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THREE RESULTS IN THE VALUE-DISTRIBUTION THEORY

OF SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS °

BY STEVEN. B. BANK

Abstract

For three different classes of equations of the form fff + A(z)f=0, where
Λ(z) is entire, we develop new information about the distribution of zeros of
all solutions / ^ 0 , and thereby obtain a complete value-distribution theory for
all solutions.

1. Introduction: In [1], we investigated the value-distribution of solutions
of an equation of the form,

f"+A(z)f=0, (1)

where A(z) is an arbitrary entire function. Roughly speaking, it was shown
that if one possesses sufficient information on the counting functions for the
zeros of all solutions of (1), then for any solution / ^ 0 of (1), one can determine
all polynomials P(z, u0, •••, un), having meromorphic coefficients of slower growth
than /, for which the function,

h(z)=P(z, f(z), f'(z), - , / ( n ) ( * ) ) , (2)

is either identically zero, or has the property that the counting function N(r, 1/h)
for its distinct zeros is of slower growth than /. (Of course, in view of (1),
the function h in (2) will also be given by a first-order differential polynomial
P*(z, f(z), / '(»), and so attention can be restricted to polynomials P(z, u, v) in
two indeterminates.) It was shown in [1] that the existence and form of these
"special" polynomials for a solution of a given equation (1), depends heavily on
whether (1) possesses none, one, or two linearly independent solutions / ^ 0 hav-
ing the property that "/V(r, 1//) grows slower than /. (Examples illustrating
each of the three possibilities can be found in [1].)

To take a concrete situation, if A(z) is a transcendental entire function of
finite order of growth, and if / ^ 0 is any solution of (1), then the result in [1;
Corollary 3, p. 510] will determine all the polynomials P(z, u, v) of positive total
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degree in the indeterminates u and v, having arbitrary meromorphic coefficients
of finite order, for which the function,

A(*)=P(z,/(*),/'(*)), (3)

is either identically zero, or has the property that the exponent of convergence
(denoted J(Λ)) of its sequence of distinct zeros is finite. To apply this result,
we must know whether (1) possesses none, one, or two linearly independent
solutions / ^ 0 for which λ(f)<oo. Some general results already exist to help
decide this matter in certain cases where the order of A(z) is small or is a
positive integer. For example, in [2] it was shown that if the order of A(z) is
less than 1/2, then for any two linearly independent solutions fl9 f2 of (1), we
have,

max{I(Λ), !(/,)} =oo. (4)

(Recent preprints by L.-C. Shen and by J. Rossi indicate that the conclusion (4)
also holds when the order of A(z) equals 1/2.)

As a second example, it was shown in [4] that the same conclusion (4)
holds whenever the coefficient function A(z) has the form,

±j( , ( 5 )

where (i) Q1} •••, Qn are nonconstant polynomials whose respective degrees
dlf •••, dn satisfy άeg(Qi—Qj)=max{dι, dj) for iφj\ (ii) each B3 is an entire
function, not identically zero, of order less that d3\ (iii) either Q Ξ O or Q is a
polynomial of degree less than Id—2, where d=max{di, •••, dn}. (Of course,
the order of A(z) is the positive integer d.)

In our first result of the present paper, we consider a class of equations (1)
where the order of A{z) can be any nonnegative real number, and we show
that if the equation possesses a solution / ^ O satisfying J(/i)<°o, and which is
of a certain form, then for any solution f2 which is linearly independent with
flt we must have X(/2)=°°. (Thus for this class of equations, sufficient informa-
tion now exists to apply the result in [1; Corollary 3, Parts (b), (d)], to deter-
mine for any solution / ^ 0 , the class of all P(z, u, v) having meromorphic
coefficients of finite order, for which X(/z)<oo where h is given in (3).) We will
prove the following theorem in §3 :

THEOREM 1. Let g{z) be an entire function of finite order for which there
exist real numbers a and b such that g(z) is positive on both (a, +oo) and (—oo, b),
and assume that for every a>0, we have

(A) g(r)/ra-^+oo as r—>+oo through real values, and
(B) g(s)/ |s |α->+oo as S-Ϊ—OO through real values.

Let G(z) be an entire function of finite order, which is real for real z, and which
has no zeros on an infinite strip | I m ^ | < δ , for some δ>0. Then, if f—Geg

satisfies an equation f"+Af=0, where A is entire, we have I(/i)=°o for any
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solution /I^ΞO of this equation which is not a constant multiple of f.

