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1. Introduction.

The Gaussian channels are defined in the following; Let H;, H; be a pair
of real separable Hilbert spaces and let B;, B, be Borel fields of H,, H,, respec-
tively. For this, let v(:, -) be a real valued function defined on H,X3B, such as

(1) for each x€H, y(x, -)=p, is a Gaussian measure on B, with mean

vector m,< H, and covariance operator p, on H,

(2) for each BE®,, v(-, B) is a measurable function on H,.

Then the triple [Hy, v, H,] is said to be a Gaussian channel. In this paper, we
consider the Gaussian channels constructed by the covariance operator p, which
is constant or not constant with respect to x and obtain the average mutual
information of the compound source.

In particular in the case of the covariance operator p, which is not constant
with respect to x, we can give von Neumann’s theory of measurements as the
models. In 1962, Nakamura-Umegaki proved that the statistical development
p1—p: by the measurements is nothing but the conditional expectation in the
sense of Umegaki and developed the theory of noncommutative integration. In
this paper, restricting the case of real separable Hilbert spaces, we tryto obtain
the average mutual information of the statistical development by identifying
density operators with covariance operators of probability measures on real
separable Hilbert spaces. And in the last section we define the relative entropy
among density operators and study the properties of them. We remark that
the properties of our defined relative entropy are similar to the properties of
von Neumann’s relative entropy in some sense. Though we use almost known
results relative to probability measures on Hilbert spaces, the obtained results
are based on the essence of the theory of noncommutative integration with
respect to the special von Neumann algebra L(H).

The author would like to express his hearty thanks to Professor Hisaharu
Umegaki for his valuable suggestions and encouragement in the course of pre-
paring this paper.

Received October 21, 1981
434



COVARIANCE OPERATORS 435

2. Gaussian measures on Hilbert spaces.

In this section we shall describe about several useful results known relative
to Gaussian measures on Hilbert spaces. Let H be a real separable Hilbert space
with inner product <-, -> and associated norm |-|| and B be the Borel field of
H. A Borel probability measure p¢ on B that satisfies

2
[ Il <oo
defines a vector m of H and an operator R such that

{m, x>=SH<y, xdp(y)
and
(Rx, y> ZSH<z—m, x)z—m, y>du(z).

The m is said to be mean vector of the measure p. The operator R is
(*) “linear, bounded, nonnegative, self-adjoint and of trace-class of H”,

and we know

trace(R)ZSHIIx—mllzdy(x) .

In general, we call operators having the property (*) to be covariance operators.
If ¢ is a Gaussian, then its characteristic functional FT(g) is given by

FT(pu)(x)=exp{i<m, x>—<{Rx, x>/2},

where m is the mean vector of p and R the covariance operator of p. Con-
versely, if meH and R is a covariance operator, then exp{i{m, x>—<{Rx, x>/2}
is the characteristic functional of a Gaussian measure on H. For convenience,
we use the notation p¢=N(m, R) to denote that u is a Gaussian measure on H
with mean vector m and covariance operator R, and p; & s, pti~pts and gy L gy
to denote that g is absolutely continuous with respect to p,, u; and p, are
equivalent and y, and u, are orthogonal, respectively. Also we use the nota-
tions (oc) and (zc¢) to denote that the space of all Hilbert-Schmidt operators and
the space of all trace-class operators.

PROPOSITION 2.1 (Rao-Varadarajan [6]). If py=N(Ony, R,) and p.=N(m,, R,),
then pi~ps or py L pe. Also pi~p, if and only if

(N1) mi—myerange (R}/?)=range (R}'?) and
(N2) R,=R}*(I+T)RY*,

where TE(oc) and T is zero on null (R,).
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The following proposition is a small modification of Skorohod [8], where
the cases of m;=m, or R,=R, are stated. The proof is ommited.

