K. YANAGI KODAI MATH. J. 5 (1982), 434-445

COVARIANCE OPERATORS AND VON NEUMANN'S THEORY OF MEASUREMENTS

Dedicated to Prof. Kentaro Murata on his sixtieth birthday

By Kenjiro Yanagi

1. Introduction.

The Gaussian channels are defined in the following; Let H_1 , H_2 be a pair of real separable Hilbert spaces and let \mathfrak{B}_1 , \mathfrak{B}_2 be Borel fields of H_1 , H_2 , respectively. For this, let $\nu(\cdot, \cdot)$ be a real valued function defined on $H_1 \times \mathfrak{B}_2$ such as

- (1) for each $x \in H_1$, $\nu(x, \cdot) \equiv \nu_x$ is a Gaussian measure on \mathfrak{B}_2 with mean vector $m_x \in H_2$ and covariance operator ρ_x on H_2 ,
- (2) for each $B \in \mathfrak{B}_2$, $\nu(\cdot, B)$ is a measurable function on H_1 .

Then the triple $[H_1, \nu, H_2]$ is said to be a Gaussian channel. In this paper, we consider the Gaussian channels constructed by the covariance operator ρ_x which is constant or not constant with respect to x and obtain the average mutual information of the compound source.

In particular in the case of the covariance operator ρ_x which is not constant with respect to x, we can give von Neumann's theory of measurements as the models. In 1962, Nakamura-Umegaki proved that the statistical development $\rho_1 \rightarrow \rho_2$ by the measurements is nothing but the conditional expectation in the sense of Umegaki and developed the theory of noncommutative integration. In this paper, restricting the case of real separable Hilbert spaces, we tryto obtain the average mutual information of the statistical development by identifying density operators with covariance operators of probability measures on real separable Hilbert spaces. And in the last section we define the relative entropy among density operators and study the properties of them. We remark that the properties of our defined relative entropy are similar to the properties of von Neumann's relative entropy in some sense. Though we use almost known results relative to probability measures on Hilbert spaces, the obtained results are based on the essence of the theory of noncommutative integration with respect to the special von Neumann algebra L(H).

The author would like to express his hearty thanks to Professor Hisaharu Umegaki for his valuable suggestions and encouragement in the course of preparing this paper.

Received October 21, 1981

2. Gaussian measures on Hilbert spaces.

In this section we shall describe about several useful results known relative to Gaussian measures on Hilbert spaces. Let H be a real separable Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and associated norm $\|\cdot\|$ and \mathfrak{B} be the Borel field of H. A Borel probability measure μ on \mathfrak{B} that satisfies

$$\int_{H} \|x\|^2 d\mu(x) < \infty$$

defines a vector m of H and an operator R such that

$$\langle m, x \rangle = \int_{H} \langle y, x \rangle d\mu(y)$$

and

$$\langle Rx, y \rangle = \int_{H} \langle z-m, x \rangle \langle z-m, y \rangle d\mu(z)$$

The *m* is said to be mean vector of the measure μ . The operator *R* is (*) "linear, bounded, nonnegative, self-adjoint and of trace-class of *H*", and we know

$$\operatorname{trace}(R) = \int_{H} \|x - m\|^2 d\mu(x).$$

In general, we call operators having the property (*) to be covariance operators. If μ is a Gaussian, then its characteristic functional $FT(\mu)$ is given by

$$FT(\mu)(x) = \exp\{i\langle m, x \rangle - \langle Rx, x \rangle/2\}$$

where *m* is the mean vector of μ and *R* the covariance operator of μ . Conversely, if $m \in H$ and *R* is a covariance operator, then $\exp\{i\langle m, x \rangle - \langle Rx, x \rangle/2\}$ is the characteristic functional of a Gaussian measure on *H*. For convenience, we use the notation $\mu = N(m, R)$ to denote that μ is a Gaussian measure on *H* with mean vector *m* and covariance operator *R*, and $\mu_1 \ll \mu_2$, $\mu_1 \sim \mu_2$ and $\mu_1 \perp \mu_2$ to denote that μ_1 is absolutely continuous with respect to μ_2 , μ_1 and μ_2 are equivalent and μ_1 and μ_2 are orthogonal, respectively. Also we use the notations (σc) and (τc) to denote that the space of all Hilbert-Schmidt operators and the space of all trace-class operators.

PROPOSITION 2.1 (Rao-Varadarajan [6]). If $\mu_1 = N(m_1, R_1)$ and $\mu_2 = N(m_2, R_2)$, then $\mu_1 \sim \mu_2$ or $\mu_1 \perp \mu_2$. Also $\mu_1 \sim \mu_2$ if and only if

- (N1) $m_1 m_2 \in \operatorname{range}(R_1^{1/2}) = \operatorname{range}(R_2^{1/2})$ and
- (N2) $R_1 = R_2^{1/2} (I+T) R_2^{1/2}$,

where $T \in (\sigma c)$ and T is zero on null (R_2) .