We make four brief remarks concerning this theorem. First, there is no
lack of examples to which this theorem will apply, since any function of the
form eg, where g is entire, satisfies an equation of the form (1), and, in addi-
tion, if g is an even, transcendental, entire function of finite order, whose power
series expansion around 2=0 has all nonnegative coefficients, then g will also
satisfy the conditions (A) and (B) in the theorem. Second, it is easy to see (§ 4
below) that the class of equations treated in Theorem 1, contains coefficient
functions of any preassigned finite order. Third, it is tempting to try to
strengthen Theorem 1 by possibly deleting one of the conditions (A) or (B).
However, for g{z)—ez—{z/2) (which satisfies condition (A), but not (B)), it is
easy to see that f=e8 satisfies the same equation (1) as /i=exp(—(ez+(z/2))),
namely where Λ(z)=—(£22+(l/4)), and it is clear that / and fx are linearly in-
dependent, and J(/ 1)=0. Finally, we remark that there are cases of coefficient
functions of the form (5), where the condition (iii) on Q mentioned earlier is
violated (so that the result of [4] is not applicable), but which can be treated
by Theorem 1. An example is furnished by the function f(z)=exp(eZJre~z)
which satisfies (1) where

A(z)=-e2z-ez-e-z-e~2z+2. (6)

(Here Q=2, and is not of degree less than 2d—2 since d=L). However, since
g(z)=e*+e-z satisfies (A) and (B) of Theorem 1, we can conclude that I(/i)=oo
for every solution Λ^O which is not a constant multiple of /.

Our second result concerns the value-distribution theory for the solutions of
a class of equations (1) where A(z) is a periodic entire function of the form
B(eaz)f where B(ζ) is a rational function, and where a is a nonzero constant.
It was proved in [3; Theorem 3], that if the rational function B(ζ) has poles of
odd order at both ζ = 0 and ζ=oo, then for any solution / ^ 0 of (1), we have
J(/)=oo. (This class of equations contains the Mathieu equation.) This result
provides sufficient information to apply [1; Corollary 3(a)] to conclude that for
any solution / ^ 0 , and any polynomial P(z, u, v) in u and v, of positive total
degree, having meromorphic coefficients of finite order, the function h in (3)
satisfies the conditions ft^O, 5(Λ)=oo. However, as indicated in [1 ; Theorem 2],
the stronger the information we possess concerning the zeros of the solutions
of an equation (1), the stronger will be the value-distribution theory for the
solutions that we obtain from [1; Theorem 2]. In our second result, we make
two substantial improvements in [3; Theorem 3], and thereby obtain a stronger
value-distribution theory for a broader class of equations. First, we prove that
the conclusion J(f)=oo for every solution / ^ 0 , can be replaced by the stronger
conclusion,

log+JV(r, l/f)Φo(r) as r - * + o o . (7)

For our second improvement, we show that instead of requiring both of the
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poles of B(ζ) at ζ=0 and ζ=oo to be of odd order, our stronger conclusion (7)
will hold for all solutions / ^ 0 when at least one of these poles is of odd order.
(The example, f(z)—exp(ez-{-e~z) which satisfies (1) where A(z) is given by (6),
shows that when the poles of B(Q at ζ=0, oo are both of even order, the con-
clusion (7) can fail for some solution / ^ 0 of (1). However, there are examples
(see §9) where the poles of B(ζ) are both of even order, and (7) does hold for
all solutions / ^ 0 of (1). In addition, in the case where B(ζ) has a pole at only
one of the points ζ=0, oo, we have seen earlier that the conclusion (7) can fail
to hold for some solution fφO, since f(z)=exp(ez—(z/2)) satisfies (1) where
A(z)= — (£2z+(l/4)). However, in §9 we show that there are examples of such
equations where (7) holds for all solutions /^0.) We will prove the following
theorem in §8:

THEOREM 2. Let B(Q be a rational function which is analytic on 0< | ζ |<oo,
and which has poles at both ζ = 0 and ζ=°o, and assume that at least one of these
poles is of odd order. Let a be a nonzero constant, and set A(z)=B(eaz). Then

(A) For any solution / ^ 0 of f"+A{z)f—Q, the conclusion (7) holds.
(B) Let Δ{r) be any unbounded increasing function on (1, +oo) with the

property that as r—>+oo outside a possible exceptional set of finite measure, we
have r=0(Δ(r)) and log+A(r)=o(r). Let P(z, u, v) be any polynomial in u and v,
of positive total degree, whose coefficients are any meromorphic functions a(z)
satisfying the condition that T(r, α)=0(Δ(r)) as r-»+oo outside a possible excep-
tional set of finite measure. Then, if /=£0 is any solution of f"+A(z)f=0, the
function h{z) =-P{z, f(z), f'{z)) cannot be identically zero, and h{z) cannot have the
property that N(r, l/Λ)=0(Δ(r)) as r—>+oo outside a possible exceptional set of
finite measure.

We remark that convenient choices for Δ(r) in Part (B) such as A(r)=
exp(Klogr)"1) or Δ(r)=exρ(rα) with 0 < α < l , allow us to examine polynomials
P{z, u, v) having coefficients of infinite order. In addition, we point out here
that the conclusion (7) of Part (A) cannot be greatly improved, since it follows
easily from [1; Lemma 4.1 (a), p. 519] that for every solution / ^ 0 , we have
Ϊog+N(r, l//)=0(r) as r—>+oo. (We remark here that various classes of linear
differential equations with periodic coefficients have been treated by Frei [5],
Ozawa [9], and Wittich [13].)