PROPOSITION 2.2. Let py=N(mi, R)) and p,=N(m,, R,). If pi~po, then

o m=exp {5 BAMEIKTULTY "er, € Cx—m, exCx—rm, )
2 s

1 1
—§§ log (14-tx)+ Ek2;‘<x—mz, e {Mmy—ms, ek>—§§2;‘<mx—m2, ek>2},

where {1;} are nonzero eigenvalues of R, {e.} are corresponding orthonormal
eigenvalues of R, and {t,} are-eigenvalues of T. Also we obtain

d)ul _i _ _1_ -1 . 2
Sﬂlog E#—Z(x)d)al(x)— 5 ;{tn log (1+4t,)} + 5 ;Zn {my—ms, en)?.

Let H,, H, be real separable Hilbert spaces with inner products <:, *>;, <+, -2
and associated norms |-, |- . and B,=B(H,), B.=B(H;) the Borel fields of H,,
H,, respectively. Denote H,X H, the real separable Hilbert space under the in-
ner product [(u,v), (x, y)]=<u, x>;+<v, ¥>. and associated norm [|(x, y)I*=
[(x, ), (x, ¥v)]. Moreover, the norm-open sets obtained by this inner product
generate the Borel field B,X8B,=B(H;xXH,). Let p;, p. be Borel probability
measures on B,, B, and y;, be a joint probability measure on B,XB, such that
212 has p,, p, as projections on H,, H,, respectively. When p,Qu, is the usual
product measure on B;XB, of p; and p,, the average mutual information I(g,)
of the measure p;, with respect to ©,®p, is defined as follows: If g, <@,

HixHgy

d
=] 1og Tiﬁ%lbiﬁ{(’" Ydpssl(x, ¥,

and otherwise, I(pt1,)=00.

3. Gaussian channels.

We shall define the Gaussian channels in the following.

DEFINITION. Let H;, H, be a pair of real separable Hilbert spaces with inner
products {-, ->;, <, >, and associated norms |- ||, ||-]ls, and let B,, B, be Borel
fields of H,, H, respectively. Let y(-, -) be a real valued function defined on
H, X3, such as

(C1) for each x€H,, v(x, -)=v, is a Gaussian measure on B, with a mean
vector m,<=H, and a covariance operator p, on H,

(C2) for each B3, (-, B) is a measurable function. Then the triple
[H,, v, H,] is said to be a Gaussian channel.
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An output source yu, derived from an input source g, and a channel distri-
bution v is defined by

wB=| B, B,

A compound source g, derived from an input source g, and a channel distribu-
tion v is defined by

peO)=| | v:(Caldpx),  C=BxBy,

where C,={yeH,: (x, y)C}. Then

mOmO={ | mCodp(x),  C=BixBs.

If there exist a probability measure g on (H,, B,) such that

vy~ pace dp(x), 3.1)

then go~p and g~ @pes.
And the output source p, has the following mean vector m, and covariance
operator p,:

{ms, x>z=S iy, x02d pa(y) (3.2)
Hy
and
{p2x, y>z=gH {Kp:x, yoot<m,—my, xo(m,—my, y)o}dpn(z). (3.3)
If the condition (3.1) is satisfied, then
o dys dys
I(ﬂlz)_ngSHZIOg *d—p—(y)dvz(y)dm(x)—SHzlog “dp (Mdpy). (3.4)

For simplicity, we assume that H,=H,=H. The models of concrete Gaussian
channels constructed by v,=N(x, p) with the covariance operator p which is
constant with respect to x is obtained by Baker ([1, 2]). When the input source
1 is restricted to be Gaussian, the followings are equivalent by setting ;=
N, p,) and p=N(, p):

(Al) yy~p a.e dps(x),
(A2) pilrange (p'/*)]=1,
(A3) pi1=p*Tp"? where T<(zc) and T is zero on null (p).
Let {t,} be eigenvalues of T in the above condition (A3). Then by (3.2) and

(3.3),
pe=p+p1=p"*(I+T)p"".

By Proposition 2.2, we have



438 KENJIRO YANAGI

dv, 1 1
SHSH log d’; (3)dval)dppi(x)= trace (T)= St

and
S log ﬂtz—(y)dpz(y)ziz{t —log (1+t,)}
H dﬂ 2 m n nl)f -
Consequently by (3.4), the following proposition is obtained.
PRrROPOSITION 3.1.
1
1(#12):“2‘; log (1+t¢,).

