)+\frac{1}{2}(j-k)(k+1)(j+1) H(r) \\
& +\lambda \log \left(C T(r)+C^{\prime}\right) \quad \text { if } j \geqq k
\end{aligned}
$$

and

$$
\begin{aligned}
\|(n-k) T_{j}^{0}(r) & <(n-j) T_{k}^{0}(r)+\frac{1}{2}(k-j)(n-k)(n-j) H(r) \\
+ & \lambda \log \left(C T(r)+C^{\prime}\right) \quad \text { if } j \leqq k .
\end{aligned}
$$

Obviously, they together imply that for some positive constants c_{1} and c_{2}.

$$
\| T^{0}(r)<c_{1} T_{k}^{0}(r)+c_{2} \log \left(C T^{0}(r)+C^{\prime}\right)
$$

Because $T_{k}(r) \rightarrow \infty$ as $r \rightarrow \infty$, so $T^{0}(r) \rightarrow \infty$ as $r \rightarrow \infty$. Thus for sufficiently large r,

$$
c_{2} \log \left(C T^{0}(r)+C^{\prime}\right)>\frac{1}{2} T^{0}(r)
$$

Combining with the above inequalities, we obtain (19). q.e.d.

Remark. If x is nondegenerate and V has an infinite harmonic exhaustion and

$$
\lambda_{k}=\lim _{r \rightarrow \infty} \sup \frac{-E(r)}{T_{k}(r)}<+\infty .
$$

we also have

$$
\begin{equation*}
\| T_{k}(r) \leqq T(r) \leqq c T_{k}(r) . \quad[5, \text { p. } 140] \tag{21}
\end{equation*}
$$

Lemma 3. If $y_{\text {, }}$ are indeterminates over the ring \boldsymbol{Z} and if $y_{0}=0$ for $j>n$, then we have the algebraic identity

$$
\begin{align*}
& D_{q}(k, l ; y) \equiv-\sum_{j=k}^{n-1} \sum_{\imath=0}^{l} P_{q}(j-i, l-i)\left(y_{j-\imath-1}-2 y_{\jmath-i}+y_{j-\imath+1}\right) \tag{22}\\
& = \\
& P_{q}(k+1, l+1) y_{k}-\left(P_{q}(n+1, l+1)-\binom{n}{l+1}\binom{-1}{q-l}\right) y_{n} \\
& \quad-\sum_{\imath=k-l-1}^{k}\binom{i}{l-k+i+1}\binom{n-i-1}{q+k-l-i} y_{i}-\sum_{i=k+1}^{n}\binom{i}{l}\binom{n-i-1}{q-l-1} y_{\imath},
\end{align*}
$$

where $0 \leqq l \leqq \min (k, q)$. If $l=q$, then

$$
\begin{equation*}
D_{q}(k, q ; y)=\binom{n+1}{q+1} y_{k}-\binom{n}{q} y_{n}-\sum_{\imath=k-q-1}^{k}\binom{i}{q-k+i+1}\binom{n-i-1}{k-i} y_{2} . \tag{23}
\end{equation*}
$$

By definition,

$$
P_{q}(k, l)=\binom{n+1}{q+1}-\sum_{j \geq 0}\binom{k+1}{l+j+1}\binom{n-k}{q-l-j}, \quad[5, \text { p. 182] }
$$

where $\binom{\alpha}{\beta}$ is defined for all integers by the binomial series

$$
(1+x)^{\alpha}=\sum_{\beta=-\infty}^{+\infty}\binom{\alpha}{\beta} x^{\beta} .
$$