Our final result is also an improvement of a previous result, namely the
value-distribution theory given in [1 Theorem 2] for the solutions of (1) in the
case when A(z) is a nonconstant polynomial of degree n. In this case, the
solutions /Ξ£0 of (1) are of order (n+2)/2 (see [11; p. 106] or [12; p. 281]), and
the result in [ 1 ; Theorem 2] determines the polynomials P(z, u, v) in u and v,
of positive total degree, having meromorphic coefficients of order less than
(n+2)/2, for which the function h(z) given by (3) is either identically zero, or
has the property that J(/ι)<(n+2)/2. However, one can permit more general
coefficients for P{z, u, v), namely all meromorphic functions a(z) having the
following property:
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T(r, a)=o(r(n+2)/2) as r - > + o o . (8)

In our final theorem, we determine all such P(z, u, v) for which either h(z) = 0 or

N(ryl/h)=o(r(n+2)/2) as r->+<χ>. (9)

The proof (which is given in § 10) consists simply in showing that the hypothesis
of [ 1 ; Theorem 4] is satisfied for the differential field consisting of all mero-
morphic functions satisfying (8). This follows very easily from classical results
of Hille, Nevanlinna, and Wittich (see [12; pp. 282-283]), and also from a new
non-asymptotic approach due to R. Kaufman [7; Theorem 2]. Before stating
the theorem, we remark that there is a simple algorithm [1; §7 (a)] to determine
for any equation (1) where A{z) is a polynomial, whether (1) possesses a solution
having only finitely many zeros, and to determine the solution if it exists.

THEOREM 3. Let A{z) be a polynomial of degree nΞ>l, and let Hn denote
the field of all meromorphic functions a(z) satisfying (8). Let P{z, u, v) be any
polynomial in u and v, of positive total degree in u and v, having coefficients in
Hn. Then :

(A) // all solutions / ^ 0 of (1) have infinitely many zeros, then for any solu-
tion f^O of (1), the function h(z) given by (3) is not identically zero, and h cannot
satisfy (9).

(B) Assume that (1) possesses a solution / 0 ^ 0 having only finitely many zeros,

and set R0=—fl/f0. Then:
(a) For any solution / ^ 0 of (1) which is not a constant multiple of f0, the

function h(z) given by (3) is not identically zero. In addition, (9) holds if and
only if P(z, uy v) has the special form

P(z, u, v)=G(z)(v+R0(z)u)m, (10)

for some positive integer m, and some function G(z)^Q belonging to Hn.
(b) For any solution / ^ 0 of (1) which is a constant multiple of f0, the func-

tion h{z) given by (3) is identically zero if and only if P(z, u, v) has the form,

P{z, u, v)=Q(z, u, v)(v+R0(z)u), (11)

for some polynomial Q(zy uy v) in u and v with coefficients belonging to Hn {and
some coefficient not identically zero). In addition, if /ι(z)=£0, then (9) holds if and
only if P(z, uy v) has the form,

P(zy uy v)=Q(zy u, v)(v+R0(z)u)+E(z, u, v), (12)

for some polynomials Q and E in u and v, having coefficients in Hn, and where
all terms in E(z, uy v) have the same total degree in u and v, and where E{z, 1,

Finally, the author would like to acknowledge valuable conversations with
W. K. Hayman during his visit to Urbana in May, 1985.
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2. LEMMA A. Let g{z) be an entire function of finite order for which there
is a real number b such that Re(g(r))>0 on (b, +00), and assume that for every
a>0,

r ~ α ( R e ( g ( r ) ) ) — > + ° ° as r—>+°° through real values. (13)

Let G{z) be an entire function of finite order which has no zeros on a set of the
form, |Im(2:)|<3, Re(z)>α, where d>0 and a^—co} and assume that f=Ge8 is
a solution of an equation fff+A(z)f=0t where A(z) is entire. Then, if this equa-
tion possesses a solution /i^O satisfying λ(fi)<°°, and such that fx is not a con-
stant multiple of f, the following hold:

(a) f1=He~8 for some entire function H(z) of finite order.
(b) For all r>a,

^\e~2g(t) /{G{t)f)dt, (14)

where K is the Wronskian of f and /Ί.

Proof. Since A——f/f/f, we clearly have,

A=- {{gΎ+g"+2g\G'/G)Λ-(G"/G)), (15)

which shows that A(z) is of finite order. If we set E=fflt it follows (see [3;
Lemma B]) that E satisfies the equation,

0, (16)

for some constant K^O, and the relation,

T{r, E)=Q(N(r, l /£)+T(r , Λ)+logr), (17)

as r—>+oo "nearly everywhere" (briefly, n. e., meaning outside a possible excep-
tional set of finite measure). From the hypothesis, we see from (17) (and [3;
§4(A)]) that E is of finite order, and so the representation in Part (a) follows
when we set H^E/G.

