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A DUALITY RELATION FOR HARMONIC DIMENSIONS
AND ITS APPLICATIONS

By SHIGEO SEGAWA

Consider an end £ in the sense of Heins [4]. Denote by @(2) the class of
nonnegative harmonic functions on £ with vanishing boundary values on 0£.
A nonzero function hs®(2) is said to be mmmal if any g=P(2) dominated
by h is a constant multiple of A. The cardinal number of normalized minimal
functions is referred to as the harmonmic dimension of £ ([4]) which will be
denoted by dim 2(Q).

In [4], Heins showed that there exists an end with any given integral har-
monic dimension and asked whether there exist ends with infinite harmonic
dimensions. Subsequently, the existence of ends £ with dim @(2)= (the
countablly infinite cardinal number) and with dim @(2)=c¢ (the cardinal number
of continuum) were shown by Kuramochi [6] and Constantinescu-Cornea [1],
respectively.

We are particularly interested in the following criterion of Heins [4]: The
harmonic dimension of £ 1s one 1f and only if every bounded harmonic function
on Q has a Limit at the ideal boundary. Motivated by this criterion we consider
the quotient space B(Q2)=HB(2)/HB(2) where HB(2) is the linear space of
bounded harmonic functions on 2 and HB(2) the subspace of HB(Q) consist-
ing of u such that u has the limit 0 at the ideal boundary. In terms of the
dimension of the linear space ®(f2), dim #(£) in notation, the above criterion
may be restated as follows: dim P(2)=1 i/ and only i:f dim 8(Q)=1. The
Heins criterion in this formulation can be generalized as follows which 1s the
main achievement of the present paper:

THEOREM 1. If either dim ®(2) or dim B(2) s fimte, then dim @(Q)—=
dim 8(9).

The proof will be given in no. 1.3 in a more general setting. Two applica-
tions, which may have their own interests, of Theorem 1 will be discussed in
the rest. The first is concerned with a relation between harmonic dimensions
and moduli conditions which, in a sense, generalizes a result in [4] p. 215. As
the second application, an example of ends £ with dim @(Q2)=J4 will be given.
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1.1. A relatively noncompact subregion £ of an open Riemann surface is
referred to as an end ([4]) if £ satisfies the following conditions: (i) the rela-
tive boundary 0f consists of a finite number of analytic Jordan curves, (ii) there
exist no nonconstant bounded harmonic functions on £ with vanishing boundary
values on 042, (iii) £ has a single ideal boundary component. In this section,
let 2 be a relatively noncompact subregion satisfying the condition (i). Denote
by A the ideal boundary of £. Without loss of generality, we may assume that
there exists an open Riemann surface R with the exhaustion {R,};_., such that
Q=R—PR, For ucsHB(), let u, be the harmonic function on 2R, with
boundary values u|s0 on 0£2 and 0 on 0R,. Observe that lim,...z, exists and
belongs to HB(2). Set HB(2 ; f)={uc HB(2); u=lim,..u,}. For v=1cHB(2),
set e=lim,..v,. Consider the linear space B(2; f)={u/e;usHB(2; B}, its
subspace By(2; B)={weB(2; p); lim,.;w(p)=0}, and the quotient space B(L2;p)
=B(2; B)/B«(82; B). Denote by dim #(£2; ) the dimension of the linear space
B(2; B). Then we have the following duality relation (cf. [4], Hayashi [3],
and Nakai [7]):

THEOREM 2. If either dim P(2) or dim B(L; B) s finite, then dim P(2)=
dim 8(2; p).

The above_theorem irrlplies Theorem 1. In fact, if 2 sati§ﬁes the condition
(ii) then HB(£; B)=HB(2) and e=1. Hence B(2; f)=HB(2) and B.2; f)=
HBy(2), and a fortiori B(2; f)= B(2).

1.2. Consider the linear space &(2)=1{h,—h,: hy, h,= P(2)} and the bilinear
functional (w, h)—<w, h>:——Sagw*dhzgﬂow(ah/an)ds on B(2; )< &2) where

d/0n is the inner normal derivative. Set Qg:{{hEQ(Q); —S«Q*d/zzl}-.

LEMMA 1. Every we B(2; B) satisfies the following equalities:

¢y limSgp w(p)=sup<w, Qo> , lilgniﬁnf w(p)=inf <w, Qo> .
o -
Although the essence of the proof of this lemma is found in [3] and [4],
we give the proof for the sake of completeness.
Given an arbitrary cluster value « of w at 8 and a sequence {p,} in 2
such that lim,..p,=f and lim,..w(p.)=a. Observe that

1
@ u(p)=— 5, utdaC, p)

for uc HB(2 ; B), where g(-, pn) is the Green’s function on 2 with pole p,.
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Applying (2) to ew and e, we see that w(;/)n)-———ganu'*d(g(', Pn)/2mwe(pn)) and
1=—S-O*d(gK': br)/2me(pn,)). Therefore a subsequence of {g(-, pn)/2me(p,)} has

a limiting function g, which belongs to Qgp, and a:—Sﬂo w*dg=<w, g>. Thus
inf <w, Qp)=liminf w(p), limsﬁup w(p)=sup <{w, Qo> .
p—f -

Next, given an arbitrary heQp and let h,, be the harmonic function on
Rn,—R, (m>n) with boundary values hlsz, on R, and 0 on 9R,. Set h,=
limy,_ch .. Observe that

3) (&, h>=—Sagu*dh:SaRnu*d(h—hn)

e

for ue HB(Q ; B3). Applying (3) to ew and e¢, we see that

Cw, h>=SRR ew*d(h—h,) and 1=SR *d(h—hy) .

