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ON THE CONSTRUCTION OF LINEARLY INDEPENDENT
VECTORS WITH VARIABLE COMPONENTS

BY YOSHIKAZU HIRASAWA

§1. Introduction.

We use the same notations as in a previous paper [1]. Let J be a closed
interval [7, 0]={t|r=t<d, t=R}. Let C#(J, C) denote the totality of complex-
valued functions defined and of class C# on J (¢=0, 1, ---, o). Hereafter we fix
some .

For the sake of brevity, we denote C#(J, C) by K(J), and K(J)"* by M(J):

M()={f()=col(f1(t), fo(t), -, faDIfsDEK(]), j=1, 2, -+, n}.
Let X(¢) be an nXh matrix whose components all belong to K(J):

x0(t) x12() - x18(8)
(L1 X(t)= xz:l(t) xzzz(t) xzzh(t)

xnl(t) xnz(t) xnh(t)
where /1 is an integer such that 1<h=<n—1, and suppose that a condition
(1.2) rank X()=h

is satisfied on J.
The first purpose of this paper is to prove the following theorem :

THEOREM 1. Let X(t) be the nXh matrix given above and satisfying the
condition (1.2) on J. Then there exists a vector y(t)sM(J) such that

{rank yt)=1 on J,
rank(X(®), y@)=h-+1 on ]J.

(1.3)

As a corollary of Theorem 1, we obtain immediately the following theorem :

THEOREM 2. Let X(t) be the nXh matrix given above and satisjying the
condition (1.2) on J. Then there exists an nX(n—h) matrix Y (¢) whose components
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ail belong to K(J):

Vi, ne1l) Vi nea(®) - y1a(D)
(1.4) Y= Vo, nir(l) Vo, naalt) 0 YanlD)

Vo w41 Vanae(t) - Vaall)

such that
rank Y(t)=n—h on J,

(1.5) {
rank (X@), Y(#))=n on J.

Now, let I be a closed interval [a, fl={t|a={=p3, t=R} and let B(t) be a
square matrix of degree n whose components all belong to K):

bys(t) bya(t) -+ byn(t)
(1.6) B(t)= b2:1(t) bZ:Z(t) bzr:(t)

baslt) bus®)- ban®)
We assume that for a positive integer s: 2=<s=n—1, a condition
(1.7 rank B(f)=n—s(=r)
is satisfied on I, and consider a linear equation
(1.8) BWf(t)y=0 on I; fit)eMd).
We denote the totality of solutions of (1.8) by W(I):
Wh={f)eM)|BH)f(t)=o0 on I}.

Then, we know that there exist s vectors x,;(f), x.(f), ---, x;(t) belonging to
W(I), such that
rank (x,(t), x,(t), -+, xs{@)=s on I.

For the proof of this fact, see, for example, the proof of Theorem in the
previous paper [1].
The second purpose of this paper is to prove the following theorem :

THEOREM 3. Let x,(t), x,(t), -, x5 (t) be s’ prescribed vectors belonging to
W) and satisfying a condition

(1.9 rank (x,(t), x,(1), -+, x, (®)=s" on I,

where s’ is a positive integer such that 1=s’<s.
Then there exist (s—s’) vectors Ys 1), Ysiiat), —-, yslt) belonging to W)
and satisfying conditions



36 YOSHIKAZU HIRASAWA

rank (g 41(), -+, Ys@)=s—s" on I,
(1.10) {

rank (x,(8), -+, X5 @), Y5 1), -+, Ys))=s on I.

In general, we denote a minor of degree » of the matrix B(f) which is given
by (1.6), by
by, bja,(t) o bye, (B
Jv Je T\ | Dsr () Dy, o by, ()
B k)= : :
b)) by ory(8) -+ by, (D)
(léjl LJo < oo <jr§n)
1Sk <k, < oo <k ZEn/’
and then, a minor of degree i of the nXh matrix X(¢) which is given by (1.1).
is especially denoted by
xkll(t> Xklz(t) xklh(t)
Ry Ryt R\ | X i) Xape(t) - xkzh(t)
X(l 2 h >— : : :
Fap1l) Xppalt) - X pya(t)

=k <ky<--<kpZn).

In §2, we shall give two lemmas which will be used for the proof of Theo-
rem 1, and in §3, we shall prove Theorem 1.

In §4, we shall give a summary of the matters which are necessary for the
proof of Theorem 3, and in §§5-6, we shall prove Theorem 3.

§2. Lemmas.

LEMMA 1. Let [, be a closed interval [Y,, 6o]1={t|7.=t=<d,, tR} and let
o) (=1, 2, -, 7o) be a finite number of real-valued continuous functions defined
on Jo. Then there exists a closed interval J*=[y*, 6*] contained in J,, such that
each of ¢t) (v=1, 2, ---, 7o) 7s one-signed or identically equal to zero on J*
respectively.

