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ON THE L’ BOUNDEDNESS THEOREM OF
NON-HOMOGENEOUS FOURIER INTEGRAL
OPERATORS IN R

By KENJI AsADA

§1. Introduction and Notations.

A Fourier integral operator is an integral transformation of the form

(1) Af=@m e seatx, OF@E,

where

fO=Y, e ef(ndy

is the Fourier transform of f defined on R®. We call S(x, &) its phase function
and a(x, &) its symbol function (cf. Hérmander [8]). When S(x, &)=x-& a
Fourier integral operator becomes a pseudo-differential operator.

If a symbol function satisfies the inequalities

(2) [050%a(x, &)] =Ca, p(1+4[£])1 101

(0=<6=p=1, d<1), Calderén-Vaillancourt [5] proved that the pseudo-differential
operator with symbol a(x, & is L? bounded, and Fujiwara [7] and Kumano-go
[12] proved the L? boundedness theorem of the Fourier integral operator.

If we take A(&)=(1+|£])*»/2 then such a symbol function a(x, &) satisfies
the inequalities

(3) |030%a(x, &) =Ca, pAE) =14,

In this paper we consider the case that a weight function A(£) is more general
in & (See Definition 1 in Section 2), and we shall prove the L? boundedness
theorem of the Fourier integral operator A with symbol function a(x, &) satis-
fying the inequalities (3).

We use the standard notations for functions and operators. A multi-index
is a sequence a=(a,, ‘-, a,) of non-negative integers (the number n will usually
be clear from the context). If « is a multi-index and x=(x,, -+, x,), &=
(€, ---, &) in R™, we set
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ON THE L? BOUNDEDNESS THEOREM 249
lal=a;+ - +a,, al=a,! - a,!,
w-é=x:8t o Fapde, x| =it xR
E>=(1+E[HVE, x=xf1 xgn,
03=051 - 052, 0.,=0/0.,, g=1, -, n.
If /=f(x) is a function of x, then we set

Vaf =@e,f, s Denf),
1£1=(,,, 1 701dx) ™

For a positive number », we denote by X, the characteristic function of the ball
{x;|x|=r}. We denote by S(R") the Schwartz space of rapidly decreasing
functions on R", and by L*R") the set of measurable functions on R"™ such
that | f|| is finite. If A is an operator, we denote the operator norm of A in
L¥R™) by [|A].

We adopt the following convention on constants: unless otherwise stated,
constants C, C’ vary from statement to statement, but depend only on the con-
stants previously chosen.

§2. Definitions and Results.

DEFINITION 1. We say that a C= real valued function 4;(§) defined on R"
is a basic weight function if 4,(§) satisfies the following conditions :
(W-1) There exist a positive constant C; such that

1=2(5)=CK&E
for all & in R™
(W-2) For any multi-index « there exists a positive constant C, such that

13311(5)1§C«21(5)“""
for all & in R™.
And we set A.(5)=A4(§)°, where 0=e=<1. Then we say that 2.(£) is a weight
function of type ¢ induced from 2,(&).

Remark 1. The weight function of the above type is used in Boutet de
Monvel [4] and Kumano-go [10]. Beals-Fefferman [2], Beals [3] and Kumano-
go-Taniguchi [117] define more general weight functions also depending on the
x-variables in order to develop the calculus of pseudo-differential operators. In
the context of such general weight functions we would be able to consider the
L? boundedness of Fourier integral operators. In [13] we have attempted some
generalizations.

DEFINITION 2. Let A(§) be a weight function of type ¢ (0=e¢=<1) and g a
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real number. We say that a C* function a(x, &) defined on R*X R™ is a symbol
function of order p if a(x, §) satisfies the condition :

(S-p) For any two multi-indices a and B there exists a constant C. s such
that for all (x, &) in R®"xXR"™ the estimate

[020fa(x, &) =C,, gAE)rHI 1 -1H
holds.

Remark 2. The set S#(2) of all symbol functions of order p corresponding
to a weight function A(&) is a Fréchet space with semi-norms |- | #, b Where

anB
(4) laly, »= X sup |050%a(x, &)

ol +1Bisk (2,6)ERTXRD Ag)priat-1h

for any non-negative integer 4.

ExAMPLE 1. A4,(§)=<&) is a basic weight function and 2,(§)=<&)" is a weight
function of type r (0=7<1). Then the symbol class S*(4,) is St in Hormander
[8]. And S4,;CS*2,) if 0=7=p, 7<1 and v=7p.

ExaMPLE 2. We set

n t/2m
wO=(1+Fem) ", m=max(m,}.
J=1

15757

Then 4,(§) is a basic weight function.

DEFINITION 3. We say that a C~ real valued function S(x, &) defined on
R" X R™ is a phase function if S(x, &) satisfies the following conditions:

(P-1) For any two-multi-indices a and § such that |a|+| 8] =2 there exists
a constant C,, 4 such that

10204S(x, &)| =Ca, pag)' ™ 17
for any (x, &) in R*XR".
(P-2) There exists a positive constant d,>0 such that

inf n|det(31]aek5(x, )| =0,.