Proof. We often use the following identities:

$$
\begin{gathered}
\binom{\alpha}{\beta}+\binom{\alpha}{\beta-1}=\binom{\alpha+1}{\beta} ;\binom{\alpha}{\beta}=0, \quad \text { if } \beta<0 \\
\sum_{i+j=\beta}\binom{\alpha+1}{i}\binom{n-\alpha}{j}=\binom{n+1}{\beta} \quad[5, \text { p. 194] }
\end{gathered}
$$

and

$$
\begin{equation*}
\sum_{j=q}^{q+r}\binom{p+q+r-j}{p}\binom{j}{q}=\binom{p+q+r+1}{r} \tag{24}
\end{equation*}
$$

which directly imply

$$
P_{q}(j-i, l-i)= \begin{cases}0 & \text { if } i \geqq l+1 \tag{25}\\ \binom{n+1}{q+1} & \text { if } i<l-q\end{cases}
$$

and

$$
\begin{equation*}
P_{q}(k+1, l+1)-P_{q}(k, l)=\binom{k+1}{l+1}\binom{n-k-1}{q-l} . \quad[5, \text { p. 195] } \tag{26}
\end{equation*}
$$

By (25), we can write

$$
\begin{equation*}
D_{q}(k, l ; y)=D_{q}^{\prime}(k, l ; y)+D_{q}^{\prime \prime}(k, l ; y), \tag{27}
\end{equation*}
$$

where

$$
D_{q}^{\prime}(k, l ; y)=-\sum_{j=k}^{n-1} \sum_{\imath=-\infty}^{+\infty} P_{q}(j-i, l-i)\left(y_{j-\imath-1}-2 y_{j-i}+y_{j-\imath+1}\right)
$$

and

$$
D_{q}^{\prime \prime}(k, l ; y)=\sum_{j=k}^{n-1} \sum_{\imath=-\infty}^{-1} P_{q}(j-i, l-i)\left(y_{j-\imath-1}-2 y_{j-i}+y_{j-\imath+1}\right)
$$

Obviously,

$$
\begin{aligned}
& D_{q}^{\prime \prime}(k, l ; y)=\sum_{j=k}^{n-1}\left(P_{q}(j+1, l+1) y_{j}-P_{q}(j, l) y_{j+1}\right) \\
& \quad+\sum_{j=k}^{n-1} \sum_{\imath=j+1}^{+\infty}\left(P_{q}(i+1, l-j+1+i)-2 P_{q}(i, l-j+i)+P_{q}(i-1, l-j+i-1)\right) y_{\imath}
\end{aligned}
$$

Change order summing, we obtain

$$
D_{q}^{\prime \prime}(k, l ; y)=P_{q}(k+1, l+1) y_{k}-P_{q}(n+1, l+1) y_{n}+\sum_{i=k+1}^{n}\left(a_{i}+b_{i}\right) y_{\imath},
$$

where

$$
\begin{aligned}
& a_{\imath}=P_{q}(i+1, l+1)-P_{q}(i-1, l), \\
& b_{i}=\sum_{j=k}^{i-1}\left(P_{q}(i+1, l-j+i+1)-2 P_{q}(i, l-j+i)+P_{q}(i-1, l-j+i-1)\right)
\end{aligned}
$$

By definition,

$$
\begin{aligned}
& P_{q}(i, l)-P_{q}(i-1, l)=\sum_{j \geq 0}\left\{\binom{i}{l+j+1}\binom{n-i+1}{q-l-j}-\binom{i+1}{l+j+1}\binom{n-i}{q-l-j}\right\} \\
& =\sum_{j \geq 0}\left\{\binom{i}{l+j+1}\left[\binom{n-i}{q-l-j}+\binom{n-i}{q-l-j-1}\right]-\left[\binom{i}{l+j+1}+\binom{i}{l+j}\right]\binom{n-i}{q-l-j}\right\} \\
& =\sum_{j \geq 0}\left\{\binom{i}{l+j+1}\binom{n-i}{q-l-j-1}-\binom{i}{l+j}\binom{n-i}{q-l-j}\right\} \\
& =-\binom{i}{l}\binom{n-i}{q-l},
\end{aligned}
$$

which and (26) imply

$$
\begin{aligned}
a_{\imath} & =P_{q}(i+1, l+1)-P_{q}(i, l)+P_{q}(i, l)-P_{q}(i-1, l \\
& =\binom{i+1}{l+1}\binom{n-i-1}{q-l}-\binom{i}{l}\binom{n-i}{q-l} \\
& =\left[\binom{i}{l+1}+\binom{i}{l}\right]\binom{n-i-1}{q-l}-\binom{i}{l}\binom{n-i}{q-i}
\end{aligned}
$$