Proof. Put
EP={elle)>0}, EP={te]ile.@)<0},
Ev={teolo(t)=0}.

Then, EP, EXL and E{ are disjoint with each other and EPUEXPUE
=J,. E{ and E® are relatively open on J,. Therefore, if EPX+@ or EQ#@,
we can find a closed interval J¥=[7¥, 0¥1C/, such that ¢,(#)>0 or ¢,()<0 on
JE If EP=¢@ and EX =g, we see ¢,()=0 on J¥=/,.

By repeating the process just described, for the interval /¥ and the functions
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ot) (t=2, 3, -+, 7o) successively, we obtain the desired interval J*=[7*, o*].

Now, for any value {,€R, we put
0 for t<t,,

e.(t; to):{ 1
exp{— (t——to)“’} for ¢> to;

1
e_(t; to): exp{— m} for t<ty,
0 for t=t,,

and for any values #;, ;R such that ¢,<t,, we put

0 for t<t,,
1 1
e(t;ty, ty)= exp{— =i — (t—tz)z} for 1, <t<t,,
] 0 for t=t,.

Then we see that the functions e.(t;t,), e-(i;t,) and e(t;t,, t,) belong to
C=(R, R).

Next, let J,=(ry, 0,) and J,=(r,, 0,) be open intervals on R such that
71<72<0,<0s. _ _

Furthermore let 6(t) and w(t) be functions belonging to K(/;) and to K(J,)
respectively, such that each of 6.,(&) (=Re @), 0 (=Im @), wsn@)
(=Rew(?)) and v (f) (=Imw(t)) is one-signed or identically equal to zero on
jlmjzztrm 51]-

Under these circumstances, we shall prove the following lemma :

LEMMA 2. Let
f(t):(cl+idl)e(t 371 04); i=+/—1 s

where ¢, and d, are real non-zero constants. Then, there exist two real non-zero
constants ¢, and d, such that a function

gt)=(c.+ids)et; 15 0s)
satisfies conditions

2.1 g)—w@®) f)#0 on Jo=(rs, 02),
and
2.2) fO—0)gt)#0 on Ji=(r1, 0,).

Proof. We, at the beginning, take note of the fact that the functions
0@, 04H@), on#) and wy(t) are continuous and bounded on the interval
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jlmjzz[rz, 0,1
Let us put

fo@=Re ft), [fo@)=Im (), gn{t)=Regl), guwt)=Img).

We show first that by choosing either ¢, or d, suitably, we can make the

function g(¢) satisfy the condition (2.1).
Since o(t)f()=0 on the interval [d,, d,), we have only to determine the non-
zero constants ¢, and d,, such that the condition (2.1) is satisfied on the interval

JiN Jo=(rs, 0,) instead of [,
For the determination of the constants ¢, and d, we shall distinguish four

cases, according to the values of w,(t) and w, () on [N J,:

Case I-(i) w(®)=0 on JiNJ. o
Case I-(ii) wr(®)#0 and wu,(O=0 on i/,
Case I-(ili) @ (®)=0 and @, ®)=#0 on /;N/,
Case I-(iv) on®)#0 and 0@ #0 on JiNJe.

In Case I-(i), the condition (2.1) is satisfied for all non-zero values of ¢, and

d,, because we have w(t)f(t)=0 on J,.
In Case I-(ii), since

Re o) f(t) =0 ) f ) =cwm®)et; 71, 6) on iN]s;
Imo)fO)=0n®)f wE)=dwmnt)el; T, 6,) on jlmjzy

the condition (2.1) is satisfied, _if we choose either the constant ¢, with the
opposite sign to c;w(t) on [N J, or the constant d, with the opposite sign to

diwn(@) on JiN Je.
In Case I-(iii), since

Reo(t)f(t)=—0wt)[ wt)=—dwo,Oel; 1, 6) on iNJs;
Imo®)f(H)=ww,®)f mt)=ciwu®)elt; 71, 01) on jlmjzy

the condition (2.1) is satisfied, if we choose either the constant ¢, with the
opposite sign to —diw,(t) on /i [, or the constant d, with the opposite sign

to ciw () on JiN Ja.
In Case I-(iv), we have

Re w(t) /() =w /() f () =@y (1) f (1)
={cwnt)—dww®}elt; 7, 0;) on jlﬂjz >
Imwt /t)=wm®)f w®+ound)f e

={dwn®)Faown®let;r, 6) on JiN .
Since
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{e0n )} {—d o1} =—c1d 1w Oon®#0 on N
{dlw(r)(t)} . {Clw(i)(t)} =cyd 0, (H)w ) (1) #0 on jlmjb

one of these two products has the positive sign. Therefore the two factors
0 (t) and —d,0u) (), or diwr () and c;0,»(f) in the above product which has
the positive sign, have the same sign as each other on /;N\/,. Hence, one of
Re w(t)f(t) and Im w(t)f(¢) has the definite sign on ey

If Rew(t)f(t) has the definite sign on jlf\ jz, then we choose the constant ¢,
with the opposite sign to Rew(?)f() on JinJe. If Imw(t)f(®) has the definite
sign on JiN ]2, then we choose the constant d, with the opposite sign to
Im w()f(t) on JiN /s

The procedure stated above, means that by choosing suitably one of the
constants ¢, and d, in all cases, we can make the condition (2.1) be satisfied.

