S. DESHMUKH AND S.I. HUSAIN KODAI MATH. J. 9 (1986), 425-429

TOTALLY UMBILICAL CR-SUBMANIFOLDS OF A KAEHLER MANIFOLD

BY SHARIEF DESHMUKH AND S. I. HUSAIN

Abstract

A classification Theorem for totally umbilical CR-submanifolds of a Kaehler manifold is proved.

1. Introduction.

CR-submanifolds of a Kaehler manifold [1] being generalization of holomorphic and totally real submanifolds of a Kaehler manifold, has recently become subject of sufficient interest. Totally umbilical CR-submanifolds of a Kaehler manifold have been studied by A. Bejancu [3], Blair and Chen [4]. The purpose of this paper is to classify all totally umbilical CR-submanifolds of a Kaehler manifold. In fact we prove the following theorem.

THEOREM. Let M, (dim $M \ge 5$) be a complete simply connected totally umbilical CR-submanifold of a Kaheler manifold \overline{M} . Then M is one of the following:

- (i) Locally the Riemannian product of a holomorphic submanifold and a totally real submanifold of \overline{M}
- (ii) totally real submanifold
- (iii) *isometric to an ordinary sphere*
- (iv) homothetic to a Sasakian manifold.

The cases (iii) and (iv) occur when $\dim M$ is odd.

2. Preliminaries.

Let \overline{M} be an *m*-dimensional Kaehler manifold with almost complex structure *J*. Then the curvature tensor \overline{R} of \overline{M} satisfies [11].

(2.1)
$$\overline{R}(JX, JY)Z = \overline{R}(X, Y)Z, \ \overline{R}(X, Y)JZ = J\overline{R}(X, Y)Z.$$

An *n*-dimensional submanifold M of \overline{M} is said to be a *CR*-submanifold if on M there exist two orthogonal complementary distributions D and D^{\perp} such that JD=D and $JD^{\perp}\subset\nu$, where ν is the normal bundle of M [1]. If $D=\{o\}$, (resp.

Received April 14, 1986

 $D^{\perp} = \{o\}$), then *M* is said to be totally real (resp. holomorphic) submanifold. It follows that dim *D*=even and that the normal bundle ν splits as $\nu = JD^{\perp} \oplus \mu$, where μ is invariant sub-bundle of ν under *J*. The Riemannian connection $\overline{\nabla}$ on \overline{M} induces the connections ∇ on *M* and the normal connection ∇^{\perp} in ν obeying the Gauss and Weingarten farmulae

(2.2)
$$\overline{\nabla}_{\mathcal{X}}Y = \nabla_{\mathcal{X}}Y + h(X, Y),$$

426

(2.3)
$$\overline{\nabla}_X N = -A_N X + \nabla_X^{\perp} N,$$

where X, Y are vector fields on M, $N \in \nu$ and h, A_N are called the second fundamental forms related as

(2.4)
$$g(h(X, Y), N) = g(A_N X, Y).$$

The CR-submanifold M is said to be totally umbilical if

h(X, Y) = g(X, Y)H,

where $H = \frac{1}{n}$ (trace h), called the mean curvature vector. For totally umbilical *CR*-submanifold *M*, the equations (2.2) and (2.3) take the form

(2.5)
$$\overline{\nabla}_{\mathbf{X}} Y = \nabla_{\mathbf{X}} Y + g(X, Y) H$$

(2.6)
$$\overline{\nabla}_{\mathcal{X}} N = -g(H, N) X + \nabla_{\mathcal{X}}^{\perp} N.$$

The equation of Codazzi for totally umbilical CR-submanifold M is given by

(2.7)
$$\overline{R}(X, Y; Z, N) = g(Y, Z)g(\nabla_X^{\perp}H, N) - g(X, Z)g(\nabla_Y^{\perp}H, N),$$

where $\overline{R}(X, Y; Z, N) = g(\overline{R}(X, Y)Z, N)$ and X, Y, Z are vector fields on M and $N \in \nu$.

By an extrinsic sphere we mean a submanifold of an arbitrary Riemannian manifold which is totally umbilic and has nonzero parallel mean curvature vector [10]. We need the following Theorem of Yamaguchi, Nemoto and Kawabata [13].

