H. IMAI KODAI MATH. J. 3 (1980), 56-58

ON THE RATIONAL POINTS OF SOME JACOBIAN VARIETIES OVER LARGE ALGEBRAIC NUMBER FIELDS

By Hideo Imai

In this note we shall prove the following: Let X be a hyperelliptic curve defined over the rational number field Q and let J be its Jacobian variety. Let L be the field generated by all square roots of rational integers over Q. Then the group of L-rational points J(L) has an infinite rank over the rational integer ring Z.

In Frey and Jarden [1], the following is conjectured: Let A be an abelian variety defined over Q and Q_{ab} the maximal abelian extension of Q. Then does the group $A(Q_{ab})$ have an infinite rank over Z? Our result supports this conjecture partially.

1. Let X be a hyperelliptic curve defined by the equation (in the affine form) $y^2 = f(x)$, where f(x) is a monic separable polynomial of degree 2g+1 with coefficients in Z. Let $P_0 = (\infty, \infty)$ be the point at infinity on X, which is rational over Q. Let $z = x^g/y$ be a local uniformizing parameter at P_0 . Let $\omega_i = x^{i-1}dx/y$ ($i=1, 2, \cdots, g$) be the canonical base of the space of differential forms of the first kind on X. Writing these ω_i in terms of z and integrating ω_i formally, we get power series $\Psi_i(z) \in Q[[z]]$ such that $\Psi_i(0) = (0)$ and $\omega_i = d \Psi_i$.

LEMMA 1.

$$\Psi_{i}(z) = \frac{-2}{2g - 2i + 1} z^{2g - 2i + 1} + \sum_{n > g - i} \frac{c_{n}^{(i)}}{2n + 1} z^{2n + 1} \quad with \quad c_{n}^{(i)} \in \mathbb{Z}.$$

Proof. It is easily proved by direct computation. We outline the proof. Differentiating $z=x^{g}/y$ with respect to x, we have

$$dz = (gx^{g-1} - x^g f'(x)/2f(x))dx/y.$$

Hence we have

$$\Psi'_{i}(z) = 1/g x^{g-i}(1-xf'(x)/2gf(x))$$

We write $z = x^g / \sqrt{f(x)}$ and expand the above equation in terms of t = 1/x. Let $\Psi_i(z) = \sum_{n=1}^{\infty} a_n z^n$ and let $h(1/x) = f(x)/x^{2g+1} - 1$. After some computations we get

Received January 17, 1979

$$-2t^{g-\iota}\sum_{n=0}^{\infty}(th'(t)/(1+h(t)))^n = \sum_{n=1}^{\infty}na_n(t/(1+h(t)))^{(n-1)/2}.$$

Our assertion follows from this directly.

Put $\Psi(z) = {}^t(\Psi_1(z), \dots, \Psi_g(z))$ a g-dimensional column vector.

2. Now let I = Jac(X) be the Jacobian variety of X. Choose an imbedding $\Lambda: X \to J$ defined over Q such that $\Lambda(P_0) = 0$ the identity point of J. Let y_1, \dots, y_d be rational functions on J defined over Q such that they constitute a system of local uniformizing parameters at 0. Let η_1, \dots, η_g be invariant differential forms on J defined over Q such that $\omega_i = \eta_i \circ A$ $(i=1, 2, \dots, g)$. It is well known that these η_1, \dots, η_g form a base of the space of invariant differential forms on J. As η_i is closed (cf. [2], Proposition 1.3 and Lemma 1.4), there exists a formal power series $F_i(y_1, \dots, y_g) \in Q[[y_1, \dots, y_g]]$ such that $F_i(0, \dots, 0)=0$ and $\eta_i=dF_i$. Let $F={}^t(F_1, \dots, F_g)$ and let \hat{f} the formal group of J. From [2], Proposition 1.1 and Theorem 1, there is a matrix $A \in GL_g(Q)$ such that $AF(y) \equiv y \pmod{\deg 2}$ and $AF: \hat{J} \rightarrow \hat{G}_a^g$ is a strong isomorphism over Q where \hat{G}_a is the formal group of the additive group. From [2], Proposition 1.1, we see that each component of the differential d(AF) is obtained from differentiating the formal group law of \hat{J} . Hence for a prime p at which J and y_i , η_i (i=1, ..., g) have good reduction, the coefficients of d(AF) are p-adic integers. Hence if we write the *i*-th coordinate of AF as $\sum_{n_1,\cdots,n_g} a_{n_1,\cdots,n_g} y_1^{n_1} \cdots y_g^{n_g}, \text{ we shall have } v_p(a_{n_1,\cdots,n_g}) \ge -\min_{1 \le j \le g} v_p(n_j) \text{ were } v_p \text{ is the}$ *p*-adic additive valuation. From this we see that AF is convergent in sufficiently small neighbourhood of 0 in the *p*-adic topology. The inverse function theorem (cf. [3], LG 2.10) implies the following:

LEMMA 2. Let p be a prime at which J and y_i , η_i ($i=1, \dots, g$) have good reduction, then $(AF)^{-1}$ is convergent in sufficiently small neighbourhood of 0 in the p-adic topology.

