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1. Introduction.

In the present paper, we shall study on relations between subspaces of the
space of trigonal Riemann surfaces of genus g=5.

Recently, the author and Horiuchi [6] have studied on the Weierstrass gap
sequences at the ramification points of trigonal Riemann surfaces. It was also
studied by Coppens [1, 2, 3]. Coppens’ study in [2] depends upon the fact that
any trigonal Riemann surface lies on a rational normal scroll. On the other
hand, the author and Horiuchi’s study depends upon the fact that any trigonal
Riemann surface is defined by an algebraic equation in x and y whose degree
is three with respect to y. They determined a canonical equation of a trigonal
Riemann surface of genus g and of the n-th kind and gave the necessary and
sufficient condition for determining the types of ramification points in terms of
zeros of the discriminant of the defining equation.

At first, we shall give an algebraic equation:

¥ +Q(x)y+R(x)=0.

Let S be the trigonal Riemann surface defined by the equation. We shall decide
the genus and the kind of S and the types of the ramification points.

Using this result, we obtain incidence relations between M,, s, (01, P2, Ps, 04)’S.
The definition of M,,s, (01, P2, p3, p«) Will be given later.

Let S be a trigonal Riemann surface of genus g and let x:S—P' be a
trigonal covering. Following Coppens [1] we say that S is of the n-th kind if
{(nD)=n+1and [((n+1)D)=n+3, where D=(x)., is the polar divisor of x, {(nD)
(resp. I((n+1)D) is the affine dimension of the space of meromorphic functions
on S whose divisors are multiples of nD (resp. (n+1)D) and n satisfies (g—1)/
3=n<g/2.

By definition, a point P on S is a total (resp. an ordinary) ramification point
if the ramification index of x at P is equal to three (resp. two). We say that
P is a total ramification point of type I (resp. type II) if the gap sequence at
P is equal to

1,2,4,5,,3n—2,3n—1, 3n+1, 3n+4, ---, (g—n—1)+1),
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(resp.(1, 2, 4,5, ---,3n—2, 3n—1, 3n+2, 3n+5, ---, (g—n—1)+2)).

We say that P is an ordinary ramification point of type I (resp. type II) if the
gap sequence at P is equal to

1,2,3, -, 2n—1, 2n, 2n+1, 2n+3, -+, 2g—2n—1),
(resp.(1, 2, 3, ---, 2n—1, 2n, 2n+2, 2n+4, ---, 2g—2n)).

In both total and ordinary cases, each ramification point is of type I or type I
[1, 2,5, 6].

Let M, s .(p1, P2y ps, po) be the set of trigonal Riemann surfaces of genus g,
and of the n-th kind which have p, total ramification points of type I, p. total
ramification points of type II, p; ordinary ramification points of type I and p,
ordinary ramification points of type I. In [6], we have proved that if 3n—g
+1—p,—ps=0, then M, .(0:, 02, ps, p) iS DOt empty.

In [3], Coppens studied on the structure of these spaces in the algebraic
moduli space. For example, he proved that both M, (1, 0) and M,,s (0, 1) are
irreducible and unirational, where M, s .(0:, p.) is the set of trigonal Riemann
surfaces of genus g, and of the n-th kind which have p, total ramification
points of type I and p, total ramification points of type II.

Concerning the incidence relations, he proved the following. If (g—1)/3<
n<g/2, then M, ; (0, 1) is included in the closure of M, (1, 0). If (g—1)/3
<n<g/2, then M, s 4(1, 0) is included in the closure of M, s »+:1(1, 0). If (g—1)
/3<n<g/2—2, then M, (1, 0) is included in the closure of M, s »+:(0, 1). In
this paper, we shall consider the sets M, 2(01, 02, Ps, 04)’S @s subsets of the
Teichmiiller space and prove some incidence relations of them under the as-
sumption 3n—g+1—p,—p,=0.

The author would like to express his thanks to the referee for his valuable
comments and suggestion.

2. Kind of trigonal Riemann surface.

In this section, we shall show how to decide the genus, the kind and the
types of the ramification points for a given equation. To do this, we first show
some theorems which have been already proved in [6].

Following the proofs of Lemmas 3-5 in [6], we know that these lemmas
remain valid without assuming S is of the n-th kind. Hence, we have the fol-
lowing :

THEOREM A. Let S be a trigonal Riemann surface defined by an algebraic
equation

(1) ¥ +Q(x)y+R(x)=0.
Here, Q(x) and R(x) are polynomials in x, degQ=2n-+2, deg R=3n-+3 and
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deg (4Q*+27R*)=6n+6. Furthermore, assume there is no common zero a of Q(x)
and R(x) such that the order of zero of Q(x) at x=a 1s greater than one and
that of R(x) is greater than two.
Let B be an arbitrary complex number and let p, v and 2 be the orders of
zeros of Q(x), R(x) and 4Q(x)*+27R(x)* at x=p, respectively. Then, we have:
i) There is a total ramification point over x=P, if p=v=1 or p=v=2,
ii) There is an ordinary ramification point over x=p, if p=v=0 and 2 is
odd or v>pu=1,
iii) There is no ramification point over x=J, otherwise.

Remark. In Theorem A, there is no ramification point over x=co0. To see
this, take a complex number a so that-Q(a)R(a)(4Q(a)*+27R(a)*)#0. Let t=1/x,
Y=t"*y, Q.{t)=t*"**Q(1/t+a) and R,(t)=R(1/t+a). Then, we have

Y*+Q.0)Y+R.()=0.

Evidently, Q,(#), R,(t) and 4Q,(¢)’+27R,(t)* have no zero at t=0. We can apply
Theorem A again.