KENJIRO YANAGI

The following proposition is a small modification of Skorohod [8], where the cases of $m_1=m_2$ or $R_1=R_2$ are stated. The proof is ommitted.

PROPOSITION 2.2. Let $\mu_1 = N(m_1, R_1)$ and $\mu_2 = N(m_2, R_2)$. If $\mu_1 \sim \mu_2$, then $\frac{d\mu_1}{d\mu_2}(x) = \exp\left\{\frac{1}{2} \sum_{k,j} \lambda_k^{-1/2} \lambda_j^{-1/2} \langle T(I+T)^{-1}e_k, e_j \rangle \langle x-m_1, e_k \rangle \langle x-m_1, e_j \rangle - \frac{1}{2} \sum_k \log(1+t_k) + \sum_k \lambda_k^{-1} \langle x-m_2, e_k \rangle \langle m_1-m_2, e_k \rangle - \frac{1}{2} \sum_k \lambda_k^{-1} \langle m_1-m_2, e_k \rangle^2\right\},$

where $\{\lambda_k\}$ are nonzero eigenvalues of R_2 , $\{e_k\}$ are corresponding orthonormal eigenvalues of R_2 and $\{t_k\}$ are eigenvalues of T. Also we obtain

$$\int_{H} \log \frac{d\mu_{1}}{d\mu_{2}}(x) d\mu_{1}(x) = \frac{1}{2} \sum_{n} \{t_{n} - \log (1+t_{n})\} + \frac{1}{2} \sum_{n} \lambda_{n}^{-1} \langle m_{1} - m_{2}, e_{n} \rangle^{2}.$$

Let H_1 , H_2 be real separable Hilbert spaces with inner products $\langle \cdot, \cdot \rangle_1$, $\langle \cdot, \cdot \rangle_2$ and associated norms $\|\cdot\|_1$, $\|\cdot\|_2$ and $\mathfrak{B}_1 = \mathfrak{B}(H_1)$, $\mathfrak{B}_2 = \mathfrak{B}(H_2)$ the Borel fields of H_1 , H_2 , respectively. Denote $H_1 \times H_2$ the real separable Hilbert space under the inner product $[(u, v), (x, y)] = \langle u, x \rangle_1 + \langle v, y \rangle_2$ and associated norm $\|\|(x, y)\|\|^2 = [(x, y), (x, y)]$. Moreover, the norm-open sets obtained by this inner product generate the Borel field $\mathfrak{B}_1 \times \mathfrak{B}_2 = \mathfrak{B}(H_1 \times H_2)$. Let μ_1, μ_2 be Borel probability measures on \mathfrak{B}_1 , \mathfrak{B}_2 and μ_{12} be a joint probability measure on $\mathfrak{B}_1 \times \mathfrak{B}_2$ such that μ_{12} has μ_1, μ_2 as projections on H_1, H_2 , respectively. When $\mu_1 \otimes \mu_2$ is the usual product measure on $\mathfrak{B}_1 \times \mathfrak{B}_2$ of μ_1 and μ_2 , the average mutual information $I(\mu_{12})$ of the measure μ_{12} with respect to $\mu_1 \otimes \mu_2$ is defined as follows: If $\mu_{12} \ll \mu_1 \otimes \mu_2$,

$$I(\mu_{12}) = \int_{H_1 \times H_2} \log \frac{d\mu_{12}}{d\mu_1 \otimes \mu_2}(x, y) d\mu_{12}(x, y),$$

and otherwise, $I(\mu_{12}) = \infty$.

3. Gaussian channels.

We shall define the Gaussian channels in the following.

DEFINITION. Let H_1 , H_2 be a pair of real separable Hilbert spaces with inner products $\langle \cdot, \cdot \rangle_1$, $\langle \cdot, \cdot \rangle_2$ and associated norms $\|\cdot\|_1$, $\|\cdot\|_2$, and let \mathfrak{B}_1 , \mathfrak{B}_2 be Borel fields of H_1 , H_2 , respectively. Let $\nu(\cdot, \cdot)$ be a real valued function defined on $H_1 \times \mathfrak{B}_2$ such as

(C1) for each $x \in H_1$, $\nu(x, \cdot) \equiv \nu_x$ is a Gaussian measure on \mathfrak{B}_2 with a mean vector $m_x \in H_2$ and a covariance operator ρ_x on H_2

(C2) for each $B \in \mathfrak{B}_2$, $\nu(\cdot, B)$ is a measurable function. Then the triple $[H_1, \nu, H_2]$ is said to be a Gaussian channel.

