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1. Introduction.

The Gaussian channels are defined in the following Let Hlf H2 be a pair
of real separable Hubert spaces and let S3i, 932 be Borel fields of Hly H2, respec-
tively. For this, let v( , •) be a real valued function defined on #iX332 such as

(1) for each x^Hu v(x, -)=vx is a Gaussian measure on 332 with mean
vector mx^H2 and covariance operator ρx on H2,

(2) for each jBe$B2, y( , B) is a measurable function on Hλ.
Then the triple [Hlf v, H2~] is said to be a Gaussian channel. In this paper, we
consider the Gaussian channels constructed by the covariance operator ρx which
is constant or not constant with respect to x and obtain the average mutual
information of the compound source.

In particular in the case of the covariance operator px which is not constant
with respect to x, we can give von Neumann's theory of measurements as the
models. In 1962, Nakamura-Umegaki proved that the statistical development
pλ-*ρ2 by the measurements is nothing but the conditional expectation in the
sense of Umegaki and developed the theory of noncommutative integration. In
this paper, restricting the case of real separable Hubert spaces, we tryto obtain
the average mutual information of the statistical development by identifying
density operators with covariance operators of probability measures on real
separable Hubert spaces. And in the last section we define the relative entropy
among density operators and study the properties of them. We remark that
the properties of our defined relative entropy are similar to the properties of
von Neumann's relative entropy in some sense. Though we use almost known
results relative to probability measures on Hubert spaces, the obtained results
are based on the essence of the theory of noncommutative integration with
respect to the special von Neumann algebra L(H).

The author would like to express his hearty thanks to Professor Hisaharu
Umegaki for his valuable suggestions and encouragement in the course of pre-
paring this paper.
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2. Gaussian measures on Hubert spaces.

In this section we shall describe about several useful results known relative
to Gaussian measures on Hubert spaces. Let H be a real separable Hubert space
with inner product < , •> and associated norm || || and 23 be the Borel field of
H. A Borel probability measure μ on 23 that satisfies

defines a vector m of H and an operator R such that

<m, *>=\ <y, x>dμ(y)
J H

and

(Rx, y>=\ O—m, x>(z—m, y>dμ(z).

The m is said to be mean vector of the measure μ. The operator R is

(*) "linear, bounded, nonnegative, self-adjoint and of trace-class of H",

and we know

trace(£)=ί \\x-m\\2dμ(x).
J JΪ

In general, we call operators having the property (*) to be covariance operators.
If μ is a Gaussian, then its characteristic functional FT{μ) is given by

FT(μ)(x)=exp{i(m, x>-<Rx, x>/2},

where m is the mean vector of μ and R the covariance operator of μ. Con-
versely, if m^H and R is a covariance operator, then exp{z'<ra, x}—(Rx, x}/2}
is the characteristic functional of a Gaussian measure on H. For convenience,
we use the notation μ=N(m, R) to denote that μ is a Gaussian measure on H
with mean vector m and covariance operator R, and μi<^μ2, μi~μz and μiLμz
to denote that μ : is absolutely continuous with respect to μ2, μi and μ2 are
equivalent and /ii and μ2 are orthogonal, respectively. Also we use the nota-
tions (σc) and (re) to denote that the space of all Hilbert-Schmidt operators and
the space of all trace-class operators.

PROPOSITION 2.1 (Rao-Varadarajan [6]). If μ1=N(mlt RJ and μ2=N(m2, R2)v

then μx^μ2 or μλLμ2. Also μ1

r^μ2 if and only if

(Nl) mj-m e E r a n g e ^ l ^ r a n g e ^ 2 ) and

(N2) Ri=Rl'\I+T)Rl<2,

where T^(σc) and T is zero on null (R2).



436 KENJIRO YANAGI

The following proposition is a small modification of Skorohod [8], where
the cases of mx—m2 or Rx—R2 are stated. The proof is ommited.

PROPOSITION 2.2. Let μ1=N(m1, Rλ) and μ2=N(m2, R2). If μι~μ2, then

dμi {χ)

dμ2

1 _i 1

2 k k 2f 1 ' 2 k

where {λk} are nonzero eigenvalues of R2, {ek} are corresponding orthonormal
eigenvalues of R2 and {tk} are- eigenvalues of T. Also we obtain

aμ2

Let Hlf H2 be real separable Hubert spaces with inner products < , >i, < , >2
and associated norms \\ \\u || |U and S^SCZ/i), 332=33(#2) the Borel fields of Hu

H2, respectively. Denote iίiX/ί2 the real separable Hubert space under the in-
ner product [(w, v), (x, y)l=(u, x>i+<^, .v>2 and associated norm |||(x, ^)| | | 2=
[(*, 3;), (x, y)2. Moreover, the norm-open sets obtained by this inner product
generate the Borel field a31x82=S(//iX/?2). Let μu μ2 be Borel probability
measures on %Sly 8 2 and μί2 be a joint probability measure on S i X S 2 such that
μ12 has μu μ2 as projections on Hu H2, respectively. When μx®μ% is the usual
product measure on SδiX^ of μx and μ2, the average mutual information I{μi2)
of the measure μί2 with respect to μι®μ2 is defined as follows: If μi2<

and otherwise, I(μi2)=<χ>.