(x,6)ER™ <R

DEFINITION 4. Let A(&) be a weight function of type ¢ (0=e<l). Corre-
sponding to a(x, &) in S#(1) and a phase function S(x, £) we define a Fourier
integral operator A on smooth functions by the formula

(5) Au(n)=| | o= Oalx, D@,
and d§=(2r) "d&.

The defining integral in the right-hand side of (5) converges absolutely at
least for any function u in S(R™). For we have the estimate
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le*S=Da(x, HRE)| SCp&rerH,

where N is any positive integer.
Our result is:

THEOREM 1. Let A(§) be a weight function of type ¢ (0=e<1). Suppose that
a symbol function a(x, §) is in S°(A) and a phase function S(x, &) satisfies (P-1)
and (P-2). Then the Fourier integral operator A s L* bounded and has the
estimate that

(6) fAull=Cnlalo mlul,

where m is an integer such that m>2n/(1—e¢).

ExAMPLE 3. If A(§)=1, then the Fourier integral operator turns out to be
an oscillatory integral transformation in Fujiwara [6] and Asada-Fujiwara [1].

ExaMmpPLE 4. Fujiwara [7] and Kumano-go [12] proved the L? boundedness
theorem of Fourier integral operators with symbol functions in S ; (0=d<p<1,
0<1), under the condition that S(x, &) satisfies (P-3), not (P-1).

(P-3) For any two multi-indices & and B with |a|+]f]=2, there exists a
constant C,, g such that

[0504S(x, )| =C,, g0

Applying Theorem 1 to this case we have the following

COROLLARY. Let © be a real number such that 0=z<l. We assume the
Sfollowing conditions :
(i) For any multi-indices a and B there exists a constant C, 5 Such that

[0208a(x, &)| S C,, g<&orCx-1BD,
(ii) There exists a positive constant 0, such that
]det(azjaéks(xy N =0, .

(iii) For any multi-indices a and B with |a| 18] =2 there exists a constant
Ca.p such that

[0504S(x, &)[ =Cy, g<By7 118D,
Then the Fourier integral operator A 1s L* bounded and has the estimate that
lAull=Claly, nllul,

where m is an integer such that m>2n/(1—z).

Remark 3. By Plancherel’s theorem we have only to prove that the integral
operator
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(7) F@-{ s =0atx, (@)

is L* bounded. We again denote by A this integral operator.

§3. Proof of Theorem.

LEMMA 1. Let 2,4(&) be a basic weight function and 2.(&)=2,(&)° (0=e<1).
Then A.(§) satisfies the following estimates :

(W-3) 1=2.6)=CL8)e.
(W-4) For any multi-index « there exists a constant C., . such that
[082.(E) | ZC., o A(£)A:(E) 141,

This lemma is an immediate consequence of Definition 1. So we omit its proof.

LEMMA 2. Let 2,(€) be a basic weight function. Then there exist positive
constants vy and C such that C'=2,(8)/4(9)=C whenever |E—n|<riA,(é).

Proof. We note from (W-2) that for |a|=1
[og (&) =C.
By the mean value theorem we have
[2:() =& =Clnp—E| =CroAi(8).

Take a positive constant », such that »,C<1/2. Thus, if |§—7|=r A (§), then
[ () —A4:(E)| =(1/2)4,(€). Hence we have 1/2=2:(%)/A:(§)=3/2.

COROLLARY. Lei 2.(§) be a weight function of type ¢ (0=e<1). Then we
have

(1) If [E=n|=riA(8), then C'=2.(n)/2.(5)=C.
(ii) If |é=0o|=rid(o) and |E—0'|=riA(a’), then

C'=4d0")/4(a)=C.
ain If !0~0’|§-;-70(25(0)4—2;(0’)), then C*'=2(0")/2(0)=C.

From now on we fix a weight function A.(§) of type ¢ (0=<e<1) and we

omit the subscript ¢ and write A(&).
Let » be a positive real number. We set

(8) Uso(=A{(x, &; [x—s|=rio)™, |§—a|=ri(o)}

for (s, ¢) in R*xR" This set is a neighborhood of (s, ¢) in R*XR", where
we endow a Riemannian metric at (s, ) as follows
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8 o, E)=A(o)* | x|*+A(0)2|&]%

This Riemannian metric g . is slowly varying, g=<g’ and o-temperate in
the sense of Hormander [9].

Remark 4. Corollary of Lemma 2 implies that C'=<A(£)/A(o)=C for all (x, &)
in Uy, (o).

We shall construct a partition of unity with continuous parameters subordi-
nated to a covering {U o)(")} (s, oyernxgn (for some r>0) of R"XR"™ which a
weight function A(§) defines. This partition of unity is similar to that in
Hormander [9] which depends on discrete parameters.

LEMMA 3. Let r, and r, be real numbers such that 0<r,<r,<(1/4)r,. Then
we can choose C*-functions ¢, ¢ (x, &) continuously depending on (s, ) in R*x R™
and satisfying the following conditions :

(1) Each @i, 0(x, §) is non-negative, strictly positwve for all (a, &) in
U, 0)(re) and is supported in U s, 5)(7y).

(i) 1[0 e olx, @dsdo=1.