3. From the equation $\omega_i = dF_i \circ \Lambda = d\Psi_i$, we have $\Psi_i = F_i \circ \Lambda$ i.e., $\Psi = F \circ \Lambda$. We take a prime p at which J and y_i , η_i have good reduction. Let K/Q_p be a finite extension, P be a K-rational point of X and let m be an integer. As $AF: \hat{J} \rightarrow \hat{G}_a^g$ is an isomorphism, $m\Lambda(P) \in J(K)$ may be computed as $m\Lambda(P) = (AF)^{-1}(m\Lambda\Psi(P))$ when the right hand side converges.

Especially we consider the point $P=(1/p^{\alpha}, \sqrt{f(1/p^{\alpha})})$ where p is a prime with the above good reduction condition and α is a sufficiently large odd integer. Let $c=p^{(2g+1)\alpha}f(1/p^{\alpha})$, then $c\in \mathbb{Z}$ and c is coprime to p. Let K= $Q(\sqrt{c/p})$, then P is rational over K. As p is ramified in K, we write $p=\mathfrak{p}^2$ and let $K_\mathfrak{p}$ be the \mathfrak{p} -adic completion of K. We consider the point P as a $K_\mathfrak{p}$ rational point. For the local parameter $z=x^g/y$, the value of z at P is given by $z_p=\sqrt{p^{\alpha}/c}$. From Lemma 1, $\Psi(P)=\Psi(z_p)$ is convergent in the \mathfrak{p} -adic

HIDEO IMAI

topology. From Lemma 2, $(AF)^{-1}(mA \Psi(z_p))$ also coverges for sufficiently large α .

LEMMA 3. For almost all primes p, if an odd integer α is taken sufficiently large, $m\Lambda(P)$ is not Q-rational for any non-zero integer m where $P=(1/p^{\alpha}, \sqrt{f(1/p^{\alpha})})$.

Proof. We exclude the prime p=2, the primes at which J, y_i , η_i have bad reduction and the primes p such that there exists a non p-unit a_{ij} for the matrix $A=(a_{ij})$. For a prime p, take an odd integer α sufficiently large so that in the expansion $\Psi(z_p)$, the term $-2z_p$ has smaller \mathfrak{p} -adic valuation than any other terms (-2z is the smallest degree term in the expansions of the coordinates of $\Psi(z)$). We take α more large if necessary, so that the last coordinate of $(AF)^{-1}(\Psi(z_p))$ has \mathfrak{p} -adic valuation $v_{\mathfrak{p}}(z_p)$ (note that $AF(y)\equiv y \mod \deg 2$). Suppose $m\Lambda(P)=Q$ was a Q-rational point of J. Then the value Q_i of y_i at Q is a rational number. Hence $v_{\mathfrak{p}}(Q_i)$ is an even integer (for the \mathfrak{p} -adic valuation, $v_{\mathfrak{p}}(p)=2$). On the other hand it can be seen easily from what the above said, that some coordinate of $m\Lambda(P)=(AF)^{-1}(m\Lambda\Psi(P))$ has \mathfrak{p} -adic valuation $v_{\mathfrak{p}}(z_p)+v_{\mathfrak{p}}(m)$ which is an odd integer since $v_{\mathfrak{p}}(z_p)=\alpha$ is odd. This is a contradiction.

THEOREM. Let $L = Q(\sqrt{d} | d \in \mathbb{Z})$. Then the group of L-rational points J(L) has an infinite rank over \mathbb{Z} .

Proof. The proof is entirely similar to that of [1], Theorem 2.2. We include it for the convenience of reader. For a prime number p_i , put $c_i = p_i^{(2g+1)\alpha_i}f(1/P_i^{\alpha_i})$ as before, with α_i a sufficiently large odd integer. We take an infinite sequence of primes $\{p_n\}_{n=1}^{\infty}$ such that J and y_i , η_i have good reduction at p_n , and that $Q(\sqrt{c_1/p_1}, \dots, \sqrt{c_n/p_n}) \cap Q(\sqrt{c_{n+1}/p_{n+1}}) = Q$ for all n. For example, take inductively a prime p_{n+1} unramified in $Q(\sqrt{c_1/p_1}, \dots, \sqrt{c_n/p_n})/Q$ with the above good reduction condition. Put $P_i = (1/p_i^{\alpha_i}, \sqrt{f(1/P_i^{\alpha_i})})$, then we claim that $\{\Lambda(P_i)\}_{i=1}^{\infty}$ are linearly independent over Z. Suppose there was a relation $m_1\Lambda(P_1) + \dots + m_n\Lambda(P_n) = 0$ with $m_n \neq 0$. Write this as $m_1\Lambda(P_1) + \dots + m_{n-1}\Lambda(P_{n-1}) = -m_n\Lambda(P_n)$. The left hand side is $Q(\sqrt{c_1/p_1}, \dots, \sqrt{c_{n-1}/p_{n-1}})$ -rational and the right hand side is $Q(\sqrt{c_n/p_n})$ -rational. Hence $m_n\Lambda(P_n)$ must be a Q-rational point. This contradicts to Lemma 3.

References

- [1] G. FREY AND M. JARDEN, Approximation theory and the rank of abelian varieties over large algebraic number fields, Proc. London Math. Soc. 28 (1974), 112-128.
- [2] T. HONDA, On the theory of commutative formal groups, J. Math. Soc. Japan, 22 (1970), 213-246.
- [3] J-P. SERRE, Lie algebras and Lie group, Benjamin Inc. New York, (1965).

Department of Mathematics College of general Education Tohoku University Kawauchi, Sendai, Japan.