436

An output source μ_2 derived from an input source μ_1 and a channel distribution ν is defined by

$$\mu_2(B) = \int_{H_1} \nu_x(B) d\mu_1(x) , \qquad B \in \mathfrak{B}_2.$$

A compound source μ_{12} derived from an input source μ_1 and a channel distribution ν is defined by

$$\mu_{12}(C) = \int_{H_1} \nu_x(C_x) d\mu_1(x) , \qquad C \in \mathfrak{B}_1 \times \mathfrak{B}_2 ,$$

where $C_x = \{y \in H_2 : (x, y) \in C\}$. Then

$$\mu_1 \otimes \mu_2(C) = \int_{H_1} \mu_2(C_x) d\mu_1(x) , \qquad C \in \mathfrak{B}_1 \times \mathfrak{B}_2 .$$

If there exist a probability measure μ on (H_2, \mathfrak{B}_2) such that

$$\nu_x \sim \mu \text{ a.e. } d\mu_1(x),$$
 (3.1)

then $\mu_2 \sim \mu$ and $\mu_{12} \sim \mu_1 \otimes \mu_2$.

And the output source μ_2 has the following mean vector m_2 and covariance operator ρ_2 :

$$\langle m_2, x \rangle_2 = \int_{H_1} \langle m_y, x \rangle_2 d\mu_1(y)$$
 (3.2)

and

$$\langle \rho_2 x, y \rangle_2 = \int_{H_1} \{\langle \rho_z x, y \rangle_2 + \langle m_z - m_2, x \rangle_2 \langle m_z - m_2, y \rangle_2 \} d\mu_1(z).$$
 (3.3)

If the condition (3.1) is satisfied, then

$$I(\mu_{12}) = \int_{H_1} \int_{H_2} \log \frac{d\nu_x}{d\mu}(y) d\nu_x(y) d\mu_1(x) - \int_{H_2} \log \frac{d\mu_2}{d\mu}(y) d\mu_2(y). \quad (3.4)$$

For simplicity, we assume that $H_1=H_2=H$. The models of concrete Gaussian channels constructed by $\nu_x=N(x, \rho)$ with the covariance operator ρ which is constant with respect to x is obtained by Baker ([1, 2]). When the input source μ_1 is restricted to be Gaussian, the followings are equivalent by setting $\mu_1=N(0, \rho_1)$ and $\mu=N(0, \rho)$:

- (A1) $\nu_x \sim \mu$ a.e. $d\mu_1(x)$,
- (A2) $\mu_1[range(\rho^{1/2})]=1$,
- (A3) $\rho_1 = \rho^{1/2} T \rho^{1/2}$, where $T \in (\tau c)$ and T is zero on null (ρ) .

Let $\{t_n\}$ be eigenvalues of T in the above condition (A3). Then by (3.2) and (3.3),

$$\rho_2 = \rho + \rho_1 = \rho^{1/2} (I + T) \rho^{1/2}$$
.

By Proposition 2.2, we have

KENJIRO YANAGI

$$\int_{H} \int_{H} \log \frac{d\nu_x}{d\mu}(y) d\nu_x(y) d\mu_1(x) = \frac{1}{2} \operatorname{trace} (T) = \frac{1}{2} \sum_{n} t_n$$

and

$$\int_{H} \log \frac{d\mu_{2}}{d\mu}(y) d\mu_{2}(y) = \frac{1}{2} \sum_{n} \{t_{n} - \log (1+t_{n})\}.$$

Consequently by (3.4), the following proposition is obtained.

PROPOSITION 3.1.

$$I(\mu_{12}) = \frac{1}{2} \sum_{n} \log (1+t_n).$$

In the following section, we shall give the model of Gaussian channels constructed by $\nu_x = N(0, \rho_x)$ with the covariance operator ρ_x which is not constant with respect to x.

4. Von Neumann's theory of measurements.

To avoid the complication, let us assume that A, an observable corresponding to a physical quantity, is bounded and has a pure discrete simple spectrum. Let ϕ_1, ϕ_2, \cdots be the complete orthonormal basis corresponding to the proper values $\lambda_1, \lambda_2, \cdots$ of A, respectively. Von Neumann [4] observed that A has the value λ_n in the fraction $\langle \rho_1 \phi_n, \phi_n \rangle$ after the measurement under density operator ρ_1 , and that we obtain a mixture with the density operator

$$\rho_2 = \sum_{n=1}^{\infty} \langle \rho_1 \phi_n, \phi_n \rangle \phi_n \odot \phi_n \tag{4.1}$$

after the measurement, where $(\phi_n \odot \phi_n) x = \langle x, \phi_n \rangle \phi_n$ is similar with the notation of Shatten [7]. This change, given by the process