In the case that S is of the n-th kind, the author and Horiuchi [6] have
proved the following :

THEOREM B. [In the preceding theorem, assume S is of the n-th kind. Then,
we have:

i) There is a total ramification point of type 1 over x=B, if p=v=1,

ii) There is a total ramification point of type U over x=P, if p=v=2,
iii) There is an ordinary ramification point of type 1 over x=p, if p=v=0

and 2 is odd,

iv) There is an ordinary ramification point of type Il over x=p, if v>p=1,
v) There is no ramification point over x=J, otherwise.

To decide the Weierstrass gap sequences at ramification points, we need the
following :

THEOREM C. Let S be a trigonal Riemann surface defined by (1). Then,
every holomorphic differential on S is given by

D(x)y+E(x)
3y*4+Q(x)

where D(x) and E(x) are suitable polynomials in x and deg D<n—1 and deg E<2n.

(D, E)= dx,

Henceforth, we demand the following hypotheses on (1):

i) Q(x) and R(x) are polynomials in x,

ii) degQ=2n+2, deg R=3n+3 and deg (4Q*+27R*)=6n+6 for some posi-
tive integer n,

iii) There is no common zero a of Q and R such that the order of zero of
Q at x=a is greater than one and that of R is greater than two.
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Then, we have the following equations by suitable polynomials I", =1, 2, 3)
and II, (b=1,2,3,4) in x;

(2) Q(x)=I"\(x)IT:(x)ITa(x)*TLe(x),

(3) R(x)="y(x)IT:(x)ITa2)*TL( x)?

and

(4) TLs(e) s(x)? =41 () TL(0)TTax)* +27 Iy *TL( %) -

Here, I'\.II.II. and I".I1. have no common zero,
&)
(5) Hj(x):';l;ll:(x—al'j)’ G=1, ---, 4)

for nonnegative integer p, (j=1, ---, 4) and mutually distinct complex numbers
a,,, (Z:]-y AN ]:1; Tty 4);

(6) deg I''=2n+2—p,—2p0,—ps,
(7) deg I'»=3n+3—p,—2p,—2p,
and

(8) 2deg I's=6n+6—20,—4p>—ps—3p:.

Then, we have:

LEMMA 1. Assume S is a trigonal Riemann surface defined by (1), where
Q(x) and R(x) in (1) satisfy (2)-(8). If a differential

D(x)y+E(x)
3y2 4+ I (OTL ()T %) TL(x)

s holomorphic on S, then TI(x)I1.(x) is a factor of E(x).

2D, E)= dx

Proof. Assume a is a zero of II,(x). By Theorem A, there is a total
ramification point P over x=a. Let ¢ be a local parameter at P so that x—a
=t*. Note that I'y(a)II.(a)II(a)#0 by (3) and (4). Hence, the order of the
zero of y at P is two and those of 3y?+Q(x) and dx are four and two, respec-
tively. Therefore, E(x) must have a zero at x=a.

Assume a is a zero of [I,(x). By Theorem A, there is an ordinary ramifica-
tion point P over x=a. Let s be a local parameter at P so that x—a=s>
Note that 7I'y(a)IT,(a)IIa)#0 by (2) and (4). Hence, the order of the zero of
y at Pis one or two and those of 3y?+Q(x) and dx are three and one, respec-
tively. Therefore, E(x) must have a zero at x=a.

THEOREM 1. Assume that S, Q and R are as in Lemma 1. Then,
i) The genus g of S 1s gwen by
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(9

2P1+2,02+,03+P4_4
5 .

ii) If g=5 and 2n<g<3n+1, then S is of the n-th kind and has p, total
ramification points of type 1, p, those of type I, ps ordinary ones of
type 1 and p, those of type 1.

iti) If g=5 and (3n—3p—1)/2<g<2n—2p, where p=degl, then S is of
the (g—n+p)-th kind and has p. total ramification points of type 1, p,
those of type U and ps+p, ordinary ones of type 1. In this case, there
is no ordinary ramification point of type 1.

Proof. Theorem A implies that S has p,+p, total ramification points and
0s+ps ordinary ramification points. Hence, by the Riemann-Hurwitz formula
the genus g of S is given by (9). '

Assume that 2n<g<3n-+1 and S is of the m-th kind. Since deg(y)=
3n+3, we have m<n.

Assume I'; has a zero of order 1 at x=a, i.e. [y(x)=a(x—a)*+ --- (1>0,
a+0) near x=a.

If TI;(a)#0, then there is a branch of y, say y,, so that

3P+ I(OILOTT(2 ) TL(x)=B(x —a)* + -,

for some B+#0. If IIs(@)=0, then there is a branch of y, say y,, and a local
parameter s=+/x—a at the ordinary ramification point over x=a, so that

3y1(x)2+l’,(x)H1(x)Hz(x)2IL(x)=ﬁs““+ ey

for some B+#0. Hence, D(x)y:(x)+E(x) in Theorem C must have a zero of
order at least 4 at x=a.
Put

__ xFTLOIL() (x)d x

3324+ (IO %) TL(x) °
By the preceding discussion, these differentials are holomorphic on S. Moreover,
it is easy to see that every holomorphic differential w of the form

o= E(x)dx
3}’2+F1(X)H1(X)H2(X)ZH4(JC)

is a linear combination of w,’s (k=1, ---, g—n).

