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BOUNDED ANALYTIC FUNCTIONS AND METRICS OF

CONSTANT CURVATURE ON RIEMANN SURFACES

BY AKIRA YAMADA

1. Introduction.

Let B{Ω) be the set of bounded analytic functions / : Ω-^A, where Ω is a
simply connected hyperbolic Riemann surface and Δ is the unit disc. Let B0(Ω)
be the set of locally schlicht functions belonging to B{Ω). The Poincare metric
XQ of the surface Ω has constant curvature =—4. Explicitly, we have λL(z)—
\dz\/{l-\z\2). It is well known that the pull-back fnL{z)=\f\z)\\dz\/{l-
\f(z)\2) of XL via f^B0(Ω) (resp. f^B(Ω)) is a metric of constant curvature
= —4 regular (resp. with isolated singularities) on Ω. The main result of this
paper asserts that the converse of the above relation holds. For simplicity, we
denote by M(X) the set of C°° conformal metrics of constant curvature ΞΞ— 4
on a Riemann surface X.

THEOREM 1. For all λ^M(Ω), there exists an f^BQ(Ω) such that λ=f*λL.
Moreover, λ—g*λL for g^BQ(Ω) if and only if g is of the form g=γ°f where
f<=Mόb(Δ), the set of Mδbius transformations leaving Δ fixed.

THEOREM 2. Let E be an arbitrary closed discrete subset of Ω. If λ^
M(Ω^E) has non-positive integral indices at every point in E, then there exists an
f^B(Ω) such that λ=f*λL on Ω\E. Moreover, λ=g*λL on Ω\E if and only if
g is of the form g=γ°f with

Theorems 1 and 2 show that the set of metrics of constant negative cur-
vature is in a one-to-one correspondence with the set of bounded analytic func-
tions in Ω modulo Mob(Δ). Theorem 2 is an improvement of Theorem 29.1 in
Heins [2] and many of the results concerning metrics of constant curvature in
[2] are easy consequence of Theorem 1. Also, Theorem 1 allows us to define
the monodromy homomorphism % of a metric of constant curvature. Theorem
6 answers the question when the image of the homomorphism X acts discontin-
uously on Δ. In the last section, we prove a theorem which shows that a
theorem in [5] is false.
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2. Proof of theorem 1.

The following Lemma is useful.

LEMMA 3. Let f: N-+Ω be holomorphic where N is a connected neighborhood
of a simply connected hyperbolic Riemann surface Ω. Assume that, for z^N, f
satisfies the equality f*λQ(z)—λQ(z). Then f is a restriction of a conformal auto-
morphism of Ω.

Proof. By conformal invariance, we may assume that Ω is the unit disc.
But in this case Lemma 3 is well known. See [2, p. 39]. •

LEMMA 4. Let X and Y be surfaces of constant curvature K. Then the
surfaces X and Y are locally isometric.

Proof. This is well known. See [3, p. 169]. •

Proof of theorem 1. By conformal invariance, we may assume Ω—A.
Applying Lemma 4 to the unit discs equipped with the metric UGM(A) and the
Poincare metric λLi we have an open covering {/7«}αeΔ and a set of conformal
(or anti-conformal) mappings fa: Ua~*A ( Λ G Δ ) with λ\Ua=fa

iλL. By taking
fa, if fa is anti-conformal, we may assume that each fa is conformal. Lemma
3 implies that there exists a set {γaβ}^M6b(A) such that fa(z)=γaβ°fβ(z) for
z^UαΓ\Uβ, α, /3eΔ. Thus fα(z) can be analytically continued along all paths
contained in Δ. Since A is simply connected, the monodromy theorem implies
that there exists an f^B0(Ω) satisfying λ—f^λL. The latter half of Theorem
1 is clear from Lemma 3. This completes the proof. •

3. Monodromy homomorphisms indued by metrics.

Let X be a hyperbolic Riemann surface. The Poincare metric λx on X is
defined by requiring the identity

λL=π*λx

where π: A-+X is a holomorphic universal covering. Conversely, we note that
if ΛeM(X) satisfies the identity λL—π^λ with π: A-+X holomorphic, then λ is
the Poincare metric because we have λ=λχ from the inequality

This observation leads us to the following definition. Let E be a (possibly
empty) closed discrete subset of X. We call λ^M(X^E) a branched Poincare
metric on X with singularity on E if λ satisfies

λL=π*λ on π~\X\E) (3.1)
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for some holomorphic map π: A-^X.