3. Gaussian channels.

We shall define the Gaussian channels in the following.

DEFINITION. Let Hlt H2 be a pair of real separable Hubert spaces with inner
products < , •>!, < , >2 and associated norms \\'\\lf || ||2, and let 95^ 932 be Borel
fields of Hlf H2, respectively. Let v( , •) be a real valued function defined on
i/iXSs such as

(Cl) for each x^Hlf v{x, -)=vx is a Gaussian measure on 332 with a mean
vector mx^H2 and a covariance operator px on H2

(C2) for each ^e95 2 , v( , B) is a measurable function. Then the triple
[ # ! , v, H2~] is said to be a Gaussian channel.
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An output source μ2 derived from an input source μ1 and a channel distri-
bution v is defined by

μ2(B)=\ vx{B)dμi{x),

A compound source μ12 derived from an input source μλ and a channel distribu-
tion v is defined by

j"i2(C)=l vx{Cx)dμ1(x),
J H j

where Cx={yeH2: (x, y)εC}. Then

JUI®J«2(C)=( μ2(Cx)dμi(x),

If there exist a probability measure μ on {H2, 332) such that

v ^ ~ ^ a.e. dμi(x), (3-D

then μ2

r^μ and μi2r^μι®μ2.

And the output source μ2 has the following mean vector m2 and covariance
operator ρ2:

<jιι2, x
s)2 — \ (niy, x)2dμ1(y) (3.2)

and

μ ) . (3.3)

If the condition (3.1) is satisfied, then

I(μi*)=\ \ \og^-x-{y)dvx{y)dμi{x)-\ log --/-* (y)dμ2(y). (3.4)
jHιjH2 a μ JH2 a μ

For simplicity, we assume that H1^H2—H. The models of concrete Gaussian
channels constructed by vx=N{x, p) with the covariance operator p which is
constant with respect to x is obtained by Baker ([1, 2]). When the input source
μλ is restricted to be Gaussian, the followings are equivalent by setting μx—
JV(O, px) and μ=N(0, p):

(Al) vx~μ a.e.

(A2) iί£1[range(/o
1/a)] = l ,

(A3) p!=p1/2Tp1/2, where T^(τc) and T is zero on null (p).

Let {ίn} be eigenvalues of T in the above condition (A3). Then by (3.2) and
(3.3),

By Proposition 2.2, we have
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( ( log

and

dVχ iy)dvx{y)dμi{x)=kr trace (T)= -J- Σ tn

Consequently by (3.4), the following proposition is obtained.

PROPOSITION 3.1.

In the following section, we shall give the model of Gaussian channels con-
structed by vx=N(0, px) with the covariance operator ρx which is not constant
with respect to x.

4. Von Neumann's theory of measurements.

To avoid the complication, let us assume that A, an observable correspond-
ing to a physical quantity, is bounded and has a pure discrete simple spectrum.
Let φlf φ2, -•- be the complete orthonormal basis corresponding to the proper
values λlt λ2, ••• of A, respectively. Von Neumann [4] observed that A has the
value λn in the fraction (piφn, φn} after the measurement under density opera-
tor plf and that we obtain a mixture with the density operator

oo

P2= Σ <Plφn, φn>φn®φn (4.1)

after the measurement, where (φn®φn)x = (x, φn>φn is similar with the notation
of Shatten [7]. This change, given by the process

( M l ) pλ—>p2,

is the statistical development of a state by measurement, and it deffers essentially
from the classical development of a state given by the process

(M2) p, — > pt=exp{-(2πi)/ntH}Plexp{(2πi/n)tH},

where H is the Hamiltonean. Just as in classical mechanics, von Neumann [4]
taught us, process (M2) does not reproduce the most important property of the
real world, namely its irreversibility, the fundamental difference between the
time direction, "future" and "past", where (Ml) is certainly not prima facie
reversible. The present section is interested in the process (Ml).

