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ON AN ESTIMATE FOR S:m(t, E(—z, q))t-"-%dt
By MITSURU OzAWA

In this paper we shall give a lower estimate for

° m(ty E('—Z» (]))
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where E(z, q) is the Weierstrass primary factor of genus ¢, 8 a constant satis-
fying ¢<B<g+1 and m(, f) the Nevanlinna proximity function. Our result is
the following

THEOREM.
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where k(B) is the constant defined by
Bl G<<eri,
'-Siq‘;Llﬂ' (g+1/228<q+1D).

In the above estimation equality does not occur. In order to show this
inequality part we need a rough tracing of the level curve
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However we do not need its precise analysis.

Proof. Let us consider

—(~1 —tett _dt.
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where F is a measurable subset of [0, #]. Evidently
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for any F. Further it is known [1] that it is possible to change the order of
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integration. It is known that

lsw log| E(—te®?, q)] i S0S 0B
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Hence

I _S cos 08
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If ¢ is even, that is, sin #3>0, then

1{ cos0p do<1{"(cos 08)*d0
Blr BJo

__{ (g+sin )/ B2 (g<B<q+1/2),
(¢g+1)/p? (+1/2=B<q+1).

Here equality occurs by a suitable choice of F. If ¢ is odd, that is, sin #3<0,
then

%SFcos 68 dagiS:@os 05)do

_{ —(g+Isinzp|)/g*  (g<Bp<g+1/2),
—(g+1)/p? (g+1/2=p<g+1).

Again equality occurs by a suitable choice of F in this case. Denoting this
special F by F,
Ir,=1/k(B)B

Hence
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At the origin the rays defined by cos(¢+1)§=0 are tangents of branches of
the level curve indicated already. Around the point at infinity the rays defined
by cosgf=0 are asymptotics of branches. There is a loop around —1, which
starts from the origin and ends at the origin and lies in the sector defined by
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Hence
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for any t. Hence we have the desired inequality part.
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