(ill) For any two multi<ndices a and B there exists a constant C, g such thal

sup  10%0%@ s, o)(x, )| =Cq 5A(0) 71,

(z,6)ERTXR™

where the constant Cq, g 15 independent of (s, o).

Proof. Take a C= function ¢ in R' such that 0=¢(t)=1, ¢o0)=1 if 1=r,
and ¢(t)=0 if t=»,. And set

(9) s, or(x, E)=p(Ala) | x—s])-@(A(a)|E—al),
a0) i, O=\|, . bools Odsdo.
First the followings are obvious:
11 0=¢u. olx, HH=1.
(12) SUBP 5,0y CU 5,00 (1)
and
(13) ¢, 00(x, §)=1 whenever (x, §) is in U, 6)(72) .

Next we can prove (iii) for ¢ o (x, £). By induction we see that
0204 5, o»(x, )=0%0(A(0)| x—s|)-0%p(A(a)*|E—0a])

is a sum of terms of the form
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(14 Cp ()| x—51):Alo) T 3.7 x|
L

X (o) |§—0 ) Aoyt T 2|60l

where
1= =lal, |ay|++la;i=]al

I=k=I[Bl, [Bul+ - 1Bl =18l

Therefore each term (14) is dominated by
Ca.sloPA@) x=5DI A0y TT | x—s]17
X | 0)H§=a 1) Ao)* IT |§—a 1P

<Co o Esupl 010712 )( S supl (0|4 #1218
=\ =7 ¢ & P )

(15) 10504 s, o) (x, E)| =Ca, pA(a)' *1 1P,
Third we show that the inequalities
(16) C=¥(x, H)=C
hold for some positive constants C and C’. We note from Remark 4 that the
inequalities

(17) G2, ) =) H0) G o) dsdo ;.

hold for all » such that 0<»<w», Here X, denotes the characteristics function
of the ball of radius ». The properties (11), (12) and (13) imply that

(18) Xy (Ao )(x = NXry(A(0)  E— NS5, (%, &)
=X, (A0)(x — )Xy (A(0) " (E—0) .

Substituting (18) into (10) and considering (17) we have the inequalities (16).
Fourth, we prove that ¥(x, &) is in S°(A). We differentiate (10) under integral
sign and use (15) and (17) in view of (12) and Remark 4. Thus,

19 1908, I 105980, nx, Ol dsdo

=Coplo) 2 L (N5 (o) HE— ) dsdo

RN xR

gCa,,gZ(a)‘“‘""".
Now we set
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SD(s,a)(x: E):¢(3,a)(xr S)/’F(x, 8.

From (11), (12), (13), (15), (16) and (19) it is clear that ¢ - (x, §) satisfies the
required properties.
Let t=(s, o) be any point in R*X R" and set

(20) a,(x, &)=p(x, §)alx, §).

Each a,(x, §) is supported in a set U.(r;) and for any two multi-indices « and fj3
estimates

(21) laga%at(xy &l éca,ﬁ|a{o;!aw‘lﬂll(g)l(“ -ih,

hold for some constants C,, 3. And define

@2) Afo=]_ et =Dasx, D@

e
R™
Then we have
(23) Afo=|_, Afdr.
The adjoint operator A¥ of A, for t’=(s’, ¢’) is given by
24) Arg@=| e ETy, Belndy,

where a,(y, &) is the complex conjugate of a, (y, &).

Now we prepare to apply the lemma of Cotlar-Knapp-Stein formulated by
Calderén-Vaillancourt [5] (See Lemma 7 below). Thus we have only to prove
all of the following estimates :

1° There exists a positive constant C independent of t=(s, ¢) such that

1A4:=C.
2° There exist non-negative functions A(¢, ') and (¢, #/) such that
1A AE=h(t, t)?, | A¥A, Sk, 1)

3° The above functions satisfy the following estimates
SupS ht, )dt<M, SupS k(t, t)dt= M
t'" JR2M ¢t JR2M
for some constant M.

Proof of 1° We know from (20) and (22) that the integral kernel function
H,(x, &) of A; is dominated by

Claly, e (A(0)(x =)y (A(0) (E—0)).
Thus we have
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ol Hilr, ©1dx=Cor, a0, k()

o Hilx, ©14ESCarylals, (0"

Hence these estimates imply the desired inequality
[AN=Crrilale,o.

For t=(s, o) and t'=(s’, ¢’) we denote the integral kernel functions of the
operators A,A¥ and A¥A, by H,.(x, y) and K, . (& 7) respectively. Thus,
from (22) and (24) we have the following expressions.

(25) AAE 0= Hoelx, D7y,

where

(26) Hyolx, )=| v 8e0-50.00a,(x, 250y, Hdé .
And

@7 ArAcg@=| Ko petpdy,

where

(28) Ky o@ )= om0 S g Bantx, pdx.

Now we shall estimate H,,, (x, ¥) and K, ,.(§, ) in the following Proposition 1.
Then we need two lemmas concerning the phase functions and integration
by parts (See Lemmas 4 and 5 below). And we shall prove the statements 2°
and 3° as Propositions 2 and 3 respectively.