$$
=\binom{i}{l+1}\binom{n-i-1}{q-l}-\binom{i}{l}\binom{n-\imath-1}{q-l-1} .
$$

By (26), we have

$$
\begin{aligned}
b_{i}= & \sum_{j=k}^{-1}\left\{\binom{i+1}{l-j+i+1}\binom{n-i-1}{q-l+j-i}-\binom{i}{l-j+i}\binom{n-i}{q-l+j-i+1}\right\} \\
= & \sum_{j=k}^{i-1}\left\{\left[\begin{array}{c}
i \\
l-j+i+1
\end{array}\right)+\binom{i}{l-j+i}\right]\binom{n-i-1}{q-l+j-i} \\
& \left.-\binom{i}{l-j+i}\left[\binom{n-i-1}{q-l+j-i+1}+\binom{n-i-1}{q-l+j-i}\right]\right\} \\
= & \sum_{j=k}^{i-1}\left\{\binom{i}{l-j+i+1}\binom{n-i-1}{q-l+j-i}-\binom{i}{l-j+i}\binom{n-i-1}{q-l+j-i+1}\right\} \\
= & \binom{i}{l-k+i+1}\binom{n-i-1}{q-l+k-i}-\binom{i}{l+1}\binom{n-i-1}{q-l} .
\end{aligned}
$$

Hence we finally obtain

$$
\begin{align*}
& D_{q}^{\prime \prime}(k, l ; y)=P_{q}(k+1, l+1) y_{k}-P_{q}(n+1, l+1) y_{n} \tag{28}\\
& \quad+\sum_{\imath=k+1}^{n}\left\{\binom{i}{l-k+i+1}\binom{n-i-1}{q-l+k-i}-\binom{i}{l}\binom{n-i-1}{q-l-1}\right\} y_{2} .
\end{align*}
$$

In similar fashion, we have

$$
\begin{align*}
& D_{q}^{\prime}(k, l ; y)=-\sum_{j=k}^{n-1} \sum_{2=-\infty}^{+\infty}\left(P_{q}(i+1, l-j+i+1)\right. \tag{29}\\
& \left.-2 P_{q}(i, l-j+1)+P_{q}(i-1, l-j+i-1)\right) y_{2} \\
& =-\sum_{i=-\infty}^{+\infty} \sum_{j=k}^{n-1}\left\{\binom{i+1}{l-j+i+1}\binom{n-i-1}{q-l+j-i}-\binom{i}{l-j+i}\binom{n-i}{q-l+j-i+1} y_{2}\right. \\
& =-\sum_{i=-\infty}^{+\infty} \sum_{j=k}^{n-1}\left\{\left[\binom{i}{l-j+i+1}+\binom{i}{l-j+i}\right]\binom{n-i-1}{q-l+j-i}\right. \\
& \left.-\binom{i}{l-j+i}\left[\binom{n-i-1}{q-l+j-i+1}+\binom{n-i-1}{q-l+j-i}\right]\right\} y_{2} \\
& =-\sum_{i=-\infty}^{+\infty} \sum_{j=k}^{n-1}\left\{\binom{i}{l-j+i+1}\binom{n-i-1}{q-l+j-i}-\binom{i}{l-j+i}\binom{n-i-1}{q-l+j-i+1}\right\} y_{2} \\
& =-\sum_{i=-\infty}^{+\infty}\left\{\binom{i}{l-k+i+1}\binom{n-i-1}{q-l+k-i}-\binom{i}{l-n+i+1}\binom{n-i-1}{q-l+n-i}\right\} y_{i} \\
& =-\sum_{i=k-l-1}^{n}\binom{i}{l-k+i+1}\binom{n-i-1}{q-l+k-i} y_{i}+\binom{n}{l-+1}\binom{-1}{q-l} y_{n} \text {, }
\end{align*}
$$

because

$$
\begin{aligned}
& y_{\imath}=0 \quad \text { if } i>n, \\
& \binom{i}{l-k+i+1}=0 \quad \text { if } i<k-l-1 \\
& \binom{n-i-1}{q-l+n-i}=0 \quad \text { if } i \leqq n-1
\end{aligned}
$$

Thus (27), (28) and (29) imply (22). q.e.d.