For Part (b), we observe first that since G has no zeros on |Im(2r)|<δ,
Re(z)>a, it follows from a standard minimum modulus estimate (see [10; p. 336])
that there are positive constants r0 and β such that

f*) for all t^r0. (18)

(We remark that when a ——00, we actually obtain

for all real* satisfying | ί | S r 0 ,

by [10; p. 336].).
In view of the hypothesis (13), and the estimate (18), it easily follows that

for all r>a, the integral,
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e-28(t)/(G(t))2)dt, (20)

converges, and represents a differentiable function on (a, + 00) with the properties,

and F(r)->0 a s r - > + o o . (21)

Now, since / and fx are both solutions of (1), we have by Abel's identity that
the derivative of fjf is K/f2. Since f=Ge8 and f1=He~g (by Part (a)), we
see that if we set w=H/G, then the derivative of w{r)e~2g{r) is —KF\r) by (21),
and so there exists a constant L such that,

w(r)e-28(r)ΞΞ-KF(r)+L on (a, +00). (22)

We assert that L=0. We know from (21) that F(r)->0 as r->+cχ>. Since
#(2) is of finite order by Part (a), it follows from (18) that there are positive
constants rx and b such that

M r ) | ^ e x p ( r δ ) for all r>rx. (23)

Thus in view of the hypothesis (13), the left-hand side of (22) approaches zero
as r-^+cχD so L=0. Thus (14) follows from (22), and so Lemma A is proved.

3. Proof of Theorem 1. We assume the conclusion fails to hold, so there
exists a solution f1 which is not a constant multiple of/, and satisfying I(/Ί)<°o.
Hence by Lemma A, we can write f1—He~s where H(z) is an entire function
of finite order, and (14) holds where a — — 00. Since a — — 00, the estimate (19)
holds, and since H(z) is of finite order, we see that there are positive constants
b and r2 such that

\H(s)/G(s)\^exp(\s\b) for all real s satisfying | s | ^ r 2 . (24)

Now, by the hypothesis, G and g are real on the real axis, and so the integrand
in (14) is a positive continuous function of t on (—00, 00). Hence for s<—r2,

^ί. (25)

Denoting by Kx the right-hand side of (25), we have /Γi>0, and from (14) and
(24) we see that

exp( | s | δ )^ | /C |^ 1 e 2 ^ α ) for all s<-r2. (26)

Of course, (26) is in direct contradiction to the hypothesis (B) for a—b, proving
the result.

4. Remark. In this section, we show that the class of equations (1) treated
in Theorem 1 contains coefficient functions of any preassigned order. To this
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end, let a be any nonnegative real number. It is easy to construct (see [10;
p. 326]) an even transcendental entire function g of order σ whose power series
expansion around z=0 has all positive coefficients. Then g satisfies (A) and (B)
in Theorem 1. The function f—eg satisfies equation (1) with A——((g')2+g").
This relation shows that the order σx of A is equal to a. (The inequality σx^σ
is obvious, and the impossibility that σx<σ follows immediately from a variant
of Clunie's lemma [3; Lemma A, p. 4].)

5. We remark that the proofs of the results to be presented in § 5-7 parallel
very closely the proofs of the analogous results presented in [3].

LEMMA B. Let B(Q be a nonconstant rational function which is analytic on
0 < | ζ | < o o . Let a be a nonzero constant, and set w—2πija, and A(z) — B{eaz).
Let / ^ 0 be a solution of (1) which satisfies the condition,

\og+N(r,l/f)^o(r) as r - > + o o . (27)

Then, if the functions f(z) and f(z-\-w) are linearly dependent, the function f(z)

can be represented in the form,

Σdjea>z+dz), (28)

where (i) Ψ(Q is a polynomial all of whose roots are simple and nonzero; (ii) m

and q are integers with m^q; (iii) d, dq, •••, dm are complex constants such that

djφO for some

Proof. From the hypothesis that f(z) and f(z+w) are dependent, we can
write f{z)—e^U{z) where U is entire and has period w. Thus U{z)—G(eaz)
where G(ζ) is analytic on 0 < | ζ | <oo, and from (1), it is easy to check that G(ζ)
satisfies the equation

aVG"+ζ(2βa+a2)G'+(B(Q+β2)G=0. (29)

As in [3; p. 9], we first show that G(ζ) has only finitely many zeros on 0< | ζ I
<oo. If we assume the contrary, the sequence of zeros of G has a cluster
point ζ* at either 0 or oo (or both). If ζ*=oo, then G(ζ) has an essential
singularity at CXD, and by the Wiman-Valiron theory [11; pp. 15, 93-111] applied
to (29), we can write G(ζ) in the form ζmΦ(ζ)w(ζ), where m is an integer, Φ(ζ)
is analytic and nonvanishing at oo, and where w(ζ) is an entire transcendental
function of finite order having infinitely many zeros. Letting H(ζ) denote the
canonical product formed with the zeros of w(ζ), we have a representation u(ζ)
=//(C)exp(Q(O) where Q(ζ) is a polynomial. Now from (29), the function
G1=Ge~Q also satisfies a second-order linear differential equation with polynomial
coefficients, and in view of the representation G1(ζ)=ζmΦ(ζ)H(ζ), it again follows
from the Wiman-Valiron theory that the entire transcendental function H(ζ) must
have order <5>0. Thus l(u)=δ>Q. Hence (see [6; p. 25] or [8; p. 27] or [11;
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p. 51]) the counting function for the zeros of u satisfies

lim sup ((log n(ί, l/u))/\og t)=δ. (30)
t-»+co

Hence there exists a sequence (ίa)-»+oo such that

logn(tq, l/u)>(δ/2)\ogtq for all q. (31)