Assume that p,#0. Let P be a total ramification point over a zero of IT,,
say a... Then, for /=1, ---, g—n, the differential

1o fl—1
W= b (—a,) " 'orn

_ (x— a3, )" ' TLOTL(x) (x)d x
392+ IO ()T T x ) TTe(x)

(kzly ) g_n)'

Wp
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has a zero of order 3/—2 at P.
If there were a holomorphic differential

o= 2B+ E ()LL)
35"+ T(OTLOIL() L)

which has a zero of order 3(g—n)+1 at P. Then, D(x) had a zero of order at
least g—n+1(=n+1) at x=a,,,. Hence, by Theorem C, D(x) would be iden-
tically zero. Therefore, @ would be a linear combination of w,’s (k=1,---, g—n).
Then, the order of zero at P were at most 3/—2. This is absurd. Hence, m=n.

Assume that p,=0 and p,#0. Let P be an ordinary ramification point over
a zero of Il,, say a,,. For [=1, -, g—n, the differential

—1
o= (—a, )" ' 0r sy
k

_ (r—a, ' TLOOTL(0) y(x)d x
3y*+ (O )T ()" TL(%)

has a zero of order 2/—1 at P. In a similar way as above, we obtain that
there is no holomorphic differential on S which has a zero of order 2(g—n)+1
at P. Hence, m=n.

Assume that p,=0, p,=0 and p,#0. Let P be a total ramification point
over a zero of II,, say a,,. For [=1, -, g—n, the differential

dx,

~
I
—

1-afl—1
W= (—a, )" '
k=0 k

_ a0 )T (x)d x
3y 4+ I ()T ()T Ta(x)*TLa(x)

has a zero of order 3/—3 at P. Again, we obtain that there is no holomorphic

differential on S which has a zero of order 3(g—n) at P. Hence, m=n.
Finally, assume that p,=p,=p,=0 and p,+#0. Again, let P be an ordinary

ramification point over a zero of IT;, say a,;. For [=1,---, g—n, the differential

prfl—1
0)2:’?___.‘10( b )(_al,a)l-k_‘wk+l
_ (x—ay, )" TL(0)TL(x)s(x)d x
3y*+ I ()T (x0TI x ) (%)

has a zero of order 2/—2 at P. We shall show that there is no holomorphic
differential on S which has a zero of order 2(g—n) at P. Then, as above, we
obtain that m=n.

To prove the preceding fact, assume ['5(x) has a zero of order 1 at x=a,,,.
Put TT,(x)(x)*=27(x—a,,:)?**'Cy(x). Let u and v be multivalued meromorphic
functions on S which satisfy
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(10) u'=(—R(x)+s**+'/Cy(x))/2,
(11) V=(—R(x)—s**+*1+/C,(x))/2
and

(12) uv=—Q(x)/3,

where s is a branch of v/x—a,,;. Then, there exist functions U(x) and V(x)
which are holomorphic at x=a,,; and satisfy U(a,,;)#0, V(a,;)#0 and

u=U(x)+s***'V(x).
Using (10), (11) and (12), we have
v=U(x)—s***'V(x).
Choose a branch of y which corresponds to the ordinary ramification point :
y=wu+ov=—U(x)+(w—o?)s** " V(x).
Then we have
392+ Q(x)=—6(w—w*)s** U (x) V(x)—6x24*+ V(x)2.

Hence, dx/(3y*+Q(x)) has a pole of order 21 at P.
Assume that w=2(D, E)=(D(x)y+E(x))dx/(3y*+Q(x)) has a zero of order
2(g—n) at P. Put

D(x)=d,+d;s*+d,s'+ -

E(x)=e)+e;s*+e,s'+ -
and
y:bo+b232+ +b223“+b21+13“+1+ Tty

where b,#0 and b,;4,#0. By the preceding discussion, D(x)y-+E(x) must have
a zero of order 2(g—n)+24 at P. Hence, bodo+e,=0. If do,#0, then dobsrs,
would not be zero. Thus, D(x)y+E(x) must have a zero of order at most
2241 at P. This is impossible. Hence, d,=e,=0.

In a similar way, we have

d,=e,=0 @=0, -, g—n—1).

Since degD<n—1<g—n—1, we have D(x) is identically zero. Since such a
holomorphic differential is a linear combination of w,’s (=1, ---, g—n), there
is no holomorphic differential on S which has a zero of order 2(g—n) at P.

In each case, we have m=n. Hence, by Theorem B, we have the desired
result.

Next, assume (3n—3p—1)/2<g=<2n—2p. Taking the birational transforma-
tion
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X, Y)=(x, (3Fz(x)H4(x)+1;1(X)y)H1(x)Hz(x) )
y
we have S is conformally equivalent to the surface defined by
13) Y2 —Q(XOIT(X P IILX)Y + R (XOIT (XTI X)=0,
where

QX)=I"\(X)TI(X)/3
and
RI(X):(2/27)F1(X)3H1(X)H2(X)2+F2(X)2H4(X) .

The discriminant of the equation (13) is

—4(QITTL)° +27(R I = T L (AT 1L T3 +27 51 1.)
=) THIBILIL. -
By (6), (7), (8) and (9), we have
deg Q,=2deg ', +p.
=2(g—n+p)+2—20:—p,,
deg (IMILIIH=3(g—n+p)+3—20.—p¢,
deg (/"3T1,)=6n+6—20,—4p,—3p,

=3(g—n+p)+3—20,—p.
and
degF2Fa=3(g-n+.0)—g+1—p1 .

By the assumption, 2(g—n+p)<g=<3(g—n-+p)+1l. If degR,=3(g—n-+p)
+3—2p,—p2, then this case reduces to the case 2n<g<3n+1 and we have the
desired result.

Assume that deg R, <3(g—n+p)+3—2p,—p.. Let a be a complex number
such that Q,(a)R.(a)II.(a)II.(a)#0. Take the birational transformation

(5’ 7]):(1/(X——a), Y/(X__a)g-n+p+1) .