Corollary.

$$
\begin{equation*}
C_{k}^{q}=\sum_{j=k}^{n-1} \sum_{i=0}^{q} P_{q}(j-i, q-i)=\frac{n-k}{2}\left\{(n+1)\binom{n}{q}-(k-q)\binom{n+1}{q}\right\} . \tag{30}
\end{equation*}
$$

Proof. In Lemma 3 we let

$$
y_{0}= \begin{cases}j & \text { if } j \leqq n \\ 0 & \text { if } j>n,\end{cases}
$$

then $D_{q}(k, q ; y)=0$, so we have

$$
\begin{equation*}
\sum_{i=k-q-1}^{k}\binom{i}{q-k+i+1}\binom{n-i-1}{k-i} i=\binom{n+1}{q+1} k-\binom{n}{q} n \tag{31}
\end{equation*}
$$

In Lemma 3 we take

$$
y_{j}= \begin{cases}j(j+1) & \text { if } j \leqq n \\ 0 & \text { if } j>n\end{cases}
$$

Then

$$
\begin{equation*}
C_{k}^{q}=-\frac{1}{2} D_{q}(k, q ; y)=\frac{n(n+1)}{2}\binom{n}{q}-\frac{k(k+1)}{2}\binom{n+1}{q+1}+I, \tag{32}
\end{equation*}
$$

where

$$
\begin{aligned}
I & =\frac{1}{2} \sum_{\imath=k=q-1}^{k}\binom{i}{q-k+i+1}\binom{n-i-1}{k-i} i(i+1) \\
& =\frac{k-q}{2} \sum_{i=k-q-1}^{k}\binom{i+1}{q-k+i+1}\binom{n-i-1}{k-i} i \\
& =\frac{k-q}{2}\left\{\begin{array}{c}
i \\
\sum_{\imath=q-1}
\end{array}\binom{i}{q-k+i+1}\binom{n-i-1}{k-i} i+\sum_{\imath=k-q}^{k}\binom{i}{q-k+i}\binom{n-i-1}{k-i} i\right\} .
\end{aligned}
$$

By (31), we have

$$
\begin{equation*}
I=\frac{k-q}{2}\left\{k\binom{n+1}{q+1}-n\binom{n}{q}+k\binom{n+1}{q}-n\binom{n}{q-1}\right\} . \tag{33}
\end{equation*}
$$

Thus (33) and (32) imply (30). q.e.d.

4. Proof of Theorem 2.

We have the following inequalities [5]

$$
\begin{align*}
\sum_{A^{q}} m_{k}\left(A^{q}\right)= & -\sum_{j=k}^{n-1} \sum_{i=0}^{q} P_{q}(j-i, q-i)\left(E+S_{\jmath-i}+T_{\jmath-\imath-1}\right. \tag{34}\\
& \left.-2 T_{\jmath-i}+T_{\jmath-i+1}\right)+\mu\left(T^{2}\right), \quad \text { if } 0 \leqq q \leqq k \quad[5, \text { p. 193] }
\end{align*}
$$

and

$$
\begin{align*}
\sum_{A q} m_{k}\left(A^{q}\right)= & -\sum_{j=0}^{k} \sum_{\imath=0}^{n-q-1} P_{n-q-1}(n-j-i-1, n-q-i-1)\left(E+S_{j+i}\right. \tag{35}\\
& \left.+T_{j+\imath-1}-2 T_{j+i}+T_{j+\imath+1}\right)+\mu\left(T^{2}\right), \quad \text { if } q \geqq k . \quad[5, \mathrm{p} .201]
\end{align*}
$$