Next, under the circumstances that the condition (2.1) has been satisfied by
determining suitably one of the constants ¢, and d, we shall show that we can
choose the other of them so that the condition (2.2) is satisfied.

Since f(#)#0 on the interval J;=(ry, d;) and 60()g(/)=0 on the interval
(r1, 72 for all non-zero values of ¢, and d, we have only to determine the
non-zero constants ¢, and d, so that the condition (2, 2) is satisfied on the
interval J;N\ J,=(7,, 0,) instead of J..

For the accomplishment of our purpose, we shall distinguish four cases,
according to the values of #.,(¢) and 6 (t) on ]1/\]2

Case 1I-(i) 6®)=0 on NS, o
Case II-(ii) 0 ()#0 and 0, ®)=0 on /iN/,
Case II-(ii) 0 #)=0 and 0, (#)+0 on ]_J\j_'z,
Case II-(iv) 8 ®)+#0 and 0, @) +=0 on JiN /..

In Case II-(i), we have 6(t)g(t)=0 on JinJ, for all non-zero values of c,
and d, and further f(#)#0 on J,. Hence the condition (2.2) is satisfied for all
non-zero values of ¢, and d,.

In Case II-(ii), we have

Re 0@)g(t)=0 (t)g in(t)=cs0 o (De(t ; 75, 82)  on JiN\Js;
Im 0(1)g(t)=0 o (g i () =d 0 s (D)e(t ; 75, 82) 0on [y L.

Although one of the constants ¢, and d, is already fixed in Cases I-(i)~I-(iv),
if we choose the other of them so that either

“ 50 »(t) has the opposite sign to ¢; on jlﬂjg )
or
“d,0 . (t) has the opposite sign to d, on /;,N\J,”,

then the condition (2.2) is satisfied.
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In Case II-(iii), since

Re 0(t)g(t)=—0,(\)g »(t)=—d20 & (t)e(t ; T2, 62) on JiNJs;

Im 0(1)g(1)=0 (1) g oy (V=020 iy De(t ; T2, 82) on in,,

we have only to determine one of the constants ¢, and d, so that either

“_—d,0 () has the opposite sign to ¢, on JiNJ,”,

or
“¢,0 () has the opposite sign to d; on /N J,”.

In Case II-(iv), we have
Re 0()g®)=0n)g ) — 0w ®)g w ()
={cl () —dob (D} et 5 72 02) ;5
Im 0(1)g)=0 (g )+ 0 i, ()g (1)
={d:0 O+ 20 O} elt; 73, 0) -

Although one of the constants ¢, and d, is already fixed in Cases I-(i)~
I-(iv), we can choose the other of them so that either

“ 0,0 oy (t)—d40 (1) has the opposite sign to ¢; on /i J,”,

or
“dol oy (#)+ca0 3y (2) has the opposite sign to d, on /i /[, .

By means of this choice, the condition (2.2) is satisfied.
Thus this lemma has been completely proved.

Remark 1. Replacing f(t)=(c,+id,)e(t; 1y, 01) by
F)=(e1,t+idye-(t; 0,),
we obtain a result similar to Lemma 2.
Remark 2. Replacing g(t)=(c,+id,)e(t; 14, 05) by
g)=(c,tids)es(t; 12,

we obtain a result similar to Lemma 2.

§3. Proof of Theorem 1.

We can form, by assumption, a set {/,}¢, of intervals possessing the fol-
lowing properties :
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o

(1) JJ=J;
(ii) f1:[7’1, 51),- ]:OZ(TW 550]) 71=7, 61025; jz:O’u 5:) (‘:2, 3; ) [0_'1);
(i) JNJ#D (=L 2, -, =1, JNJ.=@ (+1<, =1, 2, -, —1),

that iS, r1<rz<51<"'<7;<5,_1<rz+1<5,<"'<5{0—2<T;0<510—1<5,0

(=2, 3, -+, ©v—1);

(iv) For each J,, there exists a minor of degree h of X(¢) which does not

vanish on J,.
ky kz"'kh)

We consider first the intervals J; and J,, and choose two minors X( 12

and X(nfl 7721272") of degree h of X(¢) such that a condition
3.1 X(kll ?:::fl”);to

is satisfied on J; and a condition

(3.2) x(7 )0

is satisfied on J,.