Using the same discussion as in Remark following Theorem A, we have the
desired result.

3. Incidence relations.

We would like to consider incidence relations between M, s, (01, 02, 05, P4)’S
in the Teichmiiller space. We first show that, roughly speaking, if two trigonal
Riemann surfaces whose branch loci is close, then the Teichmiiller distance of
corresponding points is also close.

In the sequel we shall state our situation precisely. Let S be a Riemann
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surface of genus g having a trigonal covering x: S—P'. Let A={ay, -, an}
P! be the projection of the set of ramification points of x. Without loss of
generality, we may assume that ACC and |a;—a;|>2 if i#j. Take a point
z€C so that |z—a,|>1 for /=1, .-, m. Take an arbitrary & (0<e<1). For
each 7=1, ---, m, let [, be a curve joining z and a, in C—\,..{z:|z—a;| <1}
and let /, be the curve starting at z and traveling along /] to the circle of
radius ¢ with center a,, then surrounding the circle and returning to z along /;.
Let x~%(2)={Q., Q., Q;}. Then, each /, induces a permutation of {Q;, Q,, Qs}.
Then, the lemma is stated as follows:

LEMMA 2. Assume S, A, ¢, z,1, are defined as above. Let S* be another
trigonal Riemann surface of genus g having a trigonal covering x*:S*—P'.
Assume the projection of the set of ramification points of x* is included in \J7,
(e-neighborhood of a,). Let x*'(2)={Q%, Q%, Q¥}. Assume [, induces the same
permutation of {Q%, Q%, Q%} as that of {Q., Qs, Qs} for eachi=1, ---, k. Then,
the Teichmiiller distance of those points corresponding to S and S* is at most
O(e?®).

Proof. (The author is indebted to Professor A. Yamada who showed him
the proof of this version, cf. Gardiner [4]). By virtue of the triangle inequality,
it is enough to prove the case that only one ramification point, say P,.€x '(a,),
varies and all the other ramification points remain fixed. Without loss of
generality, we may assume a,=0.

Assume P, is a total ramification point and there are two ordinary ramifica-
tion points P¥ and P¥* over {|x*|<e}. Let a=x*(P¥) and B=x*(P¥*). Let?
be a local parameter at P, such that x=¢%, [#|<3/2. Let t=¢(s)=s(1+As*+
Bs™3)'% where

A=—3(—a—1—‘g)2/3 and B= a—;ﬂ .

If ¢ is sufficiently small, then, for some positive number 4, ¢ is a univalent
map of {1—0<|s|<1+d} onto a domain D which is contained in {1/2<|t]|<3/2}.
Let y=¢({|s|=1}) and let D, be the 1nter10r of 7.

Construct a new Riemann surface S as follows. As a set, S=(S—D)U
{Is| <1}, welding {]sl-—l} and 7y in such a way that s is identified with t=¢(s).
A system of charts for S is given by those for S on S—D, and s itself on
{Is]<1}. We can still take s as a chart on the set (D—D,)U{1—8<]|s|<1}.

Define a function # on S so that #(P)=x(P) if P=(S—D,) and x(P) s(P)®
+As(P)+B if Pe{|s|<1}. Then, % gives a trigonal covering #%:S—P' and
there are two ordinary ramification points whose projection on the X-plane are
a and B. Hence, S is conformally equivalent to S*.

Let ¢(s)=s(1+ A5+ B5*)"%. Since ¢(s)=¢(s) on {|s|=1}, ¢(s) is a quasicon-
formal mapping of {|s| <1} onto D,. Evidently, the complex dilatation of ¢ is
bounded by O(e?’®).

The extension § of ¢, defined by §(P)=P if P=S—D, and J(P)=¢(s(P)) if
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P={|s| <1}, is a quasiconformal mapping of S onto S. The dilatation of J is

also bounded by O(&?’®).
A similar argument is applicable to both the cases that P, is total and there

is one total ramification point P* over {|x*|<e} and that P, is ordinary. In
each of these cases, we have a quasiconformal mapping of S* onto S whose
dilatation is bounded by O(e).

Hence, the Teichmiiller distance between S and S* is bounded by O(&*?®).

This completes the proof of the lemma.

In the following, we shall prove several lemmas related to the distribution
of zeros of polynomials.

LEMMA 3. Let P(x) and Q(x) be polynomials satisfying the following -

i) there is no common zero of P(x) and Q(x),

ii) every zero of P(x)+Q(x) is simple,

iii) Q0)=0.
Let x4, -, x, be the zeros of P(x)+Q(x). Let k be an arbitrary positive integer.
Let ¢ be a sufficiently small positive number. For an arbitrary a<C, |a|<e,
let 4, -+, Yu+z be the zeros of

2EP(x)+(x—a)*Q(x).

Then, every y, is simple, i.e. v,#y, if i#j, and |y:—x.,|=0("¥), i=1, -, n
and |y,|=0(e"*), i=n+1, -+, n+k, suitably venumbering the suffixes of y, if
necessary.

Proof. Since there is no common zero of P(x) and Q(x), Q(x,)#0, i=
1, ---, n. Take the circles C(x,; r)={|x—=x,|=r} and C(0; »)={| x| =7} so that
these are mutually disjoint. Let M=max|Q(x)] and m=min|P(x)+Q(x)],
where x runs over the sets \UC(x,;#)and C(0;7). Let M;=max{|x,], -, |x.]|}
+2. If |a|<min{l, mrt/EMM} '}, then

[(x—a)* —x")Q(0)| < lalkMMi™

<mrk*

< x*(P)+Q)I,

on C(0;r)JJC(x,;r). Applying Rouché’s theorem to =x*(P(x)+Q(x)) and
x*P(x)+(x—a)*Q(x), we have the desired result.