LEMMA 5. Let λ be a branched Poincare metric on X with singularity on E
satisfying λL=π*λ. Then π: Δ->X is a normal branched covering whose branch
points are contained in E. {Here, we use the word "normal branched covering" to
mean that the restriction π\π~1(X\E) is a normal regular covering. [1, p. 38])

Conversely, every holomorphic normal branched covering π: A-^X yields a
branched Poincare metric λ on X with λL—π*λ.

Proof. First, assume that λ is a branched Poincare metric. Let G be the
group {γ<=M6b(A)\π°γ—π on Δ}. It is clear that G is discontinuous on A since
π is non-constant. We claim that π(x)=π(y) for x, y^A if and only if there
exists a γ^G with y=γ(x). Observe that by (3.1) the orders of the derivative
π' at x and y are the same. Hence we can solve, at least locally, the equation
π°γ=π for γ where γ is holomorphic near x and satisfies y=γ(x). Thus,

for z in a neighborhood of x. Then it follows from Lemma 3 that γ is a res-
triction of a Mδbius transformation fixing A. By analytic continuation we con-
clude that γ^G, proving the claim.

We next show that ττ(Δ) contains X\E. Otherwise, it follows from the
theory of S-K metrics due to Heins [2] that the upper envelope η of the Perron
family of metrics on π(A)\E generated by λ\π(A)\E and the Poincare metric
on π(A) belongs to the set M(π(A)\E). η satisfies the conditions η>λ and π*η
E M ( A ) , SO that we have λL<π*η. This contradicts the maximality of the
Poincare metric λL in M(Δ). Thus π(A)\E=X\E. Since the map π is locally
schlicht except on π~\E), it is seen that the set of elliptic fixed points of G is
contained in π~\E). We conclude that X\E is conformally equivalent to the
quotient Riemann surface (A\π~1(E))/G and that the map π may be identified
with the natural projection Δ->Δ/G. Hence π is a normal branched covering
with possible branch points or punctures in E.

The second statement of the Lemma is proved similarly as in the case of
regular coverings, and we omit its proof. •

Now assume that π: A-^X is a holomorphic universal covering. Since π*λ
G M ( A ) whenever 2 G M ( I ) , Theorem 1 guarantees the existence of an f<=B0(A)
such that π*λ=f*λL. Noting that π*λ is .Γ-invariant where Γ is the covering
group for the covering π, we conclude from Lemma 3 that there exists a
homomorphism X: Γ—>Mob(Δ) such that

foγ=jC(γ)of for all Γ G Γ . (3.2)

We shall call the homomorphism X the monodromy homomorphism induced
by the metric 2 G M ( I ) . Observe that, for fixed π, X is uniquely determined
up to an inner automorphism of Mob(Δ). It is natural to ask when is the
image X{Γ) discontinuous. The answer is given by the following:
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THEOREM 6. Let X: Γ-+M6b(A) be the monodromy homomorphism induced
by the metric λ^M(X). Then X(Γ) acts discontinuously on Δ if and only if there
exists a Riemann surface Y and a branched Poincare metric η on Y such that λ
—F*η for some F: X->Y holomorphic.

Proof. Fix an /<=2?0(Δ) such that π*λ=f*λL as above. First, assume that
the group X(Γ) is discontinuous on Δ. Let Y be the quotient Riemann surface
A/X(Γ\ Then by (3.2) / induces a holomorphic map F: X-+Y such that F°π-
πx°f where πγ: Δ->F denotes the natural projection. Let η be the branched
Poincare metric on Y determined by λL—πXη. Now we have