(M1) $\rho_1 \longrightarrow \rho_2$,

is the statistical development of a state by measurement, and it deffers essentially from the classical development of a state given by the process

(M2)
$$\rho_1 \longrightarrow \rho_t = \exp\{-(2\pi i)/ntH\}\rho_1 \exp\{(2\pi i/n)tH\},\$$

where H is the Hamiltonean. Just as in classical mechanics, von Neumann [4] taught us, process (M2) does not reproduce the most important property of the real world, namely its irreversibility, the fundamental difference between the time direction, "future" and "past", where (M1) is certainly not prima facie reversible. The present section is interested in the process (M1).

In 1962, Nakamura-Umegaki [3] proved that the statistical development $\rho_1 \rightarrow \rho_2$ by the measurements (with the operator A) is nothing but the conditional expectation $E[\rho_1|\mathfrak{A}]$ in the sense of Umegaki [9, 10], where \mathfrak{A} is the von

438

Neumann algebra generated by A.

On the other hand, statistical development $\rho_1 \rightarrow \rho_2$ by the measurement A can be regarded by the Gaussian channel constructed by $\nu_x = N(0, \rho_x)$ with the covariance operator ρ_x which is not constant with respect to x. Let us assume that input space H_1 and output space H_2 are the same real separable Hilbert space H. It seems that the essense of von Neumann's theory of measurements in quantum statistics is considered in the following theorem.

THEOREM 4.1. Suppose that the input source $\mu_1 = N(0, \rho_1)$ and the channel ditribution $\nu_x = N(0, \rho_x)$, where

$$\rho_x = \sum_n f_n(x) \phi_n \odot \phi_n$$

and $\{f_n(x)\}\$ satisfy the following conditions:

(1) $\int_{H} f_{n}(x) d\mu_{1}(x) = \langle \rho_{1}\phi_{n}, \phi_{n} \rangle,$ (2) $\mu_{1}\{x \in H: \nu_{x} \sim \nu_{y}\} = 1 \text{ for some } y \in H.$

Then the followings are satisfied:

- (3) the output source $\mu_2 = N(0, \rho_2)$, where ρ_2 is given by (4.1),
- (4) trace $(\rho_1 A)$ = trace $(\rho_2 A)$,

(5)
$$I(\mu_{12}) = \frac{1}{2} \sum_{n} \{ \log \langle \rho_1 \phi_n, \phi_n \rangle - \int_H \log f_n(x) d\mu_1(x) \}.$$

Proof. By (2), $\nu_x \sim \nu_y$ a.e. $d\mu_1(x)$. In (3.3),

$$\langle \rho_2 x, y \rangle = \int_{H} \langle \rho_z x, y \rangle d\mu_1(z)$$

$$= \sum_n \langle x, \phi_n \rangle \langle y, \phi_n \rangle \int_{H} f_n(z) d\mu_1(z)$$

$$= \sum_n \langle x, \phi_n \rangle \langle y, \phi_n \rangle \langle \rho_1 \phi_n, \phi_n \rangle \quad \text{(by (1))}$$

$$= \langle \sum_n \langle \rho_1 \phi_n, \phi_n \rangle (\phi_n \odot \phi_n) x, y \rangle.$$

Then ρ_2 is given by (4.1). It is easy to obtain (4). Because

trace
$$(\rho_2 A) = \sum_n \lambda_n$$
 trace $(\rho_2(\phi_n \odot \phi_n))$
 $= \sum_n \lambda_n \int \langle (\phi_n \odot \phi_n) y, y \rangle d\mu_2(y)$
 $= \sum_n \lambda_n \int \int \langle y, \phi_n \rangle \langle y, \phi_n \rangle d\nu_x(y) d\mu_1(x)$

$$=\sum_{n}\lambda_{n}\int\langle\rho_{x}\phi_{n}, \phi_{n}\rangle d\mu_{1}(x)$$
$$=\sum_{n}\lambda_{n}\int f_{n}(x)d\mu_{1}(x)$$
$$=\sum_{n}\lambda_{n}\langle\rho_{1}\phi_{n}, \phi_{n}\rangle$$
$$=\sum_{n}\langle\rho_{1}A\phi_{n}, \phi_{n}\rangle$$
$$=\text{trace}\left(\rho_{1}A\right).$$