Remark. Without assuming the condition ii) of this lemma, a similar result
holds. However, the proof becomes slightly complicated and the exponent of ¢
in the estimate of y may be changed.

LEMMA 4. Let P(x) and Q(x) be polynonmuals satisfying the following
i) there is no common zero of P(x) and Q(x),
ii) every zero of P(x)+Q(x) 1s sumple,



82 TAKAO KATO

iii) P(0)+Q(0)#0 and P(0)+0.
Let xy, -+, x, be the zeros of P(x)+Q(x). Let k be a positive integer. Let
V1, 5 Ya+r+1 be the zeros of

(x—a)**' P(x)+x(x—B)*Q(x).

Then, for sufficiently small positive number ¢, there are distinct a and B such that
0<lal<e, 0<|Bl<e and y,, i=1, -+, n+k—1 are simple, Ynir=Yn+r+1 and
|yi—x. | =0(V*), §=1, -+, n and |y,|=0("/**P), i=n+1, -, ntk.

Proof. Consider the polynomial

flx, a, B)y=(x—a)**'P(x)+x(x—B)*Q(x)

in three variables. The intersection V of two surfaces f(x, «, f)=0 and
df(x, @, B)/0x=0 contains a curve through the point (x, @, 8)=(0, 0, 0). Hence,
for an arbitrary ¢>0, there is a point (xi, a;, ;)€ V such that 0<|x,|+|a,|
+|B:l<e. It is sufficient to find such an (x,, a;, B1)EV that a,B(a;—p:)#0.

If ¢ is sufficiently small, applying Rouché’s theorem to a pair of functions
f(x, ay, B1) and f(x, 0, 0), we have exactly k+1 zeros of f(x, ai, B,), counting
multiplicity, in a neighborhood of x=0 and any other zero of f(x, ai, B8:) is
simple.

Assume that 8,=0. Applying Lemma 3, we have no double zero of f(x,a;,0).
This is a contradiction.

We shall show that VN {a+0} is not empty. Since (a, a, @)V for k=2,
it is evident in this case. Assume that £=1. Fix an arbitrary x and eliminate
B from f(x, @, 8)=0and df(x, a, B)/0x=0. Then, we have the quadratic equa-
tion in a:

(P(x)Q(x)+x(P(x)Q'(x)—P'(x)Q(x)))a?
—2x%(P(x)Q'(x)—P'(x)Q(x))
+ 2 (x(P(x)Q"(x)—P'(x)Q(x))—(P(x)+Q(x)Q(x))=0.

If there were no nonzero solution of @ for any x, comparing the coefficients,
we have Q(x)=cP(x) for some constant ¢. This is a contradiction.

To show that V& {a=f}, we fix an arbitrary x,#0 (]x,]<e¢) and find a
point (a, B)#(x;, x,) such that (xi, @, B)e VN{a+0}N{a+p}.

For simplicity’s sake, replace a—x, (resp. 8—x;) by a (resp. 8) and denote
P(x,), P'(xy), Q(xy), Q'(x,) by P, P!, Q, Q’, respectively. Then, we have the
following equations:

(14) —Pa**'+x,QB*=0,
and
(15) —P'a**' +(k+1)Pa*+(Q+x:Q")B*—kx,QB**=0.

Substituting (14) into (15), we have
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(16) kx,QB* '=Ra*+*'+(k+1)Pa*,

where R=(P/x,)+(PQ’/Q)—P’. Taking the k-th powers of the both sides of
(16), we have

17) a¥* Ya(Ra+(k+1)P)*—k*x,Q P*~*)=0.

Since R=0(]|x,|™!), there exists a non-zero solution @, of the equation (17) so

that a;=0(| x,|*), where t=(m+k+1)/(k+1) and m is the order of zero of Q(x)

at x=0. Substituting a, into (14), we have a solution 8=8,=0(| x,|).
Assume that «,=p,. Then, by (14), we have x,Q=Pa,. By (16) we have

kx,:Q=(k+1)Pa,+Ra},

hence, P+ Ra;=0. Therefore, we have P*+x;QR=0, that is
1 PQ"+QP—x,QP"

P2 -

Since x, is arbitrarily chosen, we have (xQ(x)/P(x))=—1. Then, P(x)+Q(x)=0.

This is a contradiction.
The rest of the proof is similar to that of Lemma 3.

—1.

LEMMA 5. Let P(x) and Q(x) be as in Lemma 4. Let y,, ---, Yn+2 be the
zeros of

(x—a)x—B)P(x)+x*Q(x).

Then, for sufficiently small positive number e, there are distinct o and B such that
0<lal<e, 0<|Bl<e and y,,i=1, -+, n are simple, Vpr1=Yn+2 and |y;—x,|=
O0(e'), i=1, -+, n and | yn+:|=0(""?).

Proof. Similar to the preceding lemma.

LEMMA 6. Let P(x) and Q(x) be polynomials satisfying the follouing:
i) there is no common zero of P(x) and Q(x),
ii) every zero of P(x)+Q(x) is simple,
iii) PO)+Q0)#0, Q(0)+#0 and P(x) has a simple zero at x=0.
Let yy, -+, Ya+s be the zeros of

2 (x—a)*P(x)+(x— B x—7)*Q(x).

Then, for sufficiently small positive number e, there are distinct a, B and v such
that 0<]a|<e, 0<|B|<e, 0L ]r|<e and y,,i=1, ---, n are simple, Yp41=Yns27
Vo+s=Yn+s and | y;—x,|=0(e*), i=1, -+, n and 0+ |y,|=0(e'*), 1=n+1, -, n
+4.