Firstly, let us deduce (4) for the case $0 \leqq q \leqq k$. By (1) and Lemma 3, we have

$$
\begin{align*}
& \sum_{A^{q}} m_{k}\left(A^{q}\right)=D_{q}\left(k, q ; T^{0}\right)+C_{k}^{q} H+\mu\left(T^{2}\right) \tag{36}\\
& =\binom{n+1}{q+1} T_{k}^{0}-\binom{n}{q} N_{n}+\sum_{\imath=k-q-1}^{k}\binom{i}{q-k+i+1}\binom{n-i-1}{k-i}\left(-T_{\imath}^{0}\right) \\
& \\
& \quad+C_{k}^{q} H+\mu\left(T^{2}\right) .
\end{align*}
$$

By Corollary 1 of Lemma 2 and (24), the sum of the right hand side of the above identity equals

$$
\begin{aligned}
& -\sum_{\imath=k-q}^{k} \frac{i+1}{k+1}\binom{i}{q-k+i+1}\binom{n-i-1}{k-i} T_{k}^{0} \\
& +\frac{1}{2} \sum_{\imath=k-q-1}^{k}\binom{i}{q-k+i+1}\binom{n-i-1}{k-i}(k-i)(i+1) H+\mu(T) \\
= & -\frac{k-q}{k+1}\binom{n+1}{q+1} T_{k}^{0}+\frac{1}{2}(n-k)(k-q)\binom{n+1}{q} H+\mu(T),
\end{aligned}
$$

where

$$
\begin{align*}
& \sum_{i=k-q-1}^{k} \frac{i+1}{k+1}\binom{i}{q-k+i+1}\binom{n-i-1}{k-i} \\
= & \frac{k-q}{k+1} \sum_{\imath=k-q-1}^{k}\binom{i+1}{q-k+i+1}\binom{n-i-1}{k-i} \\
= & \frac{k-q}{k+1} \sum_{\jmath=k-q}^{k+1}\binom{n-j}{n-k-1}\binom{j}{k-q}=\frac{k-q}{k+1}\binom{n+1}{q+1} \tag{24}
\end{align*}
$$

and

$$
\begin{aligned}
& \sum_{\imath=k-q-1}^{k}\binom{i}{q-k+i+1}\binom{n-i-1}{k-i}(k-\imath)(i+1) \\
= & (n-k)(k-q) \sum_{\imath=k-q-1}^{k}\binom{i+1}{q-k+i+1}\binom{n-i-1}{k-i-1} \\
= & (n-k)(k-q) \sum_{J=k-q}^{k+1}\binom{n-j}{n-k}\binom{j}{k-q} \\
= & (n-k)(k-q)\left\{\binom{n+1}{q}+\binom{k+1}{k-q}\binom{n-k-1}{n-k}\right\} \quad \quad \text { by (24)) } \\
= & (n-k)(k-q)\binom{n+1}{q} .
\end{aligned}
$$

Hence (30), (36) and Lemma 1 imply

$$
\begin{equation*}
\sum_{A^{q}} m_{k}\left(A^{q}\right)=\binom{n}{q}\left(\frac{n+1}{k+1} T_{k}^{0}-N_{n}+\frac{1}{2}(n+1)(n-k) H\right)+\mu\left(T^{2}\right) . \tag{37}
\end{equation*}
$$

Next, we deduce (4) for the case $q \geqq k$. Take $y_{j}=T_{n-1-\jmath}^{0}$ in Lemma 3. Then (23) and (35) imply

$$
\begin{align*}
& \sum_{A q} m_{k}\left(A^{q}\right)=D_{n-q-1}(n-k-1, n-q-1 ; y)+C_{n-\frac{q-1}{n-1} H+\mu\left(T^{2}\right)}^{n-1} \tag{38}\\
& \quad=\binom{n+1}{q+1} T_{k}^{0}-\sum_{j=k}^{n-q+k}\binom{n-1-j}{q-k-1}\binom{j}{k} T_{j}^{0}+C_{n-k-1}^{n-q-1} H+\mu\left(T^{2}\right),
\end{align*}
$$