When we set $\mu = \nu_y$ in (3.4), we have by Proposition 2.2,

$$\begin{split} I(\mu_{12}) &= \iint \log \frac{d\nu_x}{d\nu_y} (z) d\nu_x (z) d\mu_1 (x) - \iint \log \frac{d\mu_2}{d\nu_y} (z) d\mu_2 (z) \\ &= \iint \frac{1}{2} \sum_n \left\{ \frac{f_n(x)}{f_n(y)} - 1 - \log \frac{f_n(x)}{f_n(y)} \right\} d\mu_1 (x) \\ &- \frac{1}{2} \sum_n \left\{ \frac{\langle \rho_1 \phi_n, \phi_n \rangle}{f_n(y)} - 1 - \log \frac{\langle \rho_1 \phi_n, \phi_n \rangle}{f_n(y)} \right\} \\ &= \frac{1}{2} \sum_n \left\{ \frac{\langle \rho_1 \phi_n, \phi_n \rangle}{f_n(y)} - 1 \right\} - \frac{1}{2} \sum_n \iint \log \frac{f_n(x)}{f_n(y)} d\mu_1 (x) \\ &- \frac{1}{2} \sum_n \left\{ \frac{\langle \rho_1 \phi_n, \phi_n \rangle}{f_n(y)} - 1 - \log \frac{\langle \rho_1 \phi_n, \phi_n \rangle}{f_n(y)} \right\} \\ &= \frac{1}{2} \sum_n \left\{ \log \frac{\langle \rho_1 \phi_n, \phi_n \rangle}{f_n(y)} - \int \log \frac{f_n(x)}{f_n(y)} d\mu_1 (x) \right\} \\ &= \frac{1}{2} \sum_n \left\{ \log \langle \rho_1 \phi_n, \phi_n \rangle - \int \log f_n(x) d\mu_1 (x) \right\} . \end{split}$$

Hence (5) is given.

Q. E. D.

Remark 4.2. In Theorem 4.1, when $f_n(x) = \langle \rho_1 \phi_n, \phi_n \rangle$, the conditions (1) and (2) are satisfied. Then this is the simplest example. But when $f_n(x) = \langle x, \phi_n \rangle^2$, the condition (1) is satisfied but (2) is not.

5. Relative entropy among density operators.

In this section we shall define the relative entropy among density operators or covariance operators and study their properties. In [11], Umegaki defined a measure of Kullback-Leibler's information in a von Neumann algebra and studied the several important properties. We shall define the relative entropy in the different way. Suppose that ρ_1 , ρ_2 are density operators. Let $\mu_1 = N(0, \rho_1)$ and $\mu_2 = N(0, \rho_2)$. Then the equivalence of ρ_1 and ρ_2 , denoted by $\rho_1 \sim \rho_2$, is defined $\mu_1 \sim \mu_2$. And the relative entropy $I(\rho_1 | \rho_2)$ of ρ_1 relative to ρ_2 is defined in the following; If $\rho_1 \sim \rho_2$, then

$$I(\rho_1|\rho_2) = \int \log \frac{d\mu_1}{d\mu_2}(x) d\mu_1(x) \text{ and otherwise } I(\rho_1|\rho_2) = \infty.$$

It is clear that $\rho_1 = \rho_2$ if and only if $I(\rho_1 | \rho_2) = 0$. More generally, we can define the relative entropy among covariance operators in the same way. In order to give the quantum mechanical expression, we shall obtain the following relations about the relative entropy among density operators.

THEOREM 5.1. Suppose that ρ_1 , ρ_2 , ρ , η_1 , η_2 are all density operators. Then the followings hold:

(1) If ρ_1 , ρ_2 , ρ are commutative, then

$$I(\alpha \rho_1 + \beta \rho_2 | \rho) \leq \alpha I(\rho_1 | \rho) + \beta I(\rho_2 | \rho),$$

where $\alpha + \beta = 1$, α , $\beta \ge 0$.

(2)
$$I\left(\frac{1}{2}(\rho_1 \otimes \rho_2) \middle| \frac{1}{2}(\eta_1 \otimes \eta_1)\right) = I(\rho_1 | \eta_1) + I(\rho_2 | \eta_2),$$

where $\rho_1 \otimes \rho_2$, $\eta_1 \otimes \eta_2$ are the covariance operators of $\mu_1 \otimes \mu_2$, $\nu_1 \otimes \nu_2$, respectively, and $\mu_i = N(0, \rho_i)$, $\nu_i = N(0, \eta_i)$ for i=1, 2.

Proof. (1): We may assume $\rho_1 \sim \rho_2 \sim \rho$. By commutativity, the following spectral decompositions hold;

$$\rho_1 = \sum_n a_n \phi_n \odot \phi_n, \quad \rho_2 = \sum_n b_n \phi_n \odot \phi_n \quad \text{and} \quad \rho = \sum_n c_n \phi_n \odot \phi_n.$$

Since $\rho_1 \sim \rho$ and $\rho_2 \sim \rho$, we obtain

$$\sum_{n} \left(\frac{a_n}{c_n}-1\right)^2 < \infty$$
 and $\sum_{n} \left(\frac{b_n}{c_n}-1\right)^2 < \infty$.