We define an (n—h)-tuple (khiy, khis, oo+, kn) for 15k, <by< oo <kp=n in
such a way that 1=k} <Bhio< - <kp=<n and {ky, -, kn, khey, -+, k0t =
{1, 2, ---, n}. Thatis, ky<k,< -+ <k and khy 1 <khi,< -+ <kp form a com-
plete system of indices {1, 2, ---, n}. An (n—h)-tuple (mphsy, Mhss, ==+, My) IS
also defined for 1=m,<m,< :-- <m,=n in the same manner.

We put

£, (0=(00 iO), Tayold), o, xun®)  (p=12 o, ),
£, (D=(ayn®), Xaad), , Xagn®)  (@=h+L, ht2, o, ),
£ (=m0, Tuyold), -, Xmpn®) (0=1,2, =, h),

£, (=@, Xmrs®), o, Tmald) (0=h+1, h42, -, ).

Then it follows from the conditions (3.1) and (3.2), that there exist functions
0,0@) (0=1,2, -, h; o=h+1, h+2, ---, n) belonging to K(/;) and functions
W) (p=1, 2, -+, h; o=h+1, h-+2, ---, n) belonging to K(J,), such that

(3.3) £1,0= 3 00,0%4,0) (6=h+L, h+2, -, n) on J,
and
(3.4) S (0= B 00p0%, (0 (@=h+1, h+2, -, 1) on ],

The first step.
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We determine a vector y(t)=col(y,(t), v,(), -, y.(t)) on ], in the following
manner.

Concerning the component y #5,(8), we put

Vi, O=(citide-(t;6,); i=v—1I,

where ¢; and d, are arbitrary real non-zero constants. As a matter of fact, it
suffices for our present purpose that at least, any one of the constants ¢, and d,
is not equal to zero. However, we take the constants ¢; and d; which are both
non-zero for the sake of generality.

Concerning the other components of y(f), we put

ykp(z,‘)EO on J (p=1, =, h) and y (=0 on J (6=h+2, -, n).
Then, in virtue of the fact that y,,  ()#0 on J, and the condition (3.1) is
satisfied on ]-1, we see
rank y(t)=1 on J, and rank (X(), y(#)=h-+1 on J,.

The second step.
We shall next construct a vector y(t), so that we have

{ rank y(#)=1 on /;\UJ,;

rank (X(@), y@))=h-+1 on J}\UJ,.

For the construction of y() on J,\UJ,, we shall distinguish three cases,
according to the relation between the indices (k,, -+, kn, Rh+1, =+, k7) and
(M, =+, Mp, Mheq, ==, Mp) -

Case S-(i) There exists an index o(1) such that A+1=c(1)=n, miqyy=Fh1.

Case S-(ii) There exist two indices p(1) and ¢(2) such that

1=p(D)=h, myqy=Fkhy; and h+1=0(2)=n, mh=kse.

(3.5)

Case S-(iii) There exist two indices p(1) and p(2) such that
1=p()=h, mp(l):k;1+1 and 1=2p@2)=h, M=k, -

In Case S-(i), we modify the component ym, , (t) (Zy,.,(t)) determined at
the first step, in the following way :

Iy @) (E 3y )= (erFid et 5 55),

and we leave the other components of y(i) as they are.

Then we have the condition (3.5).

In Cases S-(ii) and S-(iii), we must treat the function @444,,0 (¢ which
appears in the relation (3.3), and the function w41, ,, () which appears in the
relation (3.4).

If we put )

0h+1,p(z)(t):@1(t)+i¢1(t); S01(t); ¢1(t)ec‘u(./1; R),

Ons1, oy ) =) F1ha(t) 5 ©05(F), ¢2(t)ECF‘(]_2 ;R),
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then, in virtue of Lemma 1, we can choose a closed subinterval [y¥, of] of the
interval [, 0,1, such that each of the functions ¢,(t), ¢i(t), ¢.(t) and ¢,(t) is
one-signed or identically equal to zero on the interval [y¥, o¥1.

Replacing 7, and d, by r¥ and Jf, we can assume, without loss of generality,
that each of the functions ¢(t), ¢.(t), @s(¢) and ¢,(t) is one-signed or identically
equal to zero on the interval [y, 6,]. On this occasion, we must modify addi-
tionally the functions e_(¢; d,) and e(t; s, 0s).

In Case S-(ii), we can determine, in virtue of Lemma 2, two real non-zero
constants ¢, and d, so that the function

Ymp O =(cstids)elt; 13, 02)
satisfles a condition
(3.6) Yy = Wri1 0OV ey, (OF0 on Js.
Concerning the other components of y(¢), we put
I, (=0 on J=Ji (p=1,2, -, h),
Ym, =0 on J—J (6=h+2, -+, n).
Then we can verify that the condition (3.5) is satisfied, in the following way :
By the same reasoning as in the first step, we first obtain
rank y(t)=1 on J; and rank (X(#), y(t))=h--1 on J,.