"A complete connected and simply connected extrinsic sphere M^n in a Kaehler manifold \overline{M}^{2m} is one of the following:

1. M^n is isometric to an ordinary sphere

2. M^n is homothetic to a Sasakian manifold

3. M^n is totally real submanifold and the *f*-structure is not parallel in the normal bundle."

3. Proof of the Theorem.

Let *M* be totally umbilical *CR*-submanifold of a Kaehler manifold \overline{M} . Then using (2.5), (2.6) and $J\overline{\nabla}_X W = \overline{\nabla}_X JW$ for *X*, $W \in D^{\perp}$, we get

(3.1)
$$J\nabla_{\mathbf{X}}W + g(\mathbf{X}, W)JH = -g(JW, H)\mathbf{X} + \nabla_{\mathbf{X}}^{\perp}JW.$$

Taking inner product with X we get

(3.2)
$$g(H, JW) ||X||^2 = g(X, W)g(H, JX).$$

Interchanging the role of X and W in above equation we get

$$g(H, JX) ||W||^2 = g(X, W)g(H, JW).$$

Using (3.2) in above equation we have

(3.3)
$$g(H, JW) = \frac{g(X, W)^2}{\|X\|^2 \|W\|^2} g(H, JW).$$

The possible solutions of equation (3.3) are:

(a) H=0 or (b) $H\perp JW$, or (c) X||W.

Thus we have one of the following:

(a) M is totally geodesic, (b) $H \in \mu$ (c) dim $D^{\perp} = 1$.

Combining (a) with a result in [4] we get part (i) of the Theorem.

Next suppose that $H \neq 0$ and $H \in \mu$. We observe that for $N \in JD^{\perp}$ and $X \in D$, $\overline{\nabla}_{X}JN = J\overline{\nabla}_{X}N$ gives $\nabla_{X}JN = J\nabla^{\perp}_{X}N$. This implies that for $N \in JD^{\perp}$ and $X \in D$, $\nabla^{\perp}_{X}N \in JD^{\perp}$. Also g(N, H) = 0 for $N \in JD^{\perp}$ implies $g(\nabla^{\perp}_{X}N, H) = -g(N, \nabla^{\perp}_{X}H)$, this together with $\nabla^{\perp}_{X}N \in JD^{\perp}$ gives $g(N, \nabla^{\perp}_{X}H) = o$. Hence for $X \in D$, we get $\nabla^{\perp}_{X}H \in \mu$. Now for $X \in D$, we have from $\overline{\nabla}_{X}JH = J\overline{\nabla}_{X}H$, with the help of (2.6), that

(3.4)
$$\nabla_{x}^{\perp}JH = -g(H, H)JX + J\nabla_{x}^{\perp}H.$$

Since $\nabla_x^{\perp} H \in \mu$, from (3.4) it follows that JX = o for all $X \in D$. Hence $D = \{o\}$, this proves part (ii) of the theorem.

Lastly suppose $H \neq o$, $H \in \mu$ and that dim $D^{\perp}=1$. Since dim $M \geq 5$, we can choose vectors $X, Y \in D$ such that g(X, Y) = g(X, JY) = 0. Now from (2.7) it follows that $\overline{R}(JX, Y; JY; N) = 0$, $N \in \nu$. Using (2.1) we get $\overline{R}(JY, X; JY, N) = 0$. This, with the help of (2.6) gives

$$g(\nabla_X^{\perp}H, N) = 0 \forall N \in \nu$$
.

This proves that $\nabla_{\underline{x}}^{\perp}H=0$ for $X\in D$. Next we let $X\in D^{\perp}$. Then there exists a normal N' such that JX=N'. Now for $N\in\mu$ we have $\overline{R}(X, Y; JY, JN)=0$, $Y\in D$. Using (2.1) in this we get $\overline{R}(X, Y; Y, N)=0$ and this together with (2.7) gives $g(\nabla_{\underline{x}}^{\perp}H, N)=0$, from which it follows that $\nabla_{\underline{x}}^{\perp}H\in JD^{\perp}$. Now again from (2.7) and (2.1) we have $\overline{R}(X, Y; Y, X)=\overline{R}(X, Y; JY, N')=0$, $N'=JX\in JD^{\perp}$. Using linearity of \overline{R} in $\overline{R}(X, Y; Y, X)=0$, we get $\overline{R}(X, Y; JY, X)=0$. This gives $\overline{R}(X, Y; Y, N')=0$. From this using (2.7) we get $g(\nabla_{\underline{x}}^{\perp}H, N')=0$. From this it follows that $\nabla_{\underline{x}}^{\perp}H\in\mu$. Thus we have proved for $X\in D^{\perp}, \nabla_{\underline{x}}^{\perp}H\in JD^{\perp}\cap\mu = \{o\}, i.e. \nabla_{\underline{x}}^{\perp}H=0$. Hence $\nabla_{\underline{x}}^{\perp}H=0$ for all vector fields X on M *i.e.* M is an extrinsic sphere. Then parts (iii) and (iv) of the Theorem follow from theorem

of Yamaguchi, Nemoto and Kawabata in §2.