Then eigenvalues of the operators corresponding to T in Proposition 2.2 are a_n/c_n-1 and b_n/c_n-1 , respectively. Hence we can apply Proposition 2.2 and we have

$$I(\rho_{1}|\rho) = \frac{1}{2} \sum_{n} \left\{ \frac{a_{n}}{c_{n}} - 1 - \log \frac{a_{n}}{c_{n}} \right\}$$

and similarly

$$I(\rho_2|\rho) = \frac{1}{2} \sum_n \left\{ \frac{b_n}{c_n} - 1 - \log \frac{b_n}{c_n} \right\}.$$

And since

$$\alpha \rho_1 + \beta \rho_2 = \sum_n (\alpha a_n + \beta b_n) \phi_n \odot \phi_n$$

where

$$\sum_{n} \left(\frac{\alpha a_{n} + \beta b_{n}}{c_{n}} - 1 \right)^{2} < \infty ,$$

we have $\alpha \rho_1 + \beta \rho_2 \sim \rho$, and so

$$I(\alpha \rho_1 + \beta \rho_2 | \rho) = \frac{1}{2} \sum_n \left\{ \frac{\alpha a_n + \beta b_n}{c_n} - 1 - \log \frac{\alpha a_n + \beta b_n}{c_n} \right\}.$$

Consequently

$$I(\alpha \rho_1 + \beta \rho_2 | \rho) \leq \alpha I(\rho_1 | \rho) + \beta I(\rho_2 | \rho)$$

because $f(x) = x - 1 - \log(x)$ is convex in $(0, \infty)$.

(2): We remark that $\rho_1 \otimes \rho_2 \sim \eta_1 \otimes \eta_2$ if and only if $\rho_1 \sim \eta_1$ and $\rho_2 \sim \eta_2$. By Proposition 2.1, we have $\rho_1 = \eta_1^{1/2}(I+T_1)\eta_1^{1/2}$, where $T_1 \in (\sigma c)$, T_1 is zero on null (η_1) and range $(\rho_1^{1/2}) = \operatorname{range}(\eta_1^{1/2})$, and $\rho_2 = \eta_2^{1/2}(I+T_2)\eta_2^{1/2}$, where $T_2 \in (\sigma c)$, T_2 is zero on null (η_2) and range $(\rho_2^{1/2}) = \operatorname{range}(\eta_2^{1/2})$. And also $\rho_1 \otimes \rho_2 = (\eta_1 \otimes \eta_2)^{1/2}$. $(\Im + \mathfrak{T})(\eta_1 \otimes \eta_2)^{1/2}$, where \mathfrak{T} is identity operator on $H \times H$ and $\mathfrak{T} = T_1 \otimes T_2$. Here $T_1 \otimes T_2(x, y) = (T_1x, T_2y)$. Let $T_1 = \sum_n t_n \phi_n \odot \phi_n$ and $T_2 = \sum_n s_m \phi_m \odot \phi_m$. Since

$$\mathfrak{T}(\phi_n, 0) = (T_1\phi_n, T_20) = (t_n\phi_n, 0) = (t_n\phi_n, t_n0) = t_n(\phi_n, 0)$$

and

$$\mathfrak{T}(0, \phi_m) = (T_1 0, T_2 \phi_m) = (0, s_m \phi_m) = (s_m 0, s_m \phi_m) = s_m (0, \phi_m),$$

 $\{t_n: n=1, 2, \cdots\} \cup \{s_m: m=1, 2, \cdots\}$ are all the eigenvalues of \mathfrak{T} . Consequently,

$$I(\rho_1 \otimes \rho_2 | \eta_1 \otimes \eta_2) = \frac{1}{2} \sum_n \{t_n - \log(1 + t_n)\} + \frac{1}{2} \sum_m \{s_m - \log(1 + s_m)\}$$
$$= I(\rho_1 | \eta_1) + I(\rho_2 | \eta_2).$$