We next consider the vector y(t) and the matrix (X(¢), y(¢)) on the interval J,.
We easily get rank y(t)=1 on J,, in virtue of the fact that Yms, ., F0 o0 Ja.

Furthermore, making use of the relation (3.4) and the condition (3.6), and
putting

ymh+l(t>:ym}l+l(t)_w)L+l, p(l)([))’k;l+1(t) ’

we can transform the matrix (X(¢), y(z)) on J,, by means of elementary operations,
in the following manner :

[ & (D) 0
Loy Ym ey (@)
(X@, y) —>| Zu,®) 0

L) Yoy, @

0

-f:m’n(t) 0



44 YOSHIKAZU HIRASAWA

£,y () 0 £ny®) 0
’emp(l)(t) ymp(l)(t) ’Qmp(l)(t)
Xy (D) 0 L (0) 0
—_— -
o Impa) 0 Fmyy,®
0 —Wnyo, p(l)(t)ymp(l)(t) o 0
o *‘wn,,ou)(t)ympu)(t) o 0

Therefore we obtain the condition (3.5), in virtue of the condition (3.6).
In Case S-(iii), we can determine, in virtue of Lemma 2, two real non-zero
constants ¢, and d, so that the function

Yy )=(catids)e(t ; 12, 02)

satisfies a condition
(3.7) yk',H_l(t)_ahﬂ,p<2)(t)ym'h+1(t)'+"0 on J;

and the condition (3.6).

Further we define the other components of y(¢) in the same way as in Case
S-(ii).

On this occasion, we can prove the condition

rank y()=1 on J, and rank (X(@), y@)=h+1 on J,

on the same lines as in Case S-(ii).
We wish next to verify that

rank y(t)=1 on J; and rank (X(), y@t))=h+1 on J.

We easily see rank y(t)=1 on J,, because y,, (£)+0 on Ji.
Moreover, taking the relation (3.3) and the condition (3.7) into account and
putting
I O=2r,, = Ons1, 0 5O Y ms, (@),

we can transform the matrix (X(#), y(#)) on J;, by means of elementary operations,
in the following manner :
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£0,(0) 0
-f:kp(gy(t) ym'h_H(t)
£0,() 0

(X@), y@) —
£ip® Yy, O

0

£, (1) 0
£, 0 F (1) 0
fckp:(z)(t) ym',iﬂ(t) X ,:m(t) ‘
J‘ck;(t) 0 ;ek;L<z) 0

— —
0 LTPN0) o .0

0 —Onis o Ymy,, @) 0
o —ﬁn‘p@g;mfhﬂ(t) ] 0

Hence we obtain the condition (3.5), in virtue of the condition (3.7).

By repeating the process employed above for each pair {/,, J.+:}
(¢=1, 2, -+, ¢,—1) of intervals, we get the desired vector y(t)=col(y,(t), v.(t), -+,
v.(1)) satisfying the condition (1.3).

In the accomplishment of this proof, we must examine which of Casess S-(i)
~S-(iii) occurs, and if necessary, we choose the interval [, 7¥] corresponding
to the interval [0F, 7¥] taken at the begining of the consideration for Cases S-(ii)
and S-(iii), and we must adopt ¢}, and y¥ anew for d,4; and 7..

Furthermore we use the functions e(t; 7., d,) for J, (¢=2, 3, -+, ¢(,c—1), e-(¢; d,)
for J, and e.(t, 7., for J.,.

§4. Summary about solutions of a linear matrix equation.

In this section, we shall summarize the matters which are used for the proof
of Theorem 3.

Let I, and I, be two intervals such that I,=[a,, $8:) or I,=(a;, B,), and
Iy=(as, B:) or I,=(as, B:] and further a;<a,<B;< B

Let B(¢) be the square matrix of degree n, which is given in §1. Assume
that for a positive integer s: 2<s=<n—1, the condition (1.7) is satisfied on /,\U],
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and further that a condition

@1 B( Z g - g:)io

is satisfied on I, and a condition

4.2) B(" B e

My My e My
is satisfied on /.

We define an (n—r)-tuple (kiiq, kiyy, =+, ky) for 1=k <k, < - <k,=Z=n in
such a way that 1§k;+1<k;—+2< <k;,§n and {kl, Tty kr, k,’r+1, tety, k;l}':
{1, 2, .-, n}. An (n—r)-tuple (mpyy, My, -, my) is also defined for 1=m,<m,
< - <m,=n in the same way.

L_et us consider an n Xs; matrix (1=<s,<s) P(t) whose components all belong
to K(I,):

.bu(t> 15120) plsl(t)
P(l>: pz:l(t) pzzz(t) Pz:sl(t) ,
pnl(t) pnz(t) pnsl(t)
and put
ﬁkp(t):(pkpl(t)) pkpz(t), Ty Pkpsl(t» (P:L 2: Tty 7’),

Dr )=(pr1(8), prro(t), =+, prs,(1) (6=r+1, r+2, -, n).