LEMMA 4. 1) There exists a positive constant 0, such that

(29) [Ve(S(x, £)—S(y, ) =0:|x— |
and
(30) INL(S(x, §)—S(x, 7)) 26,]6—7].

2-1)  For any multi-index a such that |a|=1 there exists a constant C, such
that the estimates

(31) (Ae) -+ A(a") 1)« 08(S(x, £)—S(y, &) =Cap
hold for all (x, &) in U o(ry) and (y, &) in U o (ry), where
(32) o= {1+Aa) 7 +A(a") )2 VeS(x, £)—S(y, )]
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2-i1) For any multi-index « such that |a|=1 there exists a constant C, such
that the estimates

(33) (Aa)+A(a")) ' *'103(S(x, §)—S(x, )| =Cat
hold for all (x, &) in U, o(ry) and (x, n) mn Uy, 5(ry), where
(34) = {1+A(0)+A(a")*|V(S(x, E)—S(x, n)[*} "%
Proof. 1) Let 2=V:S(x, §) and w=V:S(y, §). Because of (P-1) and (P-2),
we can apply the global implicit function theorem to the mapping
Te: R"ox —> z=V:5(x, §)=R™,

where £ R" is fixed. Thus, T¢ is a global diffeomorphism. When we consider
x as a function of (z, &), we write x=x(z, &). Since the Jacobian matrix 0x/0z
is the inverse matrix of <azjae S(x, £), each component of 9x/9z has an upper
bound y=C,C!7'0;*. By the mean value theorem we obtain

[x(z, &) —x(w, §)|=7lz—wl.
Thus,
[x—y|=7|VeS(x, £)—V:S(y, &)I.

This is equivalent to the inequality (29) with ¢,=y '=0,/C,Ct7'. A similar
argument shows that the inequality (30) is valid.

2) When |a|=1, the inequality (31) is valid from the definition of p. When
la| =2, we have, for (x, §) in U, (7)) and (y, &) in U, o (r0),

[08S(x, E)| =CaA(a) '™, 10§S(y, )| SCrila’)' ™\
Then
(A(o)*+2A(a") )1 0gS(x, £)—0ES(y, &)

=SCo(Ma) - A(a") ) (A(o) * +A(a”) )
<2C,<2C,p .

Thus, the inequality (31) is valid. By a similar argument we know that the
second inequality (33) is also valid. This completes the proof of Lemma 4.

LEMMA 5. Let L be a partial differential operator of order 1:
Lu(x)=p (1=K N F(x)-V)u(x),
where K is a positve constant, F(x) is a smooth real-valued function and

o=1+K?|V F(x)| )"
Then,

(i) LotF @ = yif )
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(i) We denote by 'L the formal transposed operator of L. Then for any
positrve integer m, (*L)™u(x) 1s a sum of terms of the form

(35) ot fllK-mwa;»F(x)}K—*ﬂ‘agum,
where

2m=k<dm, k—2m=q=k—m,

(36) q
la| 21, Z‘iimléfﬁm, [Bl=m.

Proof. We use the same procedure as the proof of Lemma 2.5 in Asada-
Fujiwara [1, p. 331].

The identity (i) follows from definition of L and p.

To prove (ii) we note that

az,p"”:—mP"’““K‘?éaxkF-aljasz.
Then Leibniz’s rule shows that
‘Lu(x):p'zu(x)-i-zK""]X:zaxj(p"gasz(x)‘u(X))
= tuln)Hil=2)p K~ 33 0,00y F-02 02, Fo ()
1ot f:‘: aijF'u(xH-z'p‘?K‘z]é 90, F-00 0.

Thus *L is a linear combination of operators of the form

(37) pX

(38) p K0, ,F-0,,F0,0:,FX,
(39) pPK %% F X,

(40) K20, ;F-0,,.

Now we say that the term (35) is of the type (%, ¢, X&ila,l, |8]). Then
*Lu is a sum of terms of the types (2,0,0,0), (4 3,4,0), (2, 1,2, 0) and
(2,1,1,1). When we operate (37), (38) and (39) to a term (35) of the type
(k, ¢, Zla], 1 B]) once, the type of the resultant term increases by (2, 0, 0, 0),
4, 3,4,0) and (2, 1, 2, 0), respectively. Next we examine how the types change
when we operate an operator (40) to a term (35). Leibniz’s rule shows that

07K 0., -0 (ph+ TT K- 0P (x)- K~'#'98u(x))

= (=)o K 3300 F-0,,F-00,00,F 1T K 0P K P10u(x)
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q
o HK1G, FX S (II K"“v’&;’vF)K"lanK""#'aﬁﬂFx K818 (x)
n=1 \v¥Fun

70, P T 98 () X K0, (K 0u(x) .

The resultant terms under operations of (40) are a sum of terms the types of
which increase by (4, 3, 4, 0), (2, 1, 2, 0) and (2, 1, 1, 1). Consequently, when we
operate 'L to a term (35), the types of the resultant terms increase by (2, 0, 0, 0),
“4,3,4,0), (2,1,2,0) and (2, 1, 1, 1). We repeat the process; thus we have

(CLY"u(x)=> Cp~* Ii[lK“"»‘a;'VF(x)x K-"%198u(x).