Proof. By the hypothesis, we can choose a neighborhood U of x=0 satisfy-
ing that
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PO)Q(x)P(x)+Q(x)#0  for x€U—{0}
and there is an &>0 such that
2 (x—a)*P(x)+(x—B)x—7)*Q(x)

has exactly four zeros in U if |al, |B], |7l <e,. Then, we have a single valued
branch of +/P(x)/x (resp. vV—Q(x)) in U which we denote by

Ax)=a+a,x+ -, (resp. B(x)=b+b,x+ ---).
Let U’'=U— {real negative} —{0}. In U’®xU?3, consider two functions
(18) f(x, a, B, )=x"""(x—a)A(x)—(x—B)x—7)B(x),
(19) gy, a, B, N=2""(x—a) A(»)+(y—BXy—1)B().

Here, we choose suitable branches of x*? and y*/?, for instance, Re x>0 and
Re y'2>0.
Then, we have

flx, a, B, Nalx, a, B, N=x*(x—a)’P(x)+(x—B)(x—r)Q(x).

Consider the system of equations:

(20) f(x, a, B, =0,
e 3 fix, @, B, 1=0,
(22) gy, a, B, =0,

9
(23) 5‘3‘}‘8’(3’, a, ‘81 T):O'

Then, we have an analytic variety V=V(f,0f/0x, g,0g/dy), in the (x, y, &, 8,7)-
space, whose dimension is at least one. We shall show that, for an arbitrary
>0, (g,>¢) there is a point (x,, ¥i, a1, B1, 7)E V such that

0<|x1|+|y1|+|a1|+l,31l+|7’1|<s.

Let F(x)= g—gi;=co+c1x+ --- and let G(x)=x%?F(x), Re x*/*>0.
From the equation (20)-(23), we have

(24) G(x)a—x(B+r)+pr=xG(x)—x*,

(25) GC(ya+y(B+1—Br=yG(»)+»*,

(26) G'(a—(B+1)=G(x)+xG'(x)—2x,

(27) GC'Ma+B+N=C»+yG(9)+2y.



TRIGONAL RIEMANN SURFACES 85
By (26) and (27), we have
(28) (G'(0)+ G (YNa=G(x)+G(y)+xCG'(x)+yG'(y)—2x— )
and
(xG'(x)+yG' (Ma—(x—yXB+T)
=xG(x)+yG(y)+x°G'(x)+ G (9)—2x"—y*).
From (24) and (25) we have
(G()+G(yNa—(x—yNB+1)=xG(x)+yG(3)—2x*—y*).
Hence, we have
(29) (xG"()+yG' N~ (G(x)+G(yN)a=x>G"(x)+y*G'(y)—(x*—y%).
Eliminating @ from (28) and (29), we have
H(x, y)=(G(x)+G(3))*—2(x— yXG(x)+G(»))
+(x =G ()G (9)+G'(x)—G'(y)=0.

H(x, y) is holomorphic in ({]x]|<e?}—{x=0})X({|y|<e?}—{y=0}). Putting
x=s? and y=i® and noting that G'(x)=xY*3F(x)/2+xF’'(x)), we have

h(s, t)=H(s?, t*)
=(sF(s*)+F(*)) —2As"—*)(s’F(s*)+1°F ("))
+ —:zl—(sz—tz)z(s(BF (s*)+25°F'(s?)—t(3F (t*)+2°F'(¢%))
+st(3F(s*)+ 2" F'(s))(3/2)F () +1*F'(¢%))).

Then, h(s, t) is holomorphic in {|s|<<e}x{|t|<e} and h(-,0) has a zero of
order 5 at s=0. Therefore, h(-, t) has five zeros (counting multiplicity) near

s=0 for any ¢.
Since
2R DD+ 5 (DA D= 3 QDA+,
we have

W, 1= =+ Q=D+ 1eo (1+0).

Hence, for a sufficiently small arbitrary ¢, there is a A sufficiently close by 1 so
that (4, t)=0. Hence, there is a pair of (x, y) such that Re x>0, Re y>0 and
H(x, y)=0.

Hence, there is a point (xi, y;, @i, B1, 71)E V such that

0<lx1l+ly1|+la1l+|ﬁll+lh|<s.
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Assume x,=y,. By (20) and (22), we have
234 (x,—a,)A(x,)=0 and (x;—B.)(x;—71.)B(x1)=0.
Since x, is a double zero of
x**(x—ay) A(x) £ (x —B)(x —7)B(x),
x, is also a double zero of x** x—a,)A(x). Hence, we have

xn=y,=a;=B,=7,=0.

This is a contradiction.

If B;=0 or 7,=0, then x,=0 (resp. y,=0) is a double zero of f (resp. g).
Hence, x,=y,=0. Again a contradiction.

If ;=P or a,=7,, then x,=y,=a,. This is also a contradiction.

Assume that B,=7, for every (xi, 3:, @i, 8i, .)€ V. Then, instead of (20)-
(23), we have

x*Y(x—a)A(x)—(x—B)*B(x)=0,
x‘”(x—a)(—g—A(X)+xA'(X))+x“”2A(x)—2(x—ﬁ)B(X)—(x—ﬂYB'(X):O,

Yy —a)A(y)+(y—B)B(»)=0,
y"z(y—a)(%A(y)+yA’(y))+y“zA(y)JrZ(y—ﬂ)B(y)Jr(y—.B)ZB’(y):O.