0

Since h—h,=0 on R—R,, this implies that inf;, w=<{w, h)=supr,w and a
fortiori
Iirnifglf w(p)=inf <w, Qo) , sup <w, Qg =<limsup w(p).
Fnd y2ad ]

This completes the proof.

1.3. Proof of Theorem 2. We first remark that the dimension of the
linear space &(£2), dim&(2) in notation, coincides with dim @(£2) if either
dim &(2) or dim @(2) is finite (cf. e. g. [4]).

Consider the &(£2)-kernel (B(£2; B)-kernel resp.)

Ki= N {weB; p); (w, h)=0},
ree

(K= {hee@; (w, hy=0} resp.)
wEBW2; B

of the bilinear functional (w, h)—<w, h)>. By means of (1), we have that K=
By(2; 5. Let hbein K,. Then <w, h>=g_ow(8h/an)a’s:0 for any we B(2; p)

and hence 0h/0n=0 on 02. By the fact that h=0 on 02, we conclude that
h=0 on 2 and especially K,={0}. Therefore ®(2; p)=B(2; p)/K: and &(2)
=&(2)/K, can be considered to be subspaces of £(2)* and B(£; B)* (conjugate
spaces of £(£2) and B(2; B)) respectively and in particular

dim B(Q; f)<dim &(Q)*, dim &Q)<dim B(Q; p)*.

Since finite dimensional linear spaces are isomorphic to their conjugate spaces,
it follows from the above inequalities that dim 8(2; f)=dim &£(£2)=dim P(0).
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2.1. Let 2 be an end. As in no. 1.1, £ can be considered to be a sub-
region of a null boundary Riemann surface R with a normal exhaustion {R,}5-o
(i.e. R—R, has no relatively compact components) such that 2=R—FR,. Denote
by . the harmonic measure of 0R,, with respect to Ap=R,,—FRs,-;. The

modulus of A,, mod A, in notation, is the quantity 27r/(g *a’w,,). Consider

the following conditions : M2n
(A.l) For every n=N, there exists a unique NEN such that A, consists of
N disjoint annuli Any, Ans, ), Any;

(A2) ﬁlmod Ap=-+oo.
Then we prove (cf. [4] and Kawamura [5])

THEOREM 3. If {A,} satisfies (A.1) and (A.2), the harmonic dimension of £
18 at most N.

2.2. Set p,=mod A,. The function z,=x,+iy,=pn(w.t+10%) (0} is the
conjugate harmonic function of w,) maps A,, less suitable slits on which o} is
constant, conformally into the horizontally sliced rectangle {x,+1v,; 0= x, = tn,
0=y,=2r}. Consider closed curves l,.(x,)={pE An.; Rez,(p)=x,} =1, -, N;
0=x,=p,) and set [,(x,)=\UXl,«(x,). Given arbitrary N41 functions uy, ---,
Uy in HB(2). Denote by d,,;(x,) the oscillation of u, on l,,(x,) and set

- N N+1
on(xn): E E 5n1j(xn) .
1=1 =1

We assume that §,(x,) attains its minimum when x,=t¢,. Then we have

+1 ke
NS N AR = NEY
= Vn
The Schwarz inequality yields
N+irez| Qu, |2
B=2(N+D S | |52y
J=1Jo 33/,,
Integrating both sides of the above from 0 to y, with respect to dx,, we obtain
S A2 ou,
o 2N+ 3 | S dxady, 20N 0w,
J=1.J0

where D, (u;) denotes the Dirichlet integral of u, on A,. Since each u, has
the finite Dirichlet integral on 2, we see that > ;. d%u, converges. By means
of (A.2), this yields

4) liminf §,=0.

n->co

2.3. By virtue of Theorem 1, we have only to show that there exists a
nontrivial linear combination X¥i'c,u, (c;€R) belonging to HB,(2), i.e.
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dim 8(2)<N.

By (4), we can find a subsequence {A,,} of {A,} and ¢,,€R (i=1, ---, N;
j=1, -+, N+1) such that
) lkl-r-g (pezfllz?)fnk) lus(p)=esD=0.
FOI‘ uJ:(Clh ) CNj)ERN (]:lr Tty N+1); Choose (aly Tty C(1\:’+1) (71:(01 Ty 0))6
RY+! such that 2¥3' a;u,=(0, ---, 0). Then (5) yields

. N+1
lim( max | X au;(p))=0.
k—oo pelnk(tnk) J=1

Since [/,(t,) separates [,(tn) (_m:l, -+, n—1) from the ideal boundary f, this
implies that X5 aju;€ HBo(2Q).