Here the summation is taken all over non-negative integers 7, 2,, 25, 7, Such that
11+i2+i3+i4:7n. And

(ky q: Elavl’ Iﬂ]):h(zy 0; 0; 0)+22(47 3; 47 0)+l‘3(2) 11 27 0)+Z4(27 1) 1; 1)-

Then k, ¢, a,, 8 satisfy the condition (36). This completes the proof of Lemma 5.

Now using Lemmas 4 and 5 we obtain estimates for the integral kernel
functions H; . (x, y) and K, (& %), where t=(s, o) and t'=(s’, ¢’) are parame-
ters in R*XR".

ProprosITION 1. 1) For any non-negative integer m there exists a constant
Cy such that

41 | Hyo(x, ) Calalfn minldo), 20} %, 357

A A0)(x— (A0 —5)
(L0HA(0) 20" x—y )72

where X, is the characterisric function of the ball {x; |x|=r}. And the above
constant C,, is independent of x, y, t=(s, o) and t'=(s’, o’).
2) For any non-negative integer m there exists a constant C, such that

42) 1K, o€ 7 =Calal}, n min{20), A(0")Y “x,l(—mi_;—j(‘;):)

X (A(0) " (E—0 )X (A(a”)H(n—07))
(140%A(0)+A(a" )2 [E—n|B™® 7

where C,, is independent of x, y, t=(s, o) and t'=(s’, a’).

X

Proof. 1) We set
F(é: X, y):S(xy 5)“50’» 5)-
Then from (26) we have

43) Hoo(x, 9)={ 7€ mvax, 9.0, 45
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Let L be a partial differential operator of order |:

L=p"{1—i(A0) "+ ") ) NF(E, x, ¥)-Ve},
where
={14+(a) "+ A(o") ) B VF |22

Then we rewrite the right-hand side of (43) using the identity (i) of Lemma 5
and integrate by parts, and repeat the process; thus we have

(44) H, o (x, y)= S P& = V(Y a(x, Ear(y, D1dE,

where m is an arbitrary non-negative integer. Applying (ii) of Lemma 5 we see
that (*L)™(a.a, ) is a sum of terms of the form

45) Co™*(o) *+2a") )7 L 35+F-0(a,a0),

where
2m=kZdm, k—2m=qs=k-—m,

(46) al=1, = 3 lal<gtm, 1p1=m,
=3 el +181.

Leibniz’s rule and estimates (21) show that
(47) [0%(a.a, )| =Cslal, 5(Aa) 1 4Ac") 1) P

Estimates (31) of Lemma 4, (46) and (47) show that each term (45) is dominated
by

f} |0gF)| |0%(aca,)]
S A0) (@)D Qo) A(e) ) A

SCup *al} n=Cnp™al} n.

Thus,
(48) [CL)Y™a,a;)| ZCnp ™| al}, m.

When we apply estimates (48) and (29) of Lemma 4 to the right-hand side of
(44), considering the support of the integrand in it, we have

X (Ao )(x— )Xy (Aa’)y—s))
{1+0i(A(a) " +2(a") ) * x —y [} ™/

[He o(x, I=Crlall, m

X2 (A0)HE— o) (o) 0" dE

We note that
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(49) SRanl(Z(o)"(E— o (A(0") H(E—a")dE

=Cp -, min{4(0), A(a"}} ”Xr1<7(0(;;la(a")> :

Therefore we have

[Hi o (x, SCnrylalf, m min{a(e), A(a”)}"X:, 7_;,_)

X, (A(0)(x — )Xy (A(6)(y—5"))

KT Ay [

This proves the estimate (41).
2) Set G(x, &, p)=5S(x, £)—S(x, ») and

L=7"*{1—i(A(0)+A(c") NG -V},
where
= {1+(A(o)+ (") >V, G|} 72

Then integrating by parts in (28), we obtain

Koo (6, ,]):S w0 Lym(ar, Bay (x, 7)dx .

e
RT
By Lemma 5-2) and Leibniz’s rule we have the estimate
[CLY™(ax, E)ay(x, pHI=Crlalf, nt™™.

Thus, noting the support of the integrand and using the estimate (30) in Lemma 4
we have

Koo, MIS| [CDm@lE, Baw(x, 7)ldx

<C |G|2 Xr;(l(d)“l({:—0))Xﬁ1(,{(0/)_1(77_({‘,)2
=Un 0, m {1+5%(/Z(0')+/2(0-'))~2!$—_7]I2}m/z

x| e @)=, A6 x5 x

<Calal,w min o)™, 40742 (5o )
X (A(a) HE— o)Xy (A(a")H(p—0"))

{1+0%A(o)+ (e )2 [E—n 2™/ °
This completes the proof of Proposition 1.

Next we obtain the estimates of the L'-norms of H, .(x, y) and K, . (&, »)
with respect to the first and second variables, respectively.

X

PROPOSITION 2. 1) Let m be a non-negative integer. Set
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: N o—a’ s—s’
(50) hy(t, t')= Cn lalo ; mx”]( Ala)+A(e") )XTI< 2(A(a)*+A(a")? ) ’
(51) he(t, t)=Cnlal,, mxn(ﬁ;;ﬁ?f)

12 2(1(0)-51:-;@/)-1) )

o 1 m/4
{14380 0y s =517

and
h(t, t)=h,(t, t")+hyt, t').