In the following section, we shall give the model of Gaussian channels con-
structed by v,=N(0, p,) with the covariance operator p, which is not constant
with respect to x.

4. Von Neumann’s theory of measurements.

To avoid the complication, let us assume that A, an observable correspond-
ing to a physical quantity, is bounded and has a pure discrete simple spectrum.
Let ¢, ¢z, - be the complete orthonormal basis corresponding to the proper
values A, 4;, --- of A, respectively. Von Neumann [4] observed that A has the
value A, in the fraction <pi¢,, ¢,> after the measurement under density opera-
tor p,;, and that we obtain a mixture with the density operator

0= 3 <pifn, )92 @60 @D

after the measurement, where (¢.@¢@.)x =<{x, $»>Pn is similar with the notation
of Shatten [7]. This change, given by the process

(M1) P1—> P2,

is the statistical development of a state by measurement, and it deffers essentially
from the classical development of a state given by the process

M2)  p1 —> p.=exp{—(2ri)/ntH} p, exp{(2ri/n)tH},

where H is the Hamiltonean. Just as in classical mechanics, von Neumann [4]
taught us, process (M2) does not reproduce the most important property of the
real world, namely its irreversibility, the fundamental difference between the
time direction, “future” and “past”, where (M1) is certainly not prima facie
reversible. The present section is interested in the process (M1).

In 1962, Nakamura-Umegaki [3] proved that the statistical development
01— p: by the measurements (with the operator A) is nothing but the conditional
expectation E[p,|%] in the sense of Umegaki [9, 10], where U is the von
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Neumann algebra generated by A.

On the other hand, statistical development p,—p. by the measurement A
can be regarded by the Gaussian channel constructed by v,=N(0, p,) with the
covariance operator p, which is not constant with respect to x. Let us assume
that input space H; and output space H, are the same real separable Hilbert
space H. It seems that the essense of von Neumann’s theory of measurements
in quantum statistics is considered in the following theorem.

THEOREM 4.1. Suppose that the input source p,=N(0, p;) and the channel
ditribution v,=N(0, p,), where

Pz= ;fn(x)ﬁﬁn@gé"
and {f(x)} satisfy the following conditions:
W) |, fa0dmn=<oign, 62,
(2) m{xeH: v,~v,} =1 for some yeH.
Then the followings are satisfied :

(3) the output source pu,=N(0, p,;), where p, 1s given by (4.1),
(4) trace (p,A)=trace (p.4),

) I()=5Z{l0g osgn, po>—| log ful)dpnix).

Proof. By (2), vz~y, a.e. du,(x). In (3.3),
{p2x, y>=SH<pzx, y>du(z)
= 3<x, gy, ¢ FalD)dpu(2)
=<§<p1¢n, (G ®Pn)x, y> .

Then p,}is given by (4.1). It is easy to obtain (4). Because

trace (pzA)=Zn)Zn trace (pa(Pn®@n))
=S4.{<(@: @0, »dpm»

=24{(<, >0, g dva(n)dputo)
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=21n§<px¢n, $ud>dpna(x)

n

Il

Elngfn(x)d/zl(x)

Il

22001pn, n
§<p1A¢7n ¢n>

=trace (p,4).

When we set p=y, in (3.4), we have by Proposition 2.2,

()= Sglog i

()~ {log G- put2

RERIE R L
_i;{ﬁe;%n(»vys)fﬁ?,_ ~log {pljgf:(,y s)z5n>}
=5 {0t 1} o L duiay
_ % ;{f&fﬂi’_gb_”l —1—log <Pl}bnn(’ §)15n> }

1 (s 0> (1 Fal®)
=5 D{log “P L ~flog 2 dpno)

{
— 5 oz <pign, g~ flox ()}

Hence (5) is given. Q.E.D.

Remark 4.2. In Theorem 4.1, when f,(x)=<{p.@s, ¢»>, the conditions (1) and
(2) are satisfied. Then this is the simplest example. But when fo(x)=<{x, ¢>?%
the condition (1) is satisfied but (2) is not.