Then, in virtue of Cramer’s rule, we recall the following fact.
The matrix P(¢) satisfies a linear equation

4.3) Bt)P(t)=0

on I, if and only if the vectors p p(t) (p=1, 2, ---, r) can be represented as
linear combinations of the vectors p; (t) (c=r+1, r+2, ---, n):

(4.4) ﬁkp(t)zaiﬂspo(t)ﬁkva(t) (0=1,2, -, 7)

with coefficients &,,(¢) which belong to K(f 1) and are expressed by

B, Ji Jaerr gy
(14.5) Eoalt)=— M s )
B S

where
-th column

o-
bhk;[(t) bj1k2<) lek (t) Jlk (t)
Bm(éi g:é:): bfzfjl(t) bj2k2:(t) 2;:”(t) ikr(t) .

bjpay () byey@) by @) by e, ()



ON THE CONSTRUCTION OF LINEARLY INDEPENDENT VECTORS 47

Therefore, we obtain the following proposition :

PROPOSITION 1. Let B(t) be the matrix given in § l_and let P(t) be an nxs,
matrix (1=5,=s), whose components all belong to K(I,) and which satisfies the

equation (4.3) on I,. Then a condition
rank P(t)=s,
is satisfied on I, if and only if a condition

J0
rank : =5,
Dy (1)
is satisfied on 1—1.

_Let us next consider an nXs; matrix Q(t) whose components all belong to
K(,):
911(t) []12(t> Q1sl(t)

Q)= @oa(t) gaa(t) - (]231(1)

’

in(t> Qn2(t) Qnsl(t)
and put

‘imp(t):((]mpx(t), (]mpz(t); Ty Qmpsl(f)) (,0:1, 2) Ty 7’),
e, O=(Gmn®), Gmred)s =, Guyer®) (0=7+1, 742, =, n).

Then, on the same ground as for P(f), we know the following fact.
The matrix Q(¢) satisfies a linear equation

(4.6) B1HQH=0

on [, if and only if the vectors dmo(t) (p=1, 2, -, r) can be represented as
linear combinations of the vectors g, (f) (¢=r+1, r+2, -+, n):

“.7) qmp(t):,gﬂﬂpﬂ(”‘fm;(’f) (0=1,2, -, 7)
with coefficients %,,(t) which belong to K(I,) and are expressed by

Lol Iy
A e

(4.8) 77,00(1):-— 11 12 . lr U:7+1, 7""‘2, e n
5( )
My Mg~ My

where
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p-th column

bim, (&) bim,(t) - bllm (&) -+ biym, (1)
B (11 ly o lr)___ biymy () biymy(t) =+ brymy (&) =+ biym (2)
Ny my - my : : : :

bl,ml(t) blrmz(t) bl,—m’a(t) blrmr(t)

In this case, we get also, for Q(f), a proposition similar to Proposition 1.
Concerning the relation between the matrices P(t) and Q(¢), we have the
following lemma :

LEMMA 3. Let B(i) be the matrix given in §1. Let P(t) and Q(t) be the
nXs matrices—that is, si=s—, which are given above and satisfy the equation
(4.3) on I, and the equation (4.6) on I, respectively. Suppose further that conditions

rank P(t)=s and rank Q(t)=s

are satisfied on I, and on I, respectively.
Then there exists a square matrix C(t) of degree s such that

(I) Every component of C(t) belongs to KU,NI);
(I) rankC@)=s on Ilﬂlz,
(M) PO=Q®CE) on I,NI,.

For the proof of this lemma, see the proof of Lemma 2 in the previous
paper [1].

§5. Proof of Theorem 3.
Let X(¢) denote the matrix:
X(6)=(x,(8), x5(2), -+, X (1)),

where x,(t)=col(x,(), x::(1), =, x2:() (=1, 2, ---, s’) are s’ prescribed vectors
belonging to W({).

Now, by assumption, we can choose a set {I,}%, of intervals possessing the
following properties :

Ko
(i) 1=x=U1[,c;
(ll) [1:[01, ‘81): ]Koz(axor ,8/:0]’ a,=a, ‘BIC():‘B)
I=(a, B) k=2, 3, -+, ko—1);
(iii) I\ 1 7@ (&=1, 2, -, k,—1),
IN[L. =0 k+1<k’, k=1, 2, .-+, £,—2),
that is, a3 <a, <1< << Pe-1< U1 <P o0 < Prpm2 <y < Brg-1< By
(=2, 3, -+, ko—1);
(iv) For each I,, there exists a minor of degree » of B(f) which does not
vanish on the closure I, of I,.
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For the details about the existence of such a set {I,}%, of intervals, see the
proof of Theorem in the previous paper [17.

Let us assume that a condition

5.1) B(Zigi::ijio

is satisfied on /,, and a condition

b by 4y
ny Mg+ My

5.2) B( )¢0

is satisfied on I,.