Then we have the estimates

(52) SupS |Ho o(x, »)|dx=ht, ')
y JRT

and

(53) supl | Huo(x, )| dy=h(t, 1),

where the constant Cy, is independent of t=(s, o) and t'=(s’, a’).
2) For any positive integer m we set

s—¢’

" =8 N (. g—d'
(54) batt, )= Calalo (G55 3007 ok a3 2007)
(55) ky(t, t)=Cnlal,, mxr;(m%)
og—a’
) 1_"’1(2(1(0)“(0'))_)

{1+ 310+ A0 )2 0 =712}

and
k(ty z/): kl(ty t/)_'_ k2<t7 t,) N
Then we have the estimates

(56) sup| | Koo (& mIdE< b, 1
7 JR

and

57) sup| | Koo €, 1) dn=< ke, 1),

Here C,, 1s some constant independent of t=(s, a) and t'=(s’, o’).

COROLLARY OF PROPOSITION 2. e have the following estimates
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(58) [AAEN2=h(t, 1),
(59) (AFAL M=k, t).

Proof of Corollary. We apply Schur’s lemma. Thus the estimate (58) fol-
lows from (52) and (53). And the estimate (59) follows from (56) and (57).

Proof of Proposition 2. 1) We consider separately two cases:
(60) [s—s'|=2r(A(0) +4(a") ),
(61) |s—s"| =227 (A(a) ' +A(a") 7).

First we work out the case (60). Take m=0 in (41). Then

(62) [He o (x, )I=Clalf, o min{i(a), Ala")}"

og—a’ . ’ I
XU G PR 5= 0, 0 Ny =57

Integration of (60) in x yields
(62 [ HHe s 93 ZConnry a5 50 )-
We pass to the non-trivial case (61). We know from (41) that
Ae)|x—s|=r; and Aa")|y—s"| =7y

whenever (x, v) is in the support of H, ,. Therefore in the case of (61) we

have
[s=s"|Zls—x|+x—y[+ly—5]

Z(Ao) ' HAa" ) D+ [ x— v
é [s—s'|+x—y].
Thus,
1 p
(64) 7IS—SI§|x—y!.

Substitution of this inequality (64) into the right-hand side of (41) yields

(65) |Heotr, 9| Calal}, nmin{(o), )"
xrl(m)xﬁuwx S, (K03 =)
R (o eI

Then integration of (65) in x shows that
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(66) S [He o (x, p)|dx=Cnlalf, mxrl<m)

><{1+Zag(x<a>-l+z<a'>*)*l s—s’[z}_mz§ halt, 1)

Therefore (63) and (66) imply the desired estimate (52). By a similar argument
we have the estimate (53). This completes the proof of the part 1).

2) By an argument similar to the proof of the part 1) we know that the
statement 2) is valid.

PROPOSITION 3. 1) Let m be an arbitrary integer such that m>2n. Then
we have the estimate

(67) [ ol 0d1=Calals. m.

2) Let m be an arbitrary integer such that m>2n/(l—e¢). Then we have the
estimate

(68) [ et rdt=Calals .

Proof. 1) We note from (iii) in Corollary to Lemma 2 that C;'<2A(¢")/A(0)
<0G, in the support of A, and A,.

We first prove estimate (67) for h,. Since the characteristic function %,,(o)
is a monotone non-increasing function of |¢|, we dominate h,(¢, ¢') by

Clab. - 107 >X"(2<Cﬁs-;>;<0’>’l) '
Then

[ it 242=Conn als, X0 AV =Co iyl o
Next we prove (67) for h,. We bound h,(¢, ) from above :

hy(t, tY=Crlal,, mxrl(“(‘ﬁ(—g,‘)“)

-m/4

1
{14 L FA+CTY Ao 5= 51}

Therefore we have

fents, 1 =Cal el (o o= )

xS {1+—52(1+c—1>-21(o')2|s—s’|2}'"‘“ds
R 471 2 :

§Cm|a|o,m51‘ngm(l—l—|5[2)—m/4ds ,
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which is finite, independent of ¢’ if m>2n.

Thus (67) is proved for A=~h,+h,.

2) We know from (iii) in Corollary to Lemma 2 that C;'=<A(¢’)/A(c)=C, in
the support of k,. A similar argument shows that

ki, 1)=Colal,, oxrl((—cz—sl_)z%,—):;)xr,(‘2@;‘%%(;;7) .

Then we have
|ttt 1241=Conrlali .
The desired estimate (68) is proved for k;.

Next we prove (68) for k2,, We integrate (55) first with respect to s and
then to ¢, and we have

©) |kt )d1=Calalo,n
><Sﬂn{l—%-—i—(ﬁ(l(a)—i—l(a’))‘zlo—o’]2}_m“daSRnXT](T(0~):ST_1__—;(;,)f_—f)ds
(A) "+ do
L+ 3ote)+ 20 * 0= 1)

=Crnrlale,nl,,

We make use of the following lemma to handle the estimate of the right-
hand side of (69).