This theorem thus gives a complete classification of totally umbilical *CR*-submanifolds of a Kaehler manifold.

4. Remark.

In case of complex space form $\overline{M}(c)$ *i.e.* Kaehler manifold of constant holomorphic sectional curvature *c*, the curvature tensor \overline{R} of $\overline{M}(c)$ is given by

(4.1)
$$\overline{R}(X, Y)Z = \frac{c}{4}g(Y, Z)X - g(X, Z)Y + g(JY, Z)JX$$
$$-g(JX, Z)JY + 2g(X, JY)JZ.$$

If M is totally umbilical submanifold of $\overline{M}(c)$ and R is curvature tensor of M, then by Gauss equation we have

$$(4.2) \quad g(R(X, Y)Z, W) = g(R(X, Y)Z, W) + \alpha [g(Y, Z)g(X, W) - g(X, Z)g(Y, W)]$$

where $\alpha = g(H, H)$.

By [10] or [2] a totally umbilical submanifold of $\overline{M}(c)$ is either holomorphic submanifold or a totally real. Thus we have a corollary in light of equation (4.2).

COROLLARY. Let M be totally umbilical submanifold of a complex space form $\overline{M}(c)$. Then M is one of the following

- (i) a complex space form M(c)
- (ii) a totally real submanifold of constant curvature c
- (iii) a totally real submanifold of constant curvature $c+\alpha$.

This corollary is essentially theorem due to Chen and Ogiue [10].

References

- [1] A. BEJANCU, CR-submanifolds of a Kaehler manifold, Proc. Amer. Math. Soc., 69 (1978), 135-142.
- [2] A. BEJANCU, CR-submanifolds of a Kaehler manifold-II, Trans. Amer. Math. Soc., 250 (1979), 333-345.
- [3] A. BENJANCU, Umbilical CR-submanifolds of a Kaehler manifold, Rend. Mat., 13 (1980), 431-466.
- [4] D.E. BLAIR AND B.Y. CHEN, On CR-submanifolds of Hermitian manifolds, Israel J. Math., 34 (1980), 353-363.
- [5] B.Y. CHEN, Geometry of submanifolds, Dekker, N.Y. (1973).
- [6] B.Y. CHEN, Extrinsic spheres in Kaehler manifolds, Mich. Math. J., 23 (1976), 327-330.
- [7] B.Y. CHEN, Geometry of submanifolds and its applications, Sci. Univ. Tokyo, Tokyo (1981).

428

- [8] B.Y. CHEN, On CR-submanifolds of Kaehler manifolds, I, II, J. Diff. Geom., 16 (1981), 305-322, 16 (1981), 493-509.
- [9] B.Y. CHEN AND K. OGIUE, On totally real submanifolds, Trans. of Amer. Math. Soc., 193 (1974), 257-266.
- [10] B.Y. CHEN AND K. OGIUE, Two Theorems on Kaehler manifolds, Michigan Math. J., 21 (1974), 225-229.
- [11] M. OBATA, Riemannian manifolds admitting a solution of a certain system of differential equations, Proc. U. S. Japan Seminar in Differential Geometry (Kyoto, 1965), 101-114.
- [12] M. OKUMURA, Certain almost contact hypersurfaces in Kaehler manifold of constant holomorphic sectional curvature, Tohoku Math. J., 16 (1964), 270-284.
- [13] S. YAMAGUCHI, H. NEMOTO AND N. KAWABATA, Extrinsic spheres in a Kaehler manifold, Michigan Math. J., 31 (1984), 15-19.
- [14] K. YANO, Geometry of complex and almost complex spaces, Pergaman Press, N.Y. 1965.

Department of Mathematics Aligarh Muslim University Aligarh-202001 (India)