We h(_ere remark that we are able, without loss of generality, to take the
closures /;=[a;, B;] and L=[a,, B2] of I, and I, for the conditions (5.1) and
(5.2), instead of I, and I, which were taken for the similar conditions in the
proof of Theorem in the previous paper [1].

We put
-flep(f)z(xkpl(l‘), kaz(f), ey xkps'(t)) (0=1, 2, -, 1),

L, (=(x41(8), Xpro(®), oo, x40 (®) (o=r+1, r+2, -, n)

Then, in virtue of the conditions (1.7) and (5.1), the vectors X, p(t)
(0=1,2,:-,7) can be represented as combinations of the vectors £, (t)

(e=r+1, r+2, -+, n):
(5.3) £,0=_ % &,00%,0) (0=1,2 1),

where &,,(t) are the same as in the linear combinations (4.4).
Furthermore, it follows from the condition (1.9) and Proposition 1 given in
§4, that
£y (0 _
(5.4) rank : =s’ on I,
X (B)
The condition (5.4) and Theorem 2 imply, therefore, that there exist vectors
§.,(t) (o=r+1, r+2, ---, n) such that
Ju, )= y,511@), Yrysast), =, YarsD);

Vi sOEKT) (g=s"+1, s'+2, -, 55 o=r+1, r+2, =, n),
and 70 i
(5.5) rank : =s—s’ on [,

g,
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and

Fhpy ) Trypy ]
(5.6) rank : : =s on I,

a

Xp @) Gy (1)
Further, we define vectors

G (D= psr01(0), Vi poralt), =) Vo)) (p=1, 2, -+, 7)
by means of

B, 0= &84,
where £,,(t) are the same as in the linear combinations (4.4), and we put
5.7) { be,0)=(%e, (0, &, @) (p=1,2, -, 7),
D, )=Xp (D), o, (D) (o=7r+1,7+2, -, n).

Rearranging the rows of the matrix :

D, (1)
. B, @)
P(t)=
) J0))
) 0
in the original order :
bi(?)
(5.8) PO=|  |=XW®), Y®),
Bt
X,(8) 0:(t)
Xt)= : , Y= )
(1) 7.
we have
(5.9) rank P®()=s on I,
and
(5.10) BOP®()=0 on I,

Next we consider the vectors x,(1), x,(), -+, x5() on I,
If we put

-fmp(t):(xmpla)’ xmp2(t>y tt xmps'(t)) (,021; 2; ) 7’);
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i’m’a@):(xm’gl(t); xmyqzo)) Tty XTVL',,S’(Z)) (0':7'fl, 7’+2y ) "‘)’

then, in virtue of the condition (5.2), the vectors X, p(t) {(p=1,2, -+, r) can be
represented as linear combinations of the vectors £, () (6=r=+1, 7+2, -, n):

(5.11) $n,00=_3 1000%n, @ (0=1,2, -, 1)

where 7,.(t) are the same as in the linear combinations (4.7).
By the same reasoning as for the condition (5.4), we have

£ "‘4—+1(t)
rank : =s
£y (1)

’

on I,
Therefore, it follows from Theorem 2, that there exist vectors £, (1)
(6=r-1, r=2, ---, n) such that

fm’o(t):(zmgs'ﬂ(t)y Zm’as'-kz(t), Y Zm’gs<t>>;

Zn s OEKT) (g=s'+1, S'42, -, s; o=r+1, r+2, =, n),

and
2y (8)

(5.12) rank : =s—s' on I,
2 (1)

and

i‘m'rﬂ(t) 2m;+1(t)
(5.13) rank| : =s on I,
ﬁm’n(t) ﬁm;la)

We define vectors
fmp(t):(zmps'+1<t), Zmps'+2(t)y tt Zmps(t)) (P:ly 2y U, r)
by means of

14
Zmp(t)_——o:;flﬁpa(t)fm’o(t):
where 7,,(t) are the same as in the linear combinations (4.7}, and we put

[ G D= (%m0, 20, ) (6=1,2, -, 7),

(5.14)
l G (0= (fn(0), 20 (1) (0 =11, 72, -0, ).

Rearranging the rows of the matrix :
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Gn,@
. Gn @)
Q)=
G (0
A (1)
in the original order:
q,(1)"
Q)=| : ):(X(l), Z@);
4.
£,() 2,1
X(t):( : ), Z(t)Z( : ),
X.(), 2.(8)
we obtain
(5.15) rank Q(1)=s on I,
and
(5.16) Bl)Q®)=0 on I,

In virtue of Lemma 3 given in §4, there exists a square matrix C(t)
degree s, such that

(5.17) PO®=QWCE) on [N,

and o
rank C(t)=s on I)N\I,,

and every component of C(¢) belongs to K(I,NI,).
Moreover, we have especially

Dy D\ [Gny, @)
(5.18) : = C@t) on I,NI,.