LEMMA 6. Let A(&) be a weight function of type ¢ (0=e<1). Then for any
positive number N=¢e/(1—e¢) there exists a constant Cy such that

(70) ——j((f;)) =Cy(1+ li(:g;i)”’

for any & and n in R™

Admitting Lemma 6 for the moment, we continue the proof of Proposition
3-2). We are searching for a bound for the right-hand side of (69). We divide
the right-hand side of (69) into two parts:

Ji=Cnlal S (X e)HAe))"de
e O ) aer=a (o) 1 e
(1oK@ ) oo’ 1}
(Ao) +Ae") Y da

144 0800) + 20— 1)

J=Culals,n|

1(0)21(0'){

First we work out J,.
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o Aoy "do
/1<C7n|d’() mmm{ 5}’ SR" {1+2(0./)~2,0._a/12}m/4 .

We use the inequality (70) in Lemma 6. If we take §=0¢" and » =0, then we
have

~ IO'—O'/ 2\ N/2
L -1 1 — —
Ho) " =Cuaa) (14 e ) N=e/l-e).
Then
Loy A(o")"do
’ < 2 o _ :
(70) Si= Cun mm{ 16 —0 }‘ lal, mSR” (14 2(a") 2| g —g’ |2)mit -l n)
. l -m /4 do-
écm mm{l, EB%} )dlo,mSRn'(“lT‘:WW.

If m>2n/(1—e¢), then m>2n(1+N). Hence (m/2)—nN>n. Therefore the right-
hand side of (71) is finite and independent of ¢’. Thus we have the estimate

]lécmlalo,m-

Next we consider f,. Since we know from Lemma 6 that

L - 1 7, lo—a’|}\¥e
Ty =0 7 )
we obtain the estimate that
lo—a’|* _ lg—o’|\N
L+ =c(1+ e )
Then
_ . L | ™ Ao’) "do -
Je=Cnlalo.n m‘“{l’ 16 5‘} Sm (1+4(0)2|a—a'|2)mi*
. L) ™/t Ao ) "do
écm mm{l, 16 —0 } | Cl]n,mSRn (1—{—2(0")'”0—0"2)"‘/‘7Rﬂi7’

X m/4 dO'
<Cpn mm{ ' 16 52} |a|o'mSRn Ao miaTor

which is finite and independent of ¢ if m>2n(N+1). Thus,
j2§cmlalo,m-
Hence we have the estimate

[ ponfestt, 2412114 1. =Culals .

We have proved Proposition 3, assuming Lemma 6.
Proof of Lemma 6. We take the basic weight function 1,(6) such that A(€)
=16)°. If |E—n]|=r (£, then we have, from Lemma 2, the estimates
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C'=28)/p=C

Thus it is clear that (70) is valid in this case.
If |é—n|=7Ai(é), then

[E 77' s/2(1-e) 2 2(1-¢g)\e/2(1~2)
(1) 2y
2 OR( 2 OA() 2 O A Al

Therefore in this case we also have the estimate (70). This completes the proof
of Lemma 6.

Now we have established Propositions 2 and 3 to apply the following lemma
formulated by Calder6n-Vaillancourt ([5]).

LEMMA 7. Let t—A, be a continuous function from R™ to bounded operators
on Hilbert space, and suppose that
14.=C,

IAAFIE=ht, t), [AFAL' =k, ¢),

where h(t, t') and k(t, t') satisfy the estimates
sup| At t)At=M, supl Kt t)dE=M.

Then for any compact set K in R™ we have the estimate

e

where the constant M is independent of K.

Proof. 1f A=SKA,dt, we have |A|*=|A*A| and more generally, by the

spectral theorem, |A|?™=|(A*A)™||. We expand in an integral and use the fact
that
IA¥A, - A¥n-1Asnll

=min {|AF 4| | Afn-1Aomll, IATIIAAT] | Agm -1 A1l Asmll}

Taking the geometric mean of the two estimates and noting that |A.,]|=C by
hypothesis, we obtain

Jarm =A< (Las e an gl 1 Ay At 1
K1 ALy Ay Ay 2

§cﬁ~jk<tl, E)h(ts, 1) h(tamsy fam-1)
Xk<t2m—ly tzm>dt1d[2 dtzm
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=CIK|M?®™,
where | K| is the volume of K. Hence,
IAI=(CIK|/M)"*"M ,
and letting m—oo we obtain ||A|<M.

PROPOSITION 4. Let A(§) be a weight function of type ¢ (0=e<1). Suppose
that a(x, &) is a symbol function in S°Q) and S(x, &) is a phase function. If
a(x, &) has compact support, then the Fourier integral operator A is L* bounded

and has the following estimate
[AfI=Crlale, =11,

where m is an integer such that m>2n/(1—e) and the constant C,, is independent
of the support of a(x, &).

Proof. From the inequality 1°) and the estimates in Propositions 2 and 3
we know that A, defined in (22) satisfies the conditions of Lemma 7 if a(x, &)
has compact support. Applying Lemma 7 we have the conclusion of Proposi-

tion 4.
Now it remains to prove Theorem 1 when a symbol function a(x, &) has

non compact support. To handle this case we make use of the following lemma.
LEMMA 8. If a(x, &) in S°R), then we have the estimate

(72) IAfI=Cnla lo,m\alZélm||<E>””'“‘gag(e”‘”’f(&))ll

Jor any function f in S(R™), where m 1s an integer such that m>n/(1—e).
Admitting Lemma 8 for the moment, we prove Theorem 1.