Since

trace
$$(\rho_1 \otimes \rho_2) = \int_{H \times H} |||(x, y)|||^2 d\mu_1 \otimes \mu_2(x, y)$$

$$= \int_{H \times H} (||x||^2 + ||y||^2) d\mu_1 \otimes \mu_2(x, y)$$

$$= \int_{H} ||x||^2 d\mu_1(x) + \int_{H} ||y||^2 d\mu_2(y)$$

$$= \text{trace } (\rho_1) + \text{trace } (\rho_2)$$

$$= 2$$

and similarly trace $(\eta_1 \otimes \eta_2) = 2$, $(1/2)(\rho_1 \otimes \rho_2)$ and $(1/2)(\eta_1 \otimes \eta_2)$ are density operators. On the other hand,

$$I(\rho_1 \otimes \rho_2 | \eta_1 \otimes \eta_2) = I\left(\frac{1}{2}(\rho_1 \otimes \rho_2) \left| \frac{1}{2}(\eta_1 \otimes \eta_2) \right)^{*}\right)$$

442

^{*)} More general case is obtained in the following theorem

Thus we obtain

$$I\left(\frac{1}{2}(\rho_1 \otimes \rho_2) \left| \frac{1}{2}(\eta_1 \otimes \eta_2) \right) = I(\rho_1 | \eta_1) + I(\rho_2 | \eta_2).$$

Q. E. D.

Finally, we shall obtain the following relations about the relative entropy among general covariance operators.

THEOREM 5.2. Suppose that ρ_1 , ρ_2 , ρ_3 are all covariance operators. Then the followings hold:

(1) If $\rho_1 \geq \rho_2$, then $I(\rho_1 | \rho_2) \geq I(\rho_2 | \rho_1)$.

(2) If k > 0, then $I(k \rho_1 | k \rho_2) = I(\rho_1 | \rho_2)$.

(3) If ρ_1, ρ_2, ρ_3 are commutative, $\rho_1 \ge \rho_2 \ge \rho_3$ or $\rho_1 \le \rho_2 \le \rho_3$ and $\rho_1 \sim \rho_2$ or $\rho_2 \sim \rho_3$, then

$$I(\rho_1 | \rho_3) \ge I(\rho_1 | \rho_2) + I(\rho_2 | \rho_3).$$

Proof. (1): It is clear in the case of $\rho_1 \not\sim \rho_2$. If $\rho_1 \sim \rho_2$, then we have $\rho_1 = \rho_2^{1/2}(I+T)\rho_2^{1/2}$, where $T \in (\sigma c)$, T is zero on null (ρ_2) and range $(\rho_1^{1/2}) = \operatorname{range}(\rho_2^{1/2})$. We can obtain

$$\rho_1^{1/2} = \rho_2^{1/2} (I+T)^{1/2} W^*, \qquad (5.1)$$

where W is a partial isometry. On the other hand, we also have $\rho_2 = \rho_1^{1/2}(I+S)\rho_1^{1/2}$, where $S \in (\sigma c)$, S is zero on null (ρ_1) and range $(\rho_2^{1/2}) = \operatorname{range}(\rho_1^{1/2})$. By (5.1),

$$\rho_2 = \rho_2^{1/2} (I+T)^{1/2} W^* (I+S) W (I+T)^{1/2} \rho_2^{1/2} .$$

For simplicity we can and may assume that $\overline{\operatorname{range}(\rho_1)} = \overline{\operatorname{range}(\rho_2)} = H$. Hence $I = (I+T)^{1/2}W^*(I+S)W(I+T)^{1/2}$ and so $I+S=W(I+T)^{-1}W^*$. Let $\{s_n\}$, $\{t_n\}$ be eigenvalues of S, T, respectively. Then $1+s_n=(1+t_n)^{-1}$ and $s_n=-t_n/(1+t_n)$. Since $\rho_1 \ge \rho_2$, $t_n \ge 0$. By Proposition 2.2,

$$I(\rho_1 | \rho_2) = \frac{1}{2} \sum_{n} \{t_n - \log(1 + t_n)\}$$

and

$$I(\rho_2 | \rho_1) = \frac{1}{2} \sum_{n} \left\{ -\frac{t_n}{1+t_n} + \log(1+t_n) \right\}.$$

Then we have

$$\begin{split} I(\rho_1 | \rho_2) - I(\rho_2 | \rho_1) &= \frac{1}{2} \sum_n \left\{ t_n + \frac{t_n}{1 + t_n} - 2 \log (1 + t_n) \right\} \\ &= \frac{1}{2} \sum_n \left\{ t_n + 1 - (1 + t_n)^{-1} - 2 \log (1 + t_n) \right\} \end{split}$$

Consequently $I(\rho_1 | \rho_2) \ge I(\rho_2 | \rho_1)$, because $f(x) = x + 1 - (x+1)^{-1} - 2 \log (x+1) \ge 0$ in $[0, \infty)$.

KENJIRO YANAGI

(2): It is clear by Proposition 2.1 and 2.2.