π*λ=f*λL=f*(πtη)=(F*π)*η=π*(F*η),

concluding that λ=F*η, as desired.
Conversely, assume that λ=F*η where F: X-+Y is holomorphic and η is

a branched Poincare metric on Y. By Lemma 5 there exists a holomorphic
normal branched covering πx\ Δ->Γ with λL=π^η. Let EaY be the set of
singularities of η. Since both metrics F*η and π^η are regular, we find that
n(p, F)—n(qf πγ) for every pair (p, q) such that F(p)—πγ(q) where n(p, F)
denotes the multiplicity of F at p. This observation allows us to conclude
that there exists a holomorphic map g: Δ->Δ satisfying the condition F°π—
π1°g. Thus we have

so that f*λL=g*λL. Lemma 3 shows that there exists a ^eMob(Δ) with / =
y*g. Hence we conclude that X{Γ)CLγ*Γι<>γ~ι where Γγ denotes the covering
group of the branched covering πx. This completes the proof of Theorem 6
since Γλ is discontinuous. •

4. Behavior of the metric at isolated singularities.

As an application of Theorem 1 we study the behavior of a metric λ of
constant curvature arround a puncture. The problem being local, we may
assume without loss of generality that JteM(Δ\{0}). Let U be the upper half-
plane. Since (eιz)*λ<^M(U), by using Theorem 1 we obtain an /eJ?β(t/) such
that (eιz)*λ=f*λL. Let X be the monodromy homomorphism induced by λ arid
set γ=X(τ) where τ{z)—z+2π is a generator for the covering group of exz: ί/-»
Δ\{0}. Hence we have that f°τ=-y°f.

LEMMA 7. γ is not a hyperbolic transformation.

Proof. Schwarz' lemma implies that / is hyperbolically distance-decreasing.
Thus,

dL{f{z),
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where dΔ( , •) and du( , •) denote the hyperbolic distance of Δ and U respec-
tively. Letting z=iy->oo(y^R+)f we have

mfdL(z, γiz))=0.
Z<ΞΔ

From this, it is easy to see that γ is not hyperbolic. •

LEMMA 8. The following estimates hold near the origin,
( i ) If γ is parabolic, then

with some constant Ci>0.
(ii) If γ is elliptic, then there exist constants C 2>0, C 3 >0 and an integer
such that

where 2πa(0<a<l) is the rotation angle of γ at a fixed point.
(iii) // γ is the identity, then there exist a constant C 4 >0 and an integer

k>0 such that

λ(z)=\z\k(C4+O(z)).

Proof, ( i ) Theorem 1 implies that there exists a locally schlicht function
f:U->U such that (eιz)*λ=f*λσ and f(z+2π)=f(z)+2π for all z(=U. Thus we
have a Fourier series expansion

Since Im/(z) is periodic, it can be regarded as a positive harmonic function on
Δ\{0}. Hence, substituting w—eτz we have

In— 1— +lm^anw
n>0 for 0<\w\<l.

\w\

This inequality easily implies that an=0 for all n<0. Therefore,

.fl»«;» = 2ln(Cι/\w\)+0(w) ( ^ 0 )

with C1=elma°. This proves Case (i) of the Lemma.
(ii) As in Case (i) there exists a holomorphic function / : U—>Δ such that

(e")*λ=f*λL and that f(z+2π)=e2πaιf(z), 0 < α < l . Expanding / in a Fourier
series, we have

where k(^0) is an integer and akφΰ. A similar calculation as in Case (i)
yields the desired estimate.



322 AKIRA YAMADA

(iii) Since γ is the identity, / : U—>Δ is of the form

n=k

with an integer k^O. This suffices to conclude thejproof of Lemma 8. •
We recall that the index v at an isolated singularity p of a metric of con-

stant curvature λ is defined by

.. \nλ{z)
v=hm

V".ln(l/ |z |)

where z is a coordinate centered at />(c.f. [2]).?r According to Lemma 8, this
definition is legitimate and does not depend on the choice of the coordinate.
We remark that the index v satisfies the inequality v<l and that the equality
occurs if and only if the Mobius transformation γ associated to the metric is
parabolic. Also, observe that the index v is a non-positive integer if and only
if the associated transformation γ is the identity.

In the proof of the last section we use the following corollary to Lemma 8.