In 1962, Nakamura-Umegaki [3] proved that the statistical development
pi~>p2 by the measurements (with the operator A) is nothing but the conditional
expectation E[_pi\W\ in the sense of Umegaki [9, 10], where % is the von
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Neumann algebra generated by A.
On the other hand, statistical development pi—>p2 by the measurement A

can be regarded by the Gaussian channel constructed by vx=N(0, ρx) with the
covariance operator ρx which is not constant with respect to x. Let us assume
that input space H1 and output space H2 are the same real separable Hubert
space H. It seems that the essense of von Neumann's theory of measurements
in quantum statistics is considered in the following theorem.

THEOREM 4.1. Suppose that the input source μ1=N(0, p±) and the channel
ditribution vx=N(0, px), where

and {fn{:

(1) '

(2) t

Then the

K)} satisfy

J H

followings

the

[x) =

are

following

'ipiφn, φn

y}=l for

satisfied:

conditions:

>,

some y^h

(3) the output source μ2=N(0, p2), where p2 is given by (4.1) ,

(4) trace (io1^.)=trace (p2A),

(5) /(iMi 2 )=4-Σίlog<^ n ,^ n >-( logfn(x)dμi(x)}.

Proof. By (2), vx~vy a. e. dμx(x). In (3.3),

(ρ2x, y)=\ (ρzx,
J H

\ f
J H

= Σ <X, φnXy, φnXpiφn, φn> (by (1))

Then p2*is given by (4.1). It is easy to obtain (4). Because

trace (ρ2A)=Σ>Λn trace (ρ2{φn( )φn))

, φn>dvx(y)dμi(x)
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— Έιάn(piφn, φn)
n

When we set μ—vy in (3.4), we have by Proposition 2.2,

_ 1 v ί <PlΦj>>_

2τΓ"U
lφn> Φn>

y) g My)

Plφn,φn> . ip1φn,φn>

~/»73θ g " My)

Hence (5) is given. Q. E. D.

Remark 4.2. In Theorem 4.1, when fnM^ipiφn, φn}, the conditions (1) and
(2) are satisfied. Then this is the simplest example. But when fn{x) — ix, φnY>
the condition (1) is satisfied but (2) is not.

5. Relative entropy among density operators.

In this section we shall define the relative entropy among density operators
or covariance operators and study their properties. In [11], Umegaki defined a
measure of Kullback-Leibler's information in a von Neumann algebra and studied
the several important properties. We shall define the relative entropy in the
different way. Suppose that ρly ρ2 are density operators. Let μ1—N(0> pi) and
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jM2=iV(0, /O2). Then the equivalence of pλ and p2, denoted by pι^p2, is defined
μi~μ2. And the relative entropy I(pλ\ρ2) of ^1 relative to ρ2 is defined in the
following; If pλ^ρ2, then

I(pi\p2)=\log —~L(x)dμ1(x) and otherwise /(/hl^^oo .

It is clear that pλ—ρ2 if and only if I(pι\ρ^}=0, More generally, we can define
the relative entropy among covariance operators in the same way. In order to
give the quantum mechanical expression, we shall obtain the following relations
about the relative entropy among density operators.

THEOREM 5.1. Suppose that px, p2, p, ηu η2 are all density operators. Then
the followings hold:

(1) // plt p2, p are commutative, then

where a+β = l, a, β^O.

(2)

where pi®p2, ηi®η2 are the covariance operators of μι®μ2, Vi®Vz, respectively,
and μι=N(0, px), v^Nφ, ηt) for i=l, 2.

Proof. (1): We may assume pi^p^p. By commutativity, the following
spectral decompositions hold;

Pi=Σ,anφn( )φn, p2=Έbnφn®φn and ρ~

Since pλ~ρ and p2^ρ, we obtain

Σ(JL* Λ 2

< c o a n d Σ ( _ $ . _ _
n \ Cn / n \ Cn

Then eigenvalues of the operators corresponding to T in Proposition 2.2 are
an/cn—l and bn/cn—l, respectively. Hence we can apply Proposition 2.2 and
we have

and similarly

And since

where
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we have ap1+βp2~p, and so

% i + M l p ) = y Σ —^ 1-log τ
Δ n \ Cn Cn

Consequently
*I ρ)SaI{pλ I p)+βl{p21 />),

because f{x) = x — 1 — log (x) is convex in (0, oo).