Now, in view of the representation,

f(z)=e^eamtΦ(eaz)u(eaz), (32)

and the fact that Φ(ζ) is analytic and nowhere zero on a region | ζ | > r 0 where
r o > l , it follows that if ζ0 is a zero of u satisfying | ζ o | > r o , then for any z0

satisfying eaz°=ζ0, we have f(zo)=0. Let d, ζ2, ••• be the zero-sequence of w(ζ),
ordered by increasing modulus, and let b be an index such that \ζj\>r0 for
y^fe. For an index q, set p — n(tqi 1/u) so that ζj, ••, ζp are the zeros of u in
l ζ l ^ f l . For ^ft, write ζ ,= | ζ , k ^ where -π<θ^π, and set

*,=(l/α)( log |ζ , |+ι0,) . (33)

Thus eα*j=ζ<7, so by our previous observation, zb+1, •••, z p are zeros of /, and
each of these zeros lies in the disk \z\^\a\-\(\ogtq)+π). Hence if q is suffi-
ciently large so that tq>eπ, we have

g q b. (34)

Setting s ί =|α|" 1 2(logί f l ), we have 5g->+°°, and from (31), we obtain

n(sq, l/f)>ecs*-b where c = | α | δ / 4 > 0 . (35)

But this implies (see [1; (10.17), p. 530]) that for all sufficiently large q,

N(2sq, l//)Xlog2)(eM«-6), (36)

which obviously contradicts our assumption (27) since c>0 and (sQ)—>+oo. This
shows that ζ* cannot be oo, and a similar argument applied to G2(t)=G(l/t) in
place of G(ζ) shows that ζ* cannot be zero either. Thus G(ζ) has only finitely
many zeros on 0< | ζ | <oo, and each zero is simple since / has only simple zeros.
Letting Ψ{ζ) be the polynomial having these zeros, clearly φ—G/Ψ is analytic
and nowhere zero on 0 < | ζ | < o o . Hence φ{eaz) is an entire function with no
zeros, so is of the form ev{z\ where v(z) is entire. Clearly v'(z) has period w,
and thus v'(z)=W(eaz) where W(ζ) is analytic on 0 < | ζ | < o o . Now since

G/(O/G(O=(y/(ζ)/y(O)+(αζ)-W(C), (37)

it follows easily from (29) that W(ζ) satisfies a nonlinear Riccati equation with
rational coefficients, and the Wiman-Valiron theory then shows that W(Q cannot
have an essential singularity at either ζ = 0 or ζ=oo. Hence W(Q is rational,
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and so has the form,

W(Q=ζ-k(cnζ
n+cn-1ζ

n-1+- +Co). (38)

Integrating v'(z)—W(eaz) to find v(z), the representation (28) follows immediately.

6. LEMMA C. Let A{z) be a nonconsΐant entire function of period w, and let
/ ^ 0 be a solution of (1) which satisfies (27). Then, f(z) and f(z+2w) are linearly
dependent solutions of (1).

Proof. The conclusion is immediate if f(z) and f(z+w) are linearly de-
pendent, so we may assume that f{z) and f(z+w) are linearly independent.
Hence if we assume the conclusion is false, then the solutions fλ— /, /2(z)=
f(z+w\ and fz{z)—f{zJ

r2w) are pairwise linearly independent, so by [1; Lemma
8.1, p. 523] we have n. e. as r->+oo,

T(r, Λ)=θ(Σ N(r, l/fj)+T(r, A)). (39)

Now, it is easy to see (e.g. [ 1 ; p. 530]) that for all sufficiently large r,

N(r, l//,)=<X(log r)N(2r, 1/Λ)) (40)

for y = l , 2, 3, and since A——f'[/fly we have

T(r, i4)=0(log T(r, f,)) n. e. as r-> +<*>. (41)

Hence from (39), (40), and (41), we have,

T(r, /!)=0((log r)N(2r, l/f1)) n. e. as r-> + ^ , (42)

and since /j satisfies (27), it follows now that logT(r, f1)=o(r) n. e. as r-^+oo.
But then from (41), we have T{ry A)—o{r) n. e. as r—>+oo, and so it easily
follows (see [3; §4(A)]) that T(r, A)=o(r) as r—>+oo without an exceptional set.
This shows that A(z) has no zeros since if z0 is a zero of A, then all points
Zo+nw, (for integral n) are also zeros, and the counting function for these points
exceeds cr as r—> +oo for some c>0. Hence A must be the exponential of a
polynomial, but being periodic will then be of the form ecz+d for constants c and
d. Since T{r, A)—o{r) as r->+oo, we must have c=0, and so A is a constant,
contrary to hypothesis.