($y_{n}=T_{-1}^{0}=0$). By Corollary 1 of Lemma 2 and (24), the sum of the right hand side of the above equals

$$
\begin{aligned}
& -\sum_{j=k}^{n-q+k} \frac{n-j}{n-k}\binom{n-1-j}{q-k-1}\binom{j}{k} T_{k}^{o}+\frac{1}{2} \sum_{j=k}^{n-q+k}(j-k)(n-j)\binom{n-1-j}{q-k-1}\binom{j}{k} H \\
& \quad-\sum_{j=k}^{n-q+k} \frac{j-k}{n-k}\binom{n-1-j}{q-k-1}\binom{j}{k} N_{n}+\mu(T) \\
= & -\frac{q-k}{n-k}\binom{n+1}{q+1} T_{k}^{0}+\frac{1}{2}(k+1)(q-k)\binom{n+1}{q+2} H-\frac{k+1}{n-k}\binom{n}{q+1} N_{n}+\mu(T),
\end{aligned}
$$

where

$$
\begin{align*}
& \sum_{j=k}^{n-q+k} \frac{n-j}{n-k}\binom{n-1-j}{q-k-1}\binom{j}{k} \\
&=\frac{q-k}{n-k} \sum_{j=k}^{n-q+k}\binom{n-j}{q-k}\binom{j}{k}=\frac{q-k}{n-k}\binom{n+1}{q+1}, \tag{24}
\end{align*}
$$

$$
\begin{aligned}
& \sum_{j=k}^{n-q+k}(j-k)(n-j)\binom{n-1-j}{q-k-1}\binom{j}{k} \\
= & (k+1)(q-k) \sum_{j=k}^{n-q+k}\binom{n-j}{q-k}\binom{j}{k+1} \\
= & (k+1)(q-k)\binom{n+1}{q+2} \quad \text { (by (24)) }
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{j=k}^{n-q+k} \frac{j-k}{n-k}\binom{n-1-j}{q-k-1}\binom{j}{k} \\
= & \frac{k+1}{n-k} \sum_{j=k+1}^{n-q+k}\binom{n-1-j}{q-k-1}\binom{j}{k+1} \\
= & \frac{k+1}{n-k}\binom{n}{n-q-1}=\frac{k+1}{n-k}\binom{n}{q+1}, \quad \text { (by (24)) }
\end{aligned}
$$

Hence (30), (38) and Lemma 1 imply

$$
\begin{equation*}
\sum_{A^{q}} m_{k}\left(A^{q}\right)=\frac{n-q}{n-k}\binom{n+1}{q+1} T_{k}^{0}-\frac{k+1}{n-k}\binom{n}{q+1} N_{n}+\frac{(k+1)(n+1)}{2}\binom{n}{q+1} H+\mu\left(T^{2}\right) . \tag{39}
\end{equation*}
$$

Now (4) follows from (37) and (39).
Finally, by (3), we have

$$
\begin{equation*}
\frac{n+1}{k+1} N_{k}(r)-N_{n}(r)+\frac{(n+1)(n-k)}{2} H(r)=-Q_{k}(r)-\frac{(n+1)(n-k)}{2} E(r) \tag{49}
\end{equation*}
$$

which implies (5). q.e.d.

5. Discussion.

In this section, we assume that V has an infinite harmonic exhaustion and the conditions in Theorem 2 hold. Define

$$
\theta_{k}=\lim _{r \rightarrow \infty} \sup \frac{Q_{k}(r)}{T_{k}(r)} \text { and } \Theta_{k}=\lim _{r \rightarrow \infty} \sup \frac{N_{n}(r)}{T_{k}^{o}(r)}
$$