COROLLARY 1. ([4], p. 73) Let Ω be a hyperbolic plane region containing the
origin. If λ is the Poincare metric on β\{0}, then we have

Proof. We may assume without loss of generality that Δ\{0} CI42\{0}. Let
πί(=eιz): U-^A\{0} and π: £/—>β\{0} be holomorphic universal coverings. Let
/ : U->U be a lift of the inclusion map Δ\{0}->£?\{0} with respect to the
coverings πx and π. From the identities πλ—π^f and π*λ=λL, we have /*ΛΔ=
πfλ. Since / is a lift, there exists a γ^Γ such that f(z+2π)=γ°f(z), where
Γ is a cover transformation group for the covering π. Since Γ does not contain
elliptic transformations, Lemma 7 shows that γ is either a parabolic or the
identity element. By Lemma 8 it suffices to show that γ is parabolic. Assume
that γ is the identity. Then there exists a holomorphic function h: Δ\{0}->£/
such that

π°h=id on Δ\{0}. (4.1)

By Riemann's removable singularity theorem, h is extended to a holomorphic
function on Δ. This would contradicts the identity (4.1), since 0&π(U). Hence
γ is parabolic, as desired. •

5. Proof of Theorem 2.

We consider the monodromy homomorphism 1: Z7—>Mόb(Δ) induced by Λe
M(Ω\E) where Γ is the covering group for the holomorphic universal covering
π:A-+Ω\E. By assumption every index v is an integer ^0 . By similar
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reasoning as in the previous section concerning the classification of isolated
singularities, we conclude that X(γ) is the identity whenever γ^Γ is parabolic.
Note that parabolic elements in Γ correspond to the punctures of the region
Ω\E. Since Ω is simply connected, we see that Γ is generated by the parabolic
elements, so that X(γ) is the identity for all γ^Γ. Hence F is invariant under
the covering group Γ where F is a function in B0(A) such that π*λ=F*λL.
We claim that f=F°π~1: Ω\E->A is the desired function. It is easy to see
that / is well defined and satisfies λ—f^λL. On the other hand, since / is
bounded, / can be extended to a function in B(Ω). This completes the proof.

6. An inequality.

Let d(z) denote the maximal Euclidean radius of the schlicht discs centered
at /O) which is contained in the Riemannian image of a regular function /.
In 1970 Pommerenke proved in [5] the following inequality.

(*) There exists a constant /3<1 such that

for every locally schlicht function / : Δ—>C with supz(ELd(z)<l.
Now we show, however, that such a constant /3<1 does not exist.

THEOREM 9. There exists a universal covering f which does not satisfy the
inequality (*) for every /3<1.

Proof. Let E be the set {z^C\z=m+nι, m, n^Z\ and consider a holo-
morphic universal covering / : Δ->C\£. Then / is locally schlicht and satisfies
supz<ΞLd(z)^l. Let λ(z)\dz\ be the Poincare metric on the domain C^E. By
definition, we have

0 ) 1 / ^ ) 1 = , ] . t .

It is clear that d(z)=\f(z)\ if \f(z)\ ^1/2. Thus, for \f(z)\ small,

z ) ) ) 2λ(w) \ w \ l n ( β / \w\)

with w—f{z). By Corollary 1, the right side of the above equation tends to 1
as w—f{z)-^0. Hence the constant β must satisfy /3^1 as desired. •

REFERENCES

[ 1 ] L. V. AHLFORS AND L. SARIO, Riemann Surfaces, Princeton Univ. Press, Princeton,

New Jersey, 1960.



324 AKIRA YAMADA

[ 2 ] M. HEINS, On a class of conformal metrics, Nagoya Math. J. 2\ (1962), 1-60.
[ 3 ] N. J. HICKS, Notes on Differential Geometry, Van Nostrand Reinhold, London, 1971.
[ 4 ] I. KRA, Automorphic Forms and Kleinian Groups, Benjamin, Reading, Mas-

sachusetts, 1972.
[ 5 ] CH. POMMERENKE, On Bloch functions, J. London Math. Soc. (2) 2 (1970), 689-

695.

DEPARTMENT OF MATHEMATICS

TOKYO GAKUGEI UNIVERSITY

NUKUIKITA-MACHI, KOGANEI-SHI

TOKYO 184, JAPAN