7. LEMMA D. Let A{z) be a nonconstant entire function of period w, say
A{z)—B(eaz), where B{Q is analytic on 0 < | ζ | < o o , and a=2πi/w, and assume

logT(r,A)=o(r) as r - + + ° o . (43)

Let f=£Q be a solution of (1) which satisfies (27), and has the property that the
functions f(z) and f{z+w) are linearly independent. Set E(z)=f(z)f(z+w).
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Then.
(a) logT(r, E)=o(r) as r->+oo.
(b) E(z)2 is periodic of period w.
(c) Writing E(z)2=Φ(eaz) where Φ(ζ) is analytic on 0< | ζ |<oo, then Φ(ζ) has

at most a pole at ζ—oo (resp. ζ=0) if and only if B(ζ) has at most a pole at
ζ=zoo (resp. ζ=0).

Proof. Since E and A are related by equation (16), we observe first that
E is transcendental since A is transcendental. Now since f(z) has property (27),
it is easy to see (e. g. [1 ; p. 530]) that f(z+w) also has property (27), and hence
so does E(z). Since E satisfies (17), it now easily follows from (43) that
logT(r, E)=o{r) n. e. as r->+oo, and hence (using [3; §4(a)]), we see that
Part (a) holds.

For Part (b), we note that by Lemma C, we have E{z+w)=cE(z) for some
nonzero constant c. Thus E'/E and E"IE have period w, and so by (16), we
obtain Part (b).

For Part (c), we set F=E2, so F(z)=Φ(eaz) where Φ(ζ) is analytic on 0<
| ζ | < o o . From (16) it follows that Φ satisfies the equation,

α 2(ζ 2ΦΦ / /-(3/4)ζ 2(Φ /) 2+ζΦΦ0+45(ζ)Φ 2+iί: 2Φ=0. (44)

We show first that if B(ζ) has at most a pole at oo, the same is true for Φ(ζ).
(The converse is obvious from (44).) If we assume the contrary, then by the
Wiman-Valiron theory [11; pp.15, 93-111], we can write Φ(ζ) in the form
ζmψ(ζ)u(ζ), where m is an integer, ¥(ζ) is analytic on a region | ζ | > r 0 and has
a finite, nonzero limit at oo, and where u(Q is an entire transcendental function
whose maximum modulus satisfies an asymptotic relation, logM(r, u)^c1r

σ as
r-»+oo, for some constants Ci>0 and σ>0. Hence, for sufficiently large r, if
ζr denotes a point on | ζ | = r at which \u(ζ)\=M(r, u), then

\Φ(ζr)\^exv((Cl/2)rσ). (45)

Writing ζr=reiθr where \θr\^π, we set zr=a-1(logr+ίθr), so F(z r)=Φ(ζ r).
Since \zr\S2\a\~ι\ogr for sufficiently large r, we thus have from (45),

logAf(|* r |, F)^(c 1 /2)exp(2- 1 | «kkr l ) , (46)

for all sufficiently large r. Using a standard inequality [6; p. 18, Theorem 1.6],
it now follows that,

logT(2U r | ,F)^ log(c 1 /6)+2- 1 |αk lzr l , (47)

for all sufficiently large r, which contradicts the result in Part (a) since F—E2,
and \zr\-++co as r—>+oo. This proves that Φ(ζ) has at most a pole at ζ=oo
if the same is true of J3(ζ). The Janalogous situation for ζ = 0 is proved by
setting Φ1(ί)=Φ(ί"1), and using similar reasoning at f=oo. This proves Part (c).
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8. Proof of Theorem 2. We first prove Part (A). We assume that (1)
possesses a solution /=£0 which fails to satisfy (7), so that (27) holds. We
divide the proof into two cases.

Case I : Suppose first that f(z) and f(z+w) (where w=2πi/a) are linearly
independent. Then Lemma D is applicable, so if we set E(z)=f(z)f(z+w), then
E(z)2=Φ(eaz), where Φ(ζ) is analytic on 0 < | ζ | < c o , and Φ(ζ) has at most poles
at ζ = 0 and ζ=oo. Thus Φ(ζ) is rational, and so both ζΦ'/Φ and QΦ" jΦ tend
to finite limits as ζ->oo, and as ζ—>0. Since Φ satisfies (44) for some constant
KφO, it thus follows that 4£(ζ)+#2(Φ(ζ))~1 also tends to finite limits as ζ-»oo,
and as ζ->0. But by hypothesis £(ζ)-*oo as ζ—>CXD, and as ζ-»0, and hence we
can conclude that Φ(ζ)->0 as ζ->°o, and as ζ->0. Thus Φ(ζ) is analytic on the
extended plane and so is a constant, which of course must be zero. Thus / = 0
contradicting our hypothesis. Thus Case I is impossible.