(3): We may assume that $\rho_1 \sim \rho_2 \sim \rho_3$. By commutativity, we have $\rho_1 = \rho_2(I+T)$, where $T \in (\sigma c)$, T is zero on null (ρ_2) and range $(\rho_1^{1/2}) = \operatorname{range}(\rho_2^{1/2})$, and $\rho_2 = \rho_3(I+S)$, where $S \in (\sigma c)$, S is zero on null (ρ_3) and range $(\rho_2^{1/2}) = \operatorname{range}(\rho_3^{1/2})$. Then $\rho_1 = \rho_3(I+S)(I+T)$. On the other hand, we also obtain $\rho_1 = \rho_3(I+U)$, where $U \in (\sigma c)$, U is zero on null (ρ_3) and range $(\rho_1^{1/2}) = \operatorname{range}(\rho_3^{1/2})$. For simplicity, we can and may assume that $\operatorname{range}(\rho_1) = \operatorname{range}(\rho_2) = \operatorname{range}(\rho_3) = H$. Hence U = (I+S)(I+T)-I. Let $\{s_n\}$, $\{t_n\}$ be eigenvalues of S, T, respectively. Then $\{(1+s_n)(1+t_n)-1\}$ are eigenvalues of U. By Proposition 2.2,

$$\begin{split} I(\rho_1 | \rho_3) = & \frac{1}{2} \sum_n \{ (1 + s_n)(1 + t_n) - 1 - \log (1 + s_n)(1 + t_n) \} , \\ & I(\rho_1 | \rho_2) = \frac{1}{2} \sum_n \{ t_n - \log (1 + t_n) \} \end{split}$$

and

$$I(\rho_2 | \rho_3) = \frac{1}{2} \sum_n \{s_n - \log (1 + s_n)\}.$$

Hence $I(\rho_1 | \rho_3) - I(\rho_1 | \rho_2) - I(\rho_2 | \rho_3) = (1/2) \sum_n s_n t_n \ge 0$, because $s_n \ge 0$, $t_n \ge 0$ or $s_n \le 0$, $t_n \le 0$. Consequently

$$I(\rho_1 | \rho_3) \ge I(\rho_1 | \rho_2) + I(\rho_2 | \rho_3)$$

Q. E. D.

References

- C.R. BAKER, Absolute continuity and applications to information theory, "Probability in Banach spaces" in Lecture Notes in Math. No. 526, Springer, Pub., New York, 1976.
- [2] C.R. BAKER, Capacity of the Gaussian channel without feedback, Information and Control, 37 (1978), 70-89.
- [3] M. NAKAMURA AND H. UMEGAKI, On von Neumann's theory of measurements in quantum statistics, Math. Jap., 7 (1962), 151-157.
- [4] J. VON NEUMANN, Mathematical foundations of quantum mechanics, Princeton Univ. Press, Princeton, 1955.
- [5] K.R. PARTHASARATHY, Probability measures on metric spaces, Academic Press, New York, 1967.
- [6] C.R. RAO AND V.S. VARADARAJAN, Discrimination of Gaussian processes, Sankhyā Ser. A. 25 (1963), 303-330.
- [7] R. SCHATTEN, Norm ideals of completely continuous operators, Springer-Verlag, Berlin, 1960.
- [8] R. SKOROHOD, Integration in Hilbert space, Springer-Verlag, Berlin, 1974.
- [9] H. UMEGAKI, Conditional expectation in an operator algebra I, Tôhoku Math. J., 6 (1954), 608-612.
- [10] H. UMEGAKI, Conditional expectation in an operator algebra II, Tôhoku Math. J., 8 (1956), 86-100.

COVARIANCE OPERATORS

- [11] H. UMEGAKI, Conditional expectation in an operator algebra IV, Kodai Math. Sem. Rep., 14 (1962), 59-85.
- [12] H. UMEGAKI, Absolute continuity of information channels, J. Multivariate Anal., 4 (1974), 382-400.
- [13] K. YANAGI, On some properties of Gaussian channels, to appear in J. Math. Anal. Appl.
- [14] K. YANAGI, Quantum mechanics and Gaussian channels, Physics Letters, 88A (1982), 13-14.

Department of Mathematics Faculty of Science Yamaguchi University Yoshida, Yamaguchi 753 Japan

Added in proof. The author was suggested by Prof. H. Araki that (1) in Theorem 5.1 also holds in the noncommutative case. Indeed, $-\log(1+x)$ is operator-convex in |x| < 1 by the method of Nakamura-Umegaki's paper "A note on the entropy for operator algebras (Proc. Japan Acad., vol 37, no 3, pp 149-154, 1961)". Since we can reduce the case that absolute values of the eigenvalues of present operator is less than 1, it is possible to show that (1) holds by using the abore assertion.