For each q-dimensional projective subspace A^{q} of \boldsymbol{P}_{n}, we define the defects of A^{q} to be:

$$
\delta_{k}\left(A^{q}\right)=\lim _{r \rightarrow \infty} \inf \frac{m_{k}\left(r, A^{q}\right)}{T_{k}(r)} \quad \text { and } \quad \Delta_{k}\left(A^{q}\right)=\lim _{r \rightarrow \infty} \inf \frac{m_{k}\left(r, A^{q}\right)}{T_{k}^{o}(r)} .
$$

Clearly $0 \leqq \Delta_{k}\left(A^{q}\right) \leqq \delta_{k}\left(A^{q}\right) \leqq 1$. If $H_{k}<+\infty$, by Theorem 2, (20) and Corollary 2 of Lemma 2 we have

$$
\begin{equation*}
\sum_{A^{q}} \Delta_{k}\left(A^{q}\right) \leqq \varepsilon_{k}^{q}\binom{n}{q}\left\{\frac{n+1}{k+1}-\Theta_{k}+\frac{(n+1)(n-k)}{2} H_{k}\right\} . \tag{41}
\end{equation*}
$$

If $\chi_{k}<+\infty$, by Theorem $2,(20)$ and (21) we have

$$
\begin{equation*}
\sum_{A^{q}} \delta_{k}\left(A^{q}\right) \leqq \varepsilon_{k}^{q}\binom{n}{q}\left\{\frac{n+1}{k+1}-\theta_{k}+\frac{(n+1)(n-k)}{2} \chi_{k}\right\} . \tag{42}
\end{equation*}
$$

Let $Z(\tilde{x})$ be the set of zero points of $|\tilde{x}|$. Let $\nu_{p}(f)$ denote the order of zero at p of a function f on V. Clearly, we see

$$
\nu_{p}\left(\left|X_{\gamma}^{1}\right|\right) \geqq 2 \nu_{p}(|\tilde{x}|)-1, \quad \text { if } p \in Z(\tilde{x}) .
$$

Define

$$
s_{p}=\left\{\begin{array}{l}
\text { the stationary index of } x \text { at } p, \quad \text { if } p \text { is a critical point of } x \\
0 \quad \text { otherwise }
\end{array}\right.
$$

and

$$
I_{p}=\nu_{p}\left(\left|X_{\gamma}^{1}\right|\right)-2 \nu_{p}(|\tilde{x}|)-s_{p}
$$

We can prove that

$$
I_{p}=0, \quad \text { if } p \in V-Z(\tilde{x}) .
$$

Define

$$
i(t)=\sum_{p \in V[t]} I_{p} \quad \text { and } \quad I(r)=\int_{r_{0}}^{r} i(t) d t
$$

Then

$$
I(r)=N_{1}(r)-2 N_{0}(r)-S_{0}(r) .
$$

Hence (1) implies

$$
\begin{equation*}
E(r)+H(r)=I(r) . \tag{43}
\end{equation*}
$$

If $V=\boldsymbol{C}$ or $\boldsymbol{C}-\{0\}$, we can choose \tilde{x} such that $Z(\tilde{x})=\varnothing$, so

$$
H(r)=-E(r) .
$$

If x is transcendental and $Z(\tilde{x})$ is a finite set, then

$$
\lim _{r \rightarrow \infty} \frac{I(r)}{T_{0}(r)}=0
$$

References

[1] Ahlfors, L., The theory of meromorphic curves, Acta Soc. Sci. Fenn. Nova Ser. A3 (4) (1941), 171-183.
[2] Cartan, H., Sur les zéros des combinaisons linéaires de p fonctions holomorphes données, Mathematica (Cluj) 7 (1933), 5-31.
[3] Nevanlinna, R., Le théorème de Picard-Borel et la théorie des fonctions meromorphes, Gauthiers-Villars, Paris, 1929.
[4] Shiffman, B., Holomorphic curves in algebraic manifolds, Bull. Amer. Math.

Soc. 83 (1977), 553-568.
[5] Wu, H., The equidistribution theory of holomorphic curves, Annals of Math. Studies 64, Princeton Univ. Press, Princeton, NJ. (1970).

Department of Mathematics
Shandong University
Jinan, Shandong, China