Case II: We now assume f(z) and f(z+w) are linearly dependent. Then
by Lemma B, the solution f(z) has the form (28), where conditions ( i), (ii), (iii)
in Lemma B are satisfied. We can assume in (28) that do=O by incorporating
the term exp(d0) into the polynomial Ψ as a constant multiplier. Since djφO
for some jΦQ, we can assume in (28) that m=max{/: djφO} and q=min{j:dj
Φθ] so that all the following hold in (28):

dmφ0, dqφ0, mΦO, qφO, and q^m. (48)

In (28), set G(z)=Ψ(ea*), and,

(49)

so that f—Ge8. Since / satisfies (1), we see that A, g, and G are related by
(15). We now set H=-2g'(G'/G)-(G"/G) so that by (15) we have,

A=-(gΎ-g"+H. (50)

We observe first that since A and g are entire, it follows from (50) that H
is entire. On the other hand, since Ψ{ζ) is a polynomial, and since from (49),
clearly gf and g" are rational functions of ea\ we see that H(z) is a rational
function of eaz, say H(z)=R(eaz), where R(ζ) is rational. We distinguish two
subcases depending on whether R=0 or R^O.

Subcase A : If R=0, then i/=0, so from (49) and (50), we have

/ m \ 2 TO

A(z)=-(Σ,ajdjea>z+d) - H{ajYdje

a». (51)

Since A(z)—B(eaz), we see that as rational functions of ζ, we have,

B(ζ)=-(Σajd#+d)*- Σ{aj)*d&. (52)
\j=q / j=q

Now from (48), we know q and m are nonzero. If both m and q are positive,
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it is clear from (52) that B(ζ) has no pole at ζ=0, contrary to hypothesis. If
both m and q are negative, it is clear that B(ζ) has no pole at ζ=oo, again con-
trary to hypothesis. If m and q are of opposite sign, we must have q<Q<m,
and it follows from (52) that B(Q has a pole at oo of order 2m, and a pole at
zero of order 2\q\, again contradicting the hypothesis that at least one of these
poles must be of odd order. Thus Subcase A is impossible.

Subcase B: Here the rational function R(Q is not identically zero. Hence
we can write R=RJR2 where R± and R2 are polynomials in ζ, having no com-
mon factor. Since H(z)=R(eaz) is an entire function, it is clear that R2 can
have no roots other than (possibly) zero. Hence R2(Q is of the form cζm, and

s
so we may write R(ζ)= Σ ^ ζ 7, where the c3 are constants, where t and s are

j=t

integers with t^s, and where ctφ0 and csφ0. Now, by definition of H, we have

G"+2g'G'=-GH, (53)

where G(z)=Ψ(eαz), and g is given by (49). Now if the degree p of the poly-
nomial tF(ζ) is zero, then G(z) is a constant, and so by (53), H=0. But then
R=0, contradicting this subcase. Thus p^l, and we may write,

y ( C ) = £ α , P , where αpΦθ, αoΦθ, (54)

and the α3 are constants. (The fact that α0φ0 follows from the fact that the
roots of ¥ are nonzero.) Thus from (49), (53), and (54), we have

(55)
j=l / \7=0 / \j=t /Σ(

, 7 = 1

as rational functions in ζ. In addition, from (49) and (50), we have,

Σαjd£+d) -( Σ(α/)2^j+ Σc&, (56)
j=q / \j=q / j=t

as rational functions of ζ. We know from (48) that m and q are both nonzero,
and qi^m. We consider separately the three possibilities, (i) ra>0 and <?>():
(ii) ra<0 and q<0; (iii) q<0<m.

In Case (i), we have ra>0 and #>0. Since also p>0, it is clear that when
the left side of (55) is expanded in powers of ζ, all terms have positive powers
of ζ. Now the nonzero term on the right side of (55) containing the smallest
power of ζ is —doCtζ1, so by (55) we have t>0. Thus in this case, the expan-
sion of B(ζ) given in (56) contains only nonnegative powers of ζ, so that J5(ζ)
has no pole at ζ = 0 which is contrary to the hypothesis. Thus (i) cannot occur.

In Case (ii) we have m<0 and <7<0. Thus, when the left side of (55) is
expanded in powers of ζ, all nonzero terms which appear contain a power of ζ
of at most p. Since the right side of (55) has the nonzero term — αpcsζ

p+s, we
thus have p+s^p, so s^O. Since also m<0, we see that the expansion of B(ζ)
in (56) contains only terms with nonpositive powers of ζ which contradicts the
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hypothesis that B(ζ) has a pole at oo. Thus (ii) cannot occur.
In Case (iii), we have q<0<m. Now, in (54), let k denote the smallest

index / > 0 such that ajΦO. Thus 0<k^p. Since q<0, the nonzero term in the
expansion of the left side of (55) which has the smallest power of ζ is
2a2qkdqakζ

k+q. Since the nonzero term on the right side of (55) which has the
smallest power of ζ is — aoctQy we must have

k+q=t. (57)

On the other hand, the nonzero terms in the expansions of the left and right
sides respectively of (55), which have the largest powers of ζ are 2a2mpdmapζ

p+m

and — apcsζ
p+s respectively, so we have m=s. Since ra>0, we thus see that

the nonzero term in the expansion of B(ζ) in (56) which has the largest power
of ζ is — (am)2d^ζ2m. Since q<Q and q<t (from (57), the nonzero term in B(ζ)
with the smallest power of ζ is — {aq)2d\ζ2q. Thus B(ζ) has even order poles
at both ζ = 0 and ζ=oo contradicting our hypothesis. Hence (iii) cannot occur,
and so Subcase B is impossible. Thus, our assumption of the existence of a
solution which fails to satisfy (7) has led to a contradiction, proving Part (A)
of Theorem 2.