5. Relative entropy among density operators.

In this section we shall define the relative entropy among density operators
or covariance operators and study their properties. In [117], Umegaki defined a
measure of Kullback-Leibler’s information in a von Neumann algebra and studied
the several important properties. We shall define the relative entropy in the
different way. Suppose that p,, p, are density operators. Let p;=N(0, p;) and
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#:=N(0, p;). Then the equivalence of p, and p,, denoted by p,;~p;, is defined
pi~pe.  And the relative entropy [(p.|p.) of p; relative to p, is defined in the
following ; If p;~p., then

Lpsl po)= Slog " (x)dpu(x) and otherwise I(p:] pr)=eo

It is clear that p,=p, if and only if I(p;|p.)=0. More generally, we can define
the relative entropy among covariance operators in the same way. In order to
give the quantum mechanical expression, we shall obtain the following relations
about the relative entropy among density operators.

THEOREM 5.1. Suppose that pi, ps, p, 71, 72 ave all density operators. Then
the followings hold:
(1) If pi, ps, p are commutative, then

Iap,+Bp:lp)Sal(p, | p)+BIp:lp),
where a+B=1, a, B=0.

@ (5000 |5 1:@90) =111 9+ 1(p2179),

where 0,:Qps, 71:Q7: are the covariance operators of pQ@pa, viQys, respectively,
and p,=N, p.), vi=N(, .) for i=1, 2.

Proof. (1): We may assume p,~p,~p. By commutativity, the following
spectral decompositions hold ;

PIZ;anﬂén@an; Pzngngﬁn@ﬁﬁn and P:;Cn¢n©¢n

Since p,~p and p,~p, we obtain

Z(—a’”—~—l)2<oo and Z(f[z”——l)2<oo

n Cp n n

Then eigenvalues of the operators corresponding to 7' in Proposition 2.2 are
an/cn—1 and b,/c,—1, respectively. Hence we can apply Proposition 2.2 and
we have

Ll e 9
Horl =g Big —1-los )

and similarly

I(pzlp)—ig{ -1 i: }

’IL

And since

ap1+‘8P2: ; (aan+ﬂbn)¢n@¢n

where
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%:( aan—i;ﬁbn

—1)2<00,

we have ap,+Bp.~p, and so
aan+ﬂbn}

n

1 »+Bby
I((XP1‘|',BP2| P)=—2— %{ﬁg—::‘ﬁ—“_l_’bg

Consequently
I(O(p1+,3,02 l P)éal(Pl | P)+,BI(P2| P) >

because f(x)=x—1—log (x) is convex in (0, co).

(2): We remark that p,®p,~7:Q7. if and only if p,~7, and p,~7.. By
Proposition 2.1, we have p,=»1*(I+T)71'%, where T,:&(oc), T, is zero on null
(1) and range (pi’*)=range (y1’%), and p,=7}*(I+T3)7i'%, where T.&(oc), T» is
zero on null (p;) and range (pi/?)=range (3/?). And also p,@p:=(7:Q7:)"*:
(3+2)(9:Q72)"%, where J is identity operator on HXH and ¥=T,QT, Here
T QT (x, v)=(T1x, Tyy). Let T1=Zn3tn¢n@¢n and Tzz%sm¢m©¢m. Since

‘z(ﬁén» 0):(T1¢ny TZO):(tn¢n; O)Z(tn¢ny tno):tn(¢n, 0)
(0, Qbm):(TlO; T2¢m):(0: smgbm):(smo, 5m¢m):5m(0; (/)m) s

{ta: n=1,2, -} U{sp:m=1, 2, ---} are all the eigenvalues of T. Consequently,

and

H(0:®p:l 1@ =5 Slta—log (+12)} +5 T {sn—log (1)

. :1(P1|7]1)+[(P2[772).
Since

trace (P1®p2)=SHXH lx, y””zd‘lh@yz(x, 9)
:SHXH Ux P+l I®d g @pa(x, 3)

={ Ixrdpmeo+{ 1y1dps)
=trace (p,)+trace (p2)
=2

and similarly trace (:&22)=2, (1/2)(p,&®p.) and (1/2)(%,&7,) are density opera-
tors. On the other hand,

Hp:®p: 1 @19=1( (0:Dp0) | 5 (7:®70) " -

*) More general case is obtained in the following theorem
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Thus we obtain

1(5(0:®p2) |5 0@09)=I(psl 0+ I(pal 7).