Proof of Theorem 1. Let aj;(x, §) be a bounded sequence in S°%4) which
converges to a symbol a(x, &) in the topology of S°4). And suppose that each
aj(x, & has compact support. Then for f in S(R™)

| A 1| Sliminf|(A—A,)f |+ liminf| A,/
§1irﬁ§wnf|a—flj|o,mIa§mi1<5>m+“”ea?(eis“”e’f(é))ll+li!]1121f Crlaslo, nlfl
=Cunlalo,nllfl.

We have proved the proof of Theorem 1, assuming Lemma 8.
Proof of Lemma 8. Set

Bg(x)=S neus<z,e)-s<o,$>)a(x' £)g(&)de.

R
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Then Af(x)=B(e*S® f(&). Hence if suffices to prove that the estimate

(73) 1Bgl=Culals.n 2 1™ 0¢g(&)]

ailsm

holds.
Let ¢, 0 (x, §) be a partition of unity in Lemma 3. For ¢’ in R* we set

0o ®=| 0. on(0, O)ds.

Then
(74) 1080, (&)| = CpA(&) ¥, (Aa")(E—a")).
Define
@) Buuo.ong(x)=| e 507500 a0 (x, O, (©g(ENdE .
Then we have
(76) Bg(x)ZSRnBu,a,qu(x)dsdado’.

Here we note that (75) is of the form similar to H 4. 0,00)(x, 0).
Let L, be a partial differential operator of order 1:

Ly=p* {1—i(A(0)"+A(a")")*V(S(x, £)—5(0, &))-Ve},
where
o= {1+(A(a) "+ A(c") ) *[V(S(x, £§)—S(0, )22

Then integration by parts in (75) yields that

B(s,o.mg(x)zg et S@O=SOINEL )™ (s, 00(x, E)por (E)g(E))dE .

Rn
By a similar argument in the proof of Proposition 1 we obtain the estimate
I B(s,o, U’)g(x)l écm ; alo, mXTI(Z(G)(x—s))

S X, (A(0)H(E—=0))Xr (A(a") H(E—0"))
rr {14-0%A(a)*+A(a") 1) 2| x| ™2

X ‘ﬁéml(ti’)'ﬁ'aé(soa'(é)g(é))l dg.

We set N
]_[(s, s, 0n(%, &=Cyulal 0, mXTI(Z(O')(x——S))
X X (A(0) M (E—a))X (Aa’) H(E—0a”))
{14+0%A(a) - A(a") )2 x| B} ™2
and

Col@)= 3 Ao")* |08po @g(EN].
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Then
an | Besso,w 8 S| Hrs (3, G (@)

By a similar argument in the proof of Propositions 2 and 3 there exists a posi-
tive function A(s, o, ¢’) such that

78) [, Hco.o(x, ©dx=Culaly, whls, 0, 69,
9 [ o0, 914E=Calaly ni(s, 0, 0"
and
(30) | poufiCs, 0, hdsdo=C,

R2n

where m is an arbitrary integer such that m>n/(1—e). By Schur’s lemma and
(77), (78) and (79) we have

”B(s, 7, zr’)g” écm ! a l 0, m};(sy ag, 0'/)”60'(0')” .
Then by Minkowski’s inequality and (80) we have

1BgI= . 1 Bar. o gldsdads’
=Cnlal,, ’”Smnﬁ(s’ o, )G, (&)|dsdedo’

<Culals, |, |G ©ldo".
[f |£E—0’|<rA(¢’), then Corollary to Lemma 2 implies
C'=A8)/Aa")=C,y.

Hence we have the estimate

e 1HAEIE
C'= 1_}_1(0./)—2'0./‘2 =C

on the support of G,.(§). Then
et |G @ldo=cal araon 1o
XI(L+2E1§197G | do.

By Leibniz’s rule and (74) we obtain the estimate
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(82) IA+AE)21E1™ 3G, ()]

_S_leﬂémll(l+l(5)'2 [§1%)™22(8)" P! | 0% (E)gEN ]
écmmém HéﬁII(H—Z(S)“‘ISI2)’”/22(@'3' 10kpq (&)1105g(E)]

Cn X 2 IA+AE)2EH™22E) " 2@ |

1B1sm 10118

SCn 3 IKO™ (38211

A

And from Lemma 6 we have the estimate
(83) Skn(1+1(a/)’zl0’|2)"”’2d0’§Cm,,SSM(1+Z(0)“‘|a/l“)‘“‘“”"'/zdo’,

which is finite if m>n/(1—e¢). Hence from (81), (82) and (83) we have the
estimate

SRnIIGaI(S)Ild0’§C,n1ﬁ%leEV““ﬂ' |0&g(&)1]l.
Thus,
”Bguécm|alo,m]ﬁ|z§) <&>mr=1B1198g(8)]) .

This completes the proof of Lemma 8 and the proof of Theorem .
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