Eliminating a from these equations, we have

. (x—ByB(x) , (y—B)’B(y)
< T ERAG) T AG)
31 (x—B)B(x) _ 2Ax—PB)B(x)+(x—B)B'(x)—x**A(x)
xA(x) 3A(x)/2+xA'(x) ’
32) (y=BYB(y) _ 2y=B)B()+(y—B)B'(y)+y"*Aly)
YA(y) 3A()/24+yA'(y) ’
From (31) and (32), we have

390 1 O0p)(x— B —2ab+O(p)x(x—B)+a*+ O(p)x**=0,

(3—‘2117— +0(7]))(y_B)Z_Z(ab—l—O(?]))y(y_ﬁ)_(az_‘_o(v))ys/z:o’

where p=|x|+|y|+|B8|. Hence, we have

(33) %b(l-l-o(f}))(x—ﬁ)(x +@+0(n)B)=(a*+0(n)x**

and
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(30 A0~y +B+0NBI=—(a+0n)y*".

From (33), x—B=0(x**) or x+3B8=0(x**) and from (34), y—B=0(x*?) or
y+38=0(x?).
Assume that x—B=Mx?? and y—B=Ny*2. Then, by (33) and (34), we have

g __
M= % +o0(1) and N= %

Substituting them into (30), we have

+o(1).

M=N+o=(2 o)+ Neto(1).

Hence, a/b+o0(1)=a/(2b)+0(1). A contradiction.
Assume that x+38=Mx**? and y—B=Ny*2 Then,

x—y=—4B8(1+0(1))
and
(x—B)*B(x) (y-‘ﬁ)zB(y): 16B%(b+0(1)) B*(a®/(4b%)
x%*A(x) YEA(y) (=3B)¥*a+o(1)) = B**a+o(1))’
Hence, b+0(1)=0(1). Contradiction.

Assume that x+38=Mx** and y+3B8=Ny*% Then, by (33) and (34), we
have

Mz%—l—o(l) and N:—%%-I—o(l).
Hence,
5 —y=( L +o) (3" o)
and
(x—B)B(x) T (y—B)B(y) _ 165%(b+0(1))
x* 2 A(x) YEA() (—=3B)*"*(2a+0(1))

Hence, b+o0(1)=0(1). Contradiction.

Thus, there is a point (xi, yi, @i, B1, 71)EV such that x,#y, and a,, B, 71
are mutually distinct.

The rest of the proof is similar to that of Lemma 3.

Let SeM, s (o1, p2, ps, o) be defined by the equation (1). There are
polynomials I, (=1, 2, 3) and II, (=1, 2, 3, 4) in x which satisfy (2)-(8).

Then we have:

THEOREM 2. Assume that 3n—g—+1—p,—p,=0 i.e. I's 1s constant and 2n<
g<3n—1. Then, S is included in the closure of any one of

i) Mg.s, n(pl—'l: D2, P3+2; P4), if Pl>0-

i) Mgy (1, p2—1, ps+1, ps+1), if p.>0.
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iii) My, a(0:i+1, p2—1, ps, pu), if 02>0.
iv) Mg a(01, p2—1, ps+2, po), if p2>0.
V) Mg, (01, P2y s +1, pa—1), if p:>0.
Vi) Mgs nei(01—1, P2, 03, p4+2), if 0:>0.
vil) Mgsne:(01—1, p2+1, 05, po), if 0.>0.

Proof. Without loss of generality, we may assume that |a, ;—a,;|>2 if
(Z, N#*(k, D.

Next, we shall show that we may assume that I',(a, ;)#0 for k=1, 2,i=
1, -, p,, 7=1, -, 4. Assume that I'.(a, ;)=0 for some k,7, ;. Let & be an
arbitrary positive number. Then, there is an ¢*+0 such that

TT3(0) =41 (x) TL(0OTTo(x)* +27 () TL(x)

has p, simple zeros a¥;(i=1, -, ps) and that [a¥,—a, | <e. Here, I'¥(x)=
Iy(x)+e* k=1,2. Let S* be defined by

y* 4+ I COTL GO ) T () y* + I 5CoOTT (oOTTo(0)PTL(%)*=0.

Obviously, we can assume that I'¥(a,,;)+0 for each &, 7, j.

Let A, ;={|x—a, ;] <1} and let A be a closed disk such that A, ,CA for
every 7, j. Then, for every x€A—\UA,,,, in the equation (1), y takes three
distinct values. It is easy to see that m=inf,g,<,cs]|¥:i(x)—9,(x)] >0, where
y:(x), y(x), ys(x) are three branches of y and x runs over A—\UA,; ,. If I',
changes continuously, then y, also varies continuously. Hence, if ¢* is sufficiently
small, then for each /=1, 2, 3, there is a branch y¥(x) of y* so that |y¥(x)—
yi(x)|<m/2 on A—\UA,,,. Therefore, for any closed curve 7 in A—\UA,;,,, the
continuations of y and y*, respectively, along 7 induce the same permutations
of branches. Hence, S and S* satisfies the assumption of Lemma 2. Therefore,
S can be approximated by such an S*.

Assume that p,>0. Without loss of generality we may assume that a,,,=0.

Let xII(x)=II.(x) and let S, be the Riemann surface defined by

¥ 2 ()T o %) TLe (%) y 4 (x —a) Lo )T o 2 )P TTu(x )*=0.