Q.E.D.

Finally, we shall obtain the following relations about the relative entropy
among general covariance operators.

THEOREM 5.2. Suppose that p., ps, ps are all covariance operators. Then
the followings hold:
a If P1= P32, then [(Pdpz)g[(lePl)o
3) If pi, p2, ps are commutative, p=p.=p; 0¥ p1=p:=p; and p,~p; or
02~ s, then
Ip1lps)=I(p1] p2)+1(p2] ps) .

Proof. (1): It is clear in the case of p,#p. If py~p, then we have p,
=p3*(I+T)p}'?, where T €(oc¢), T is zero on null(p,) and range (pi/*)=range (p3'?).

We can obtain
pie=p U+ TYW™ ®.D

where W is a partial isometry. On the other hand, we also have p,= p1/*(I-+S)pi’?,
where Se(gc¢), S is zero on null (p,) and range (p3/®)=range (p}’*>). By (5.1),

= P WHI+ WU+ T) 20l

For simplicity we can and may assume that range (p,)=range (p.)=H. Hence
I=I+TY*WH*I+SWUI+T)* and so [+S=WUI+T)*'W*. Let {s,}, {t.} be
eigenvalues of S, T, respectively. Then 1+4s,=1+t,)"* and s,=—1t,/(1-+1,).
Since p,=p,, t,=0. By Proposition 2.2,

Hpsl po)=5 2 {ta—log (1+1,)

and

Lpal 0= {2 +log (141} .

n

l—l—tn
Then we have

](P1IPZ)"I(P2[P1):—2{t + —2 log (l+tn)}

l—I—t
1
=75 ; {ta+1—(14t)" =2 log (1+t,)}.

Consequently I(p.] p:)=1(p.] p,1), because f(x)=x+1—(x+1)"'—2log (x+1)=0 in
[0, o).
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(2): 1t is clear by Proposition 2.1 and 2.2.

(3): We may assume that p,~p,~ps; By commutativity, we have p,=
0(I+T), where T &(o¢), T is zero on null (p,) and range (pi’*)=range (p3'?), and
02=p;(I+S), where Se(oc), S is zero on null (p,) and range (p}'*)=range (p3?).
Then p,=p:(I+S)I+T). On the other hand, we also obtain p,;=ps(I4-U), where
Ue(oc), U is zero on null (p;) and range (pi’*)=range (pi’?). For simplicity, we
can and may assume that range (p,;)=range (p.)=range (p;)=H. Hence U=
(I+S)T+T)—I. Let {s,}, {t.} be eigenvalues of S, T, respectively. Then
{1+s,)(1+t,)—1} are eigenvalues of U. By Proposition 2.2,

Hpsl p= SA1+ )1+~ 1—Tog (1)1 +t),

Hpil o= B lta—log (1+1,)
and
Lol p)=5 T {su—log (14 5.)}.

Hence I(p:]ps)—1(p1lp2)—1(p2| 05)=(1/2) 3 s4t,=0, because s,=0, t,=20 or s,=0,
t.=0. Consequently

[(Pl l Ps)zl(‘ol | P2)+I(le Pa) .
Q.E.D.
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Added in proof. The author was suggested by Prof. H. Araki that (1)
in Theorem 5.1 also holds in the noncommutative case. Indeed, —log (1+x) is
operator-convex in |x| <1 by the method of Nakamura-Umegaki’s paper “A note
on the entropy for operator algebras (Proc. Japan Acad., vol 37, no 3, pp 149-
154, 1961)”. Since we can reduce the case that absolute values of the eigenvalues
of present operator is less than 1, it is possible to show that (1) holds by using
the abore assertion.