(2): We remark that pi®p2~ηi®η2 if and only if pλ~ηi and p2~η2. By
Proposition 2.1, we have pi^ηW+T^ηl12, where TiG(σc), T1 is zero on null
(Vl) and range (^^^-rangeC^^2), and p^η\'\I+T2)r]V\ where T 2e(σc), T 2 is
zero on null (η2) and range (pI'2)=range (η\'2). And also p1(g)p2=(ηi<S>η2)1/2

(S+^)(o7i®^2)
1/2, where 3 is identity operator on HxH and S ^ T ^ T Y Here

T1®T2(x, y)=(Txxt T2y). Let Γ ^ Σ f n ^ * ® ^ and T 2 = Σ s m ^ m ® ^ m . Since
7i m

and
= (tnφn, tn0) = tn(φ», 0)

ϊ(0, ψJ^iTfi, Tzψm)=(0, smψm)=(sm0, smψm)=sm(O, φm),

{tn' iι = l, 2, •• }W{sOT: m—1, 2, •••} are all the eigenvalues of %. Consequently,

4 } + ̂ Σ {sm-log (l+sra)}
Z 1

Since

trace (

=trace

=2

and similarly trace (rji®ΎJ2)=2, (l/2)(io1(S)iθ2) and
tors. On the other hand,

(p2)

are density opera-

*) More general case is obtained in the following theorem
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Thus we obtain

/ ( y ^ i Θ ^ ) y ^ i ® ^ ) ) ^ / ^ ! I ηi)Λ-I{p21 ^2).

Q. E. D.

Finally, we shall obtain the following relations about the relative entropy
among general covariance operators.

THEOREM 5.2. Suppose that pu p2, p3 are all covariance operators. Then

the followings hold:

(1) // p^pt, then I(p1\p2)^Kp2\pi).

(2) // k>Q, then I(kp1\kpi)=I(p1\pt).

(3) // pi, p2, pz are commutative, p^p2^p3 or pi^p^^pz and pι^p2 or
pz^pz, then

Proof. (1): It is clear in the case of piΦpi. If pi^pi, then we have p1

= pl/2(I+T)pl/2, where Γe(<τc), T is zero on null(1o2) and range(p\/2)=range(pl/2).
We can obtain

p\f*=pl'2(I+Ty<W*, (5.1)

where W is a partial isometry. On the other hand, we also have p2=p{/2(I+S)p\/2,
where Se(σc), S is zero on null(/?i) and ra.nge{p\l2)=r%nge{p\12). By (5.1),

For simplicity we can and may assume that range (^O^range {p2)=H. Hence
I=(I+T)1/2W*(I+S)W(I+Ty/2 and so I+S=W(I+T)-W*. Let {sn}, {tn} be
eigenvalues of S, T, respectively. Then lJ

Γsn=(lJrtn)~1 and sn-=—tn/(l-\-tn).
Since pι^ρ2, tn^Q. By Proposition 2.2,

and

Then we have

i I p,)-l(p» I pύ= \ Σ {ίn+ Ί q ^ - -2 log

- 4 Σ {ί»+l-(l+ί»)-1-2 log (l+ίn)}.

Consequently I(pi\p2)^I(p2\pi), because f(x)=x+l-(x+iyl-2 log U+l)^0 in
CO, oo).
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(2): It is clear by Proposition 2.1 and 2.2.

(3): We may assume that pi^p2^pz. By commutativity, we have px—

p2(I+T), where T^(σc), T is zero on null (p2) and range (p}/2)=range {ρ\l2)y and

p2—ρ3(I+S), where S<=(σc), S is zero on null (ps) and range (pll2)=range (pl/2).

Then ρ1=ps(I+S)(I+T). On the other hand, we also obtain pi—pz(I+U), where

U^(σc), U is zero on null (ρz) and range (ρ\f2)=range (ρl/2). For simplicity, we

can and may assume that range (^1)=range (ρ2)=range (p3)=H. Hence U=

(I+S)(I+T)—I. Let {sn}, {tn} be eigenvalues of S, T, respectively. Then

sn)(l+ίn)—1} are eigenvalues of U. By Proposition 2.2,

and

I(p2 I /Os)= -o" Σ {Sn — lOg (1 + Sn)} .
Z n

Hence Iipxlps)—I{pλ\ρ2)—I(p2\ps)=(l/2)yΣsntn'^0, because s n ^0, ί n ^0 or sn^0,
n

tn^0. Consequently

Q. E. D.
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Added in proof. The author was suggested by Prof. H. Araki that (1)
in Theorem 5.1 also holds in the noncommutative case. Indeed, —log (l+x) is
operator-convex in | x | < 1 by the method of Nakamura-Umegaki's paper "A note
on the entropy for operator algebras (Proc. Japan Acad., vol 37, no 3, pp 149-
154, 1961)". Since we can reduce the case that absolute values of the eigenvalues
of present operator is less than 1, it is possible to show that (1) holds by using
the abore assertion.