By assumption, every zero of 4717(x)TL.(x)IT.(x)?+27(x)*T1«(x) is simple.
Hence, by Lemma 3, for sufficiently small «a,
4x° I (P TIOITo( %)+ 27 Lo x)%(x — ) T1(x)
=4x" I (x)* TLOTT(x)?+27(x —a)* To(x *T1(x)
has p;+2 simple zeros.
By Theorem 1, every S, corresponds to an element of M, s .(01—1, p2, s

+2, o). By Lemma 2, S, tends to S as a tends to 0. This is the case i).
Again, let xTI(x)=II(x) and let S, ; be the Riemann surface defined by
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Y2+ x(x —a)x— B ()T %) L %)y
+(x—a)*(x— B 1)1 )TLo(x )’ TL(x)*=0.
Using Lemma 5, we can choose sufficiently small @« and S so that
4x° I () TICOTT (% )* 427 o(x)*(x — ae)(x — B)TLa( %)
=4x2 (2 TL(OTT(x)2 4 27(x —a)(x — B) o x)*TL(x)

has p, simple zeros and exactly one double zero near x=0.
By Theorem 1, every S.,z corresponds to an element of M, s nsi(0:—1,
02, p3, po+2). Since S,,, is defined by

Y342 (O)TIOTT( %) T %)y 4 x4 Lo )TT ()T To( ) TLe( %)
= y° 4 x* 1", (OTL(OTT 2 TLe(x%) y 4 2° Ta(OTL (0OT T x ) TL( x)* =0,

it is equivalent to S. Again, by Lemma 2, we have the case vi).
Let xII(x)=II.(x) and let S,,gs,; be the Riemann surface defined by

Y24 x(x —a)P I ()OI %) TL( %)y
+(x—a)(x—B)x =) T %) TLi(x)*=0.
Since 47'3TL.I13+271311, has exactly p; simple zeros, using Lemma 6, we
can choose sufficiently small @, 8 and 7 so that
4x° () TI(x )(x — @) TLa(x ) 4+-27(x — B)*(x —7)* I 2 TLi(x)
=4x*(x —a) I"}(x*TL(2)II(x ) +27(x — B)*(x —7)* L o(x )’ TL(x)
has p, simple zeros and two double zeros. By Theorem 1, every S, s, cor-
responds to an element of M,,s n41(0:1—1, p2+1, ps, po). Hence, we have the
case Vii).
Assume that p,>0. Again without loss of generality, we may assume that

al,z=0.
Let xTI(x)=TIxx) and let S, be the Riemann surface defined by

Y4 x(x —a) I ()T ()T P T a(x) y 4 (x — )2 T a()TT ()T (% P TL(x )* =0

By a similar argument as above, we have S, is an element of M, s, .
(01, p2—1, ps+1, p,+1). Hence, we have the case ii).
Again, let xII(x)=II.(x) and let S,z be the Riemann surface defined by

Y 4x(x— B)COTL()TI(x ) TL(x)y
+(x—a)(x— ) OIT(x)TI(x ) TT(x)*=0.

Using Lemma 4 for k=1, we can find arbitrary small « and § so that
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4%y (x)*(x — BIL(OIT(x)* +27(x —a)* I o(x)*TLi(x)
=4x(x—B)1(x)*TL(x2)TTa(x)?+27(x —a)* T o(xPTL(x)

has one double zero and p, simple zeros. Hence, we have the case iii).
Let xII(x)=IIx) and let S, ; be the Riemann surface defined by

Y3+ x(x — B) ()T PTL( %)y +(x —a)* I )T (x)TT(x ) TL(x)=0.
Using Lemma 4 for £=2, we can find arbitrary small a« and j so that

4x° 1 (x)*(x — B TL(OTT(x)* +27(x —a) I x " T x)
=4x(x—B)°I"(x) TL(x)ITo(x)* +27(x —a)* I'y(x ) TL(x)
has one double zero and p;+2 simple zeros. Hence, we have the case iv).
Finally, assume that p,>0 and assume that a,,=0. Let xII(x)=TI.(x) and
let S., 5 be the Riemann surface defined by
Y 4+(x —a) I (OTL(OTT )P TI(x) y + x(x — B)1 ()T ()T x )P TI(x)*=0 .

Using Lemma 4, we can choose sufficiently small @ and §8 so that

A(x—a)* I y(x) TLOTI(x)2 427 x%(x — B)2 (2 ' TI(x)
=4(x—a)* I (x)° TL(x)IT(x)*+27 x(x — B)* I o(x)*TL(x)

has one double zero and p;+1 simple zeros. Hence, we have the case v).
This completes the proof.
Making use of Theorem 1 iii) instead of ii), we have another sort of inclu-
sion relation.

THEOREM 3. If 0,<2g—3n+1, p,<3n—g+1, p1+p.=n—1 and 2n<g<3n
+1, then there exists an SE Mg, (01, P2, ps, 0) so that S is included in the
closure of any one of

i) Mg,:!.n(.ol_ly D2, P3+2: 0), if ,01>0-

i) Mg,s.n(Pn {72“1» Ps+2, 0), if Pz>0-

iii) Mg, nei(p1—1, p2+1, ps, 0), if p,>0 and 2n+2<g.

iv) Mg,3,n+1(P1, P2, Ps, 0), if 2n+2<g.

V) Mg s (o141, pa—1, p5, 0), if p.>0 and 2n+4=<g.

Proof. Let p,=2¢—3n+1—p, and m=g—n. Then, we have
0:+20,+ 0, =2m+2,
02 +20,+2p0,<3m+43,
p1+p=3m—g+1.

As is stated in the section 1, we have proved in [6] that there is a trigonal
Riemann surface of genus g defined by an equation such as (1) satisfying (2)-
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(8), where n, p;, p. and p, are replaced by m, p,, p, and p;—p,, respectively.
Since n=g—m and 3m—g+1—p,—p,=0, by Theorem 1, we have that Se
Mg s, 2(01, P2, 05, 0). The rest of the proof is done by the same procedure as
that of Theorem 2, i.e. the cases i), ii), iii), iv) and v) correspond to the cases
ii), i), iv), v) and vii), respectively. We omit the details.

(1]
[2]
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[4]
(5]
£6]
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