For Part (B), we observe first that if Δ(r) is as in the statement, then

7(2r, Λ)=0(A(r)) n. e. as r - > + ° o , (58)

since T(r, A)=O(r) as r->+oo. From Part (A), it follows that no solution
of (1) can satisfy N(r, l//)=0(Δ(r)) n. e. as r—>+oo, since such a solution, in
view of the hypothesis \og+A(r)=o(r) n. e. as r->+oo, would satisfy (27) nearly
everywhere as r->+oo. In view of [3; §4(A)], the solution / would satisfy
(27) as r-+-{-oo with no exceptional set, thus contradicting the conclusion (7)
from Part (A). Hence, the conclusion of Part (B) now follows immediately from
[1 Theorem 2A, p. 508].

9. Remarks, (a) For the case of an equation, f"+B(ea*)f=0, where B(Q
is a rational function which is analytic on 0 < | ζ | < o o , and has even order poles
at ζ = 0 and ζ=°o, it is possible for conclusion (7) to hold for all solutions fφQ.
A general class of such equations can be constructed very simply by letting
Bx{w) be any rational function of w, analytic on 0 < | w | < o o , and having poles
at w=0 and M/=OO, at least one of which has odd order. Then by Theorem 2,
all solutions / ^ 0 of the equation f"+B1(e2a*)f=0 satisfy (7). But this equation
is the same as f"+B(ea*)f=0, where S(ζ)=5i(C2), and clearly 5(ζ) has poles
of even order at both ζ = 0 and ζ=oo.

(b) For the case of an equation, f"+B(eaz)f=0f where B(ζ) is a rational
function, analytic on 0 < | ζ | < o o , and has a pole at only one of the points ζ = 0
or ζ=oo, it is possible for all solutions / ^ 0 to satisfy (7). Such examples are
provided by the equations f"+(ez—K)f=0, where K is a constant with the
property that 16K is not the square of an odd, positive integer. (It was shown
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in [4] using the results in [3] that one has J(/)=oo for all solutions /^=0 of
such an equation. By using the stronger results given in Lemmas B and D
above, in place of the corresponding results in [3], we can obtain the stronger
conclusion that (7) holds for all solutions / ^ 0 . We remark that when 16K is
the square of an odd, positive integer, it was shown in [4] that the equation
possesses a fundamental set {fίff2} such that I ( / ; ) ^ l for / = 1 , 2.)

10. Proof of Theorem 3. We are given that A(z) is a polynomial of degree
nΞ>l. It is shown in [12] that if / ^ 0 is a solution of (1) having infinitely
many zeros, then there is a nonzero constant c such that,

N(r, l //)/r ( n + 2 ) / 2 —>c as r - * + o o . (59)

(See also Kaufman [7]. Let Hn and P be as in the statement of Theorem 3.
Assume now that all solutions / ^ 0 of (1) have infinitely many zeros. Then

for any solution fφto, the function / ' / / cannot be algebraic over Hn> since in
the contrary case we would have (from (8)), T(r, /7/)=6>(r ( n + 2 ) / 2) as r-±-\-oof

which would clearly contradict (59) since cΦO. Hence from [1 Theorem 4(a),
p. 511], we can conclude that for the function h{z) given by (3), we have that
A^O and that h'/h does not belong to Hn. Since ra(r, A7A)=0(logr) a s r—>+oo,
it follows that N(r, h'/h)Φo(r{n+*)l2) as r-^+oo. Since any pole of h must be
a pole of a coefficient of P, and each such coefficient satisfies (8), we have
N(r, h)=o(r(n+2)/2) as r->+°°, and so A cannot satisfy (9) since

N(r, h'/h)=N(r, h)+N(r, I/A). (60)

This proves Part (A).
For Part (B), we assume that (1) possesses a solution / 0 ^ 0 having only

finitely many zeros. Then, / 0 must be of the form B(z)eV{z), where B and V
are polynomials, with V of degree (n+2)/2. Hence /„ is not algebraic over Hn,
for in the contrary case, f0 would satisfy (8), and hence eV{z) would satisfy (8)
which is false (see [6; p. 7]). Of course, Ro=—fΌ/fo is a rational function, and
so belongs to Hn. Finally, for any solution / ^ 0 of (1) which is linearly in-
dependent with /o, we must have I(/)=(n+2)/2 by [2; Theorem 1], and so /
satisfies (59) for some cφO. Thus, as before, f'lf cannot be algebraic over Hn.
Hence, we may apply [ 1 ; Theorem 4(b)] to conclude that h(z) given by (3)
cannot be identically zero, and that A7A belongs to Hn if and only if P has
the special form given by (10). However, using (60), clearly Λ7Λ belongs to Hn

if and only if (9) holds, which proves Part (a). The conclusions in Part (b) for
solutions which are constant multiples of f0 follow exactly as above from [1
Theorem 4(d)]. This proves Theorem 3.
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