§6. Proof of Theorem 3 (continued).

If we represent the matrix C(¢) in the form of a blocked matrix :

4 S_S/

Cult) Cult)\}s’
C= ,
Calt)  Cost)}s—"

S
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then, the relation (5.18) and the definition of the vectors D (1) and ¢, (2):
D, )=(Xn (8), G () and o ()=(%n, @), Zn, (1)),

(c=r+1, r+2, -, n)

imply
L@\ [y, @ @
6.1) : = : Cut)+ : Cui(®)
fn®) \ £ P
and
I, () £y, () 2 )
(62) - C12(Z)+ sz(t)
Gy (1) Xy (1) 2 ()
on I,NI,

It is easily seen from the condition (5.13) and the relation (6.1), that
Cut)=E; and Cut)=0,

where E; is the unit matrix of degree s’. Hence the matrix C(¢) has the follow-
ing form :

6.3) car=(%r Sy,

0 Cyul®)

Now let ¢, be a point belonging to I;\I,. Then, since C(¢;) is non-singular,
there exists a positive number & such that any square matrix C of degree s,
satisfying ||C—C(t,)||<¢, is non-singular, where ||-| denotes the Euclidean norm
of a matrix.

We can find, in virtue of the continuity of functions, a positive number ¢,
such that ||C(t)—C(t,)||<é whenever |t—t,]<ep, and tel,NI,.

Let ¢} be a point belonging to I;N\I, such that 0<t{—¢,<e, and let ¢; be a
small positive number satisfying the inequality #,-+¢,<ti—e,.

Furthermore we prepare a real-valued function X(¢) defined and of class C*
on —oo<Lt<+oo, such that 0<X(#)=<1 for all #, X(t)=1 for t=t,+e, and X()=0
for t=t1—e,.

Let C (#) be a square matrix of degree s, defined in the following way :

C@) for a,<t<t,,
City={ x(CH)—C+Cty) for t,<t=t;,
c@) for t]<t<+oco.

Since [C()—C@ll<é for t,=<t<t] Cw) is non-singular on a,<t<-oo.
Further we can easily verify that every component of C() is of class C* on
a,=t< 400,

By putting



54 YOSHIKAZU HIRASAWA

C 1at) =X)Cralt)—Crat)+Crs(t1)
Coat) =AE)(Coalt) —Con(t1)) +Cas(t?)

on {;<t=t;, we see that the matrix CN(t) has the following form :

E, Culd) e
J 0 C22(z‘)) for a,<t=t;;
AN Es' élz(t) < pl
(6.4) City= ( o ng(t)) for t,St<t];
Ey Cult) ,
(0 sz(ﬁ)) for | <t< oo,
If we define a matrix P® () on I,UI, in the following manner :
PO for a;Zt=Zas;
6.5) P ‘”(1)2{ ~
QMCH) for a,<t=<p,,

then, the matrix P®(t) satisfies a linear equation
B@OP®(t)=0  on [,Ul,

and satisfies a condition

(6.6) rank P®(t)=s  on I,Ul,

and further all components of P®(¢) belong to K(I,UI,).
Since it follows from (6.4) and (6.5), that

[ (X, X(t)clz(t)+Z(t)Cz2(t)) for a,<t=<t,;
Pet)= (X@), XOCu®)+Z0)Cot))  for t,<t=t];
(X(), XA)Colth)+Z()Con(t))  for ti<t=Bs,

10
v () z—( )=
8a0)

then, by taking the form (5.8) of the matrix P (¢) into consideration, we have

if we put
X(OC1()+Z#)Cos(2) for a,=t=<t,;

XOCut)+ZWCout)  for t,<t<t];
X(OC1(tD+ZH)Cos(t7)  for t§§i§‘32,

6.7) POM=(X®), Y(©) on [,Ul,
We shall here show that
(6.8) rank Y(O)=s—s’  on [,Ul,.

It is already known that rank Y (f)=s—s’ on I,, and further, as the vectors
nt) m=1, 2, ---, n) are of (s—s’)-dimension, we see

rank Y(#)<s—s’ on I
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If there exists a point t,el, such that rank Y(ty)<s—s’, then we get
rank P ®(¢,) <rank X(¢,)+rank Y (¢,
<s'+(s—s")=s,

which contradicts the condition (6.6).
By repeating the above-mentioned process for each pair {I,, ...} (k=2, 3, -+,
£,—1) of intervals, we obtain a matrix:

YO =Wsit), Ysae(t), -, ys(1))
defined on the interval I, such that
rank Y (t)=s—s’ on [;
rank (X(t), Y({t))=s on I,

and Yo 1i(t), Yseaolt), -+, Ys(t) belong to W(I).
The vectors Ys +1(2), Yo +2(2), -+, Ys(t) are thus the desired ones.
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