3.1. Consider the mapping (m, n)—p=p(m, n)=2""'2n—1) of N* to N. It
is clear that (m, n)—u(m, n) is bijective, pu(m, n)<p(m’, n’) if m=m’ and n=n’,
and that p(m, n)—oo if m—co or n—oo.

Let D, (u=p(m, n)eN) be the disk {[z—3-22#7%|<2*#7*} and S, a slit in
D,. Set

R={1<lz|<eo}=US,, F=R~UD,
n= =
and
Rn:{iz\<oo}—mcijlsy(m,n)’ Fn:Rn”“mCZID/z(m,n) (neN).

Denote by g, the Green’s function on R, and by @ the bounded harmonic func-
tion on R, with boundary values 1 on |z|=1 and —1 on \U,%, S,. By choosing
S, sufficiently small we may assume that

(S.1) lim sup w(z)>0

and

(5.2) lim inf g,(-, 2)>0.
z—00,26F

Join R, and R, crosswise along S,cm,», for every (m, n)eN?. The result-
ing surface £ is a covering surface of {|z]|<co} with the relative boundary
02=1{z=R,; |z|=1}. It is easily checked that £ is an end. We will prove
that the harmonic dimension of £ s .

3.2. Let = Dbe the projection of £. For an arbitrarily given NEN, set
Qy=02-Uli(Ronz'({lz]| =1})) and C,=R.Nnz'({lz|=1}) (n=1, -, N).
Then £y is a subend of £ with the relative boundary 09Q2,=02J(UY_, C,).
Consider harmonic measures w, (n=1, ---, N) of C, with respect to £, and an
arbitrary nontrivial linear combination w=>_, a,w, of {w, -, wy}. Choose
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a, such that |a,|=max{|ai|, .-, |ax|}(#+0). Observe that w/a,=1 on C, and
w/a, =z —1 on RNz '({|z|<1})._ By means of (S.1) this implies that
limsupy.g w(p)/a,>0, i.e. we HBy(Ly). Hence, from Theorem 1, it follows that
dim #(Qy)=N. Since dim P(Q)=dim P(Q2y) (cf. [4]) and N is arbitrary, we
conclude that dim @(Q)=A.

3.3. Consider the Martin compactification 2*=I"UQ of @ where " is the
Martin 1deal boundary of 2. Denote by 4 the set of minimal points in 77 In
the theory of Martin compactification, it is well-known that dim 2(£2) coincides
with #4 (the cardinal number of 4). Let {{,} be a sequence in £ such that
{¢;} converges to g=4. Then k,=lim,.. g(:, {,) is in ¥(£2) and minimal, where
g is the Green’s function on £. For a closed set F in £, let

(kr@)= inf (),
UE(I)(kq, 1)

where @(k,, F) is the class of nonnegative superharmonic functions v on 2 such
that v=k, on F except for a polar set.

LEmMMA 2. If U s a neighborhood of q, then (kyo-y i1s a potential and more-
over there exists a unique relatively noncompact component G of UNL such that
(kpo-v<kq on G.

For the proof we refer to e.g. Constantinescu-Cornea [2].

3.4. We are in the stage to show that dim ©(£2) does not exceed .

Consider two sequences {{’} (y=1, 2) in F, (CQ) such that lim,.. "=
(i.e. lim, {>=00 in {|z|<oo}). Choosing subsequences, if necessary, we may
assume that there exist limiting functions #k,=lim,..g(-,{{’) and h,=
Hm,.o go(+, £P) (=1, 2). From (S.2), it follows that h,/h, 1s constant (cf. e.g.
[2]). Setting h;=0 on £2—R,, h, are subharmonic and 0<h,<k, on £2. Hence
there exist least harmonic majorants ﬁJ of h,. If k, are minimal, then k,/k,
is constant since 0§ﬁ1§k, and h,/h, is constant. This implies that CI/(Fy)n4
consists of at most a single point, where C[ denotes the closure in 2% The
similar argument yields that #(CI(F,)N4)=<1 for every n=N. Consequently we
see that

®) #(UJ (CUFINA)E A

Next, suppose that there exists a g d—4, where 4,=\U5;_((CI(F)N4). Let
{€&} (c2) be a sequence converging to ¢ and k,=lim,... g(+, {,). Since 2*—F,
is a neighborhood of g, by Lemma 2, there exists a unique component G of
Q—F, such that (ky)r,<k, on G. Set

Go=R (RN (U Dymw))  (nEN).
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Observe that each G, is a subregion of 2—F, G,NG, =¢ if n+n’, and that
R—F,=U%_,G,. Hence G=G, for an neN. Since 2*—(F,JF,) is also a
neighborhood of ¢, by Lemma 2, there exists a unique component G’ of £2-—
(F\\JF,) such that (R)rur,<kq on G’. From the fact that (ko)r,=(kryur, it
follows that G’ is a component of G—F,=G,—F,. Observe that G,—F,=
(R,VR)N7 (UZ_y Dycm.ny) is a union of mutually disjoint relatively compact
subregions. This contradicts the relative noncompactness of G’. Thus 4=4,
and therefore, by virtue of (6), we conclude that dim P(Q)=#d=4#4,<A.
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