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TOTALLY COMPLEX SUBMANIFOLDS OF A QUATERNIONIC
KAEHLERIAN MANIFOLD

By SHOICHI FUNABASHI

§1. Introduction.

We consider some kinds of submanifolds in a quaternionic Kaehlerian
manifold M i. e., those invariant, totally real and totally Ncomplex submanifolds.
These submanifolds are curvature invariant (see §6). In M, invariant or totally
real submanifolds are defined as quaternionic analogues of corresponding sub-
manifolds in a Kaehlerian manifold ([6], [9]). It is known that each invariant
submanifold of M is totally geodesic. But in general an n-dimensional totally
real submanifold of M is not necessarily totally geodesic (see [3]). We shall
define totally complex submanifold in §2 and prove in § 2 that a totally complex
submanifold is minimal.

In the present paper, totally complex submanifolds of a quaternionic
Kaehlerian manifold will be studied and the so-called pinching problem of the
length of the second fundamental form will be discussed as quaternionic ana-
logues of the arguments developed in [6] and [9] for submanifolds of a
Kaghlerian manifold. Our main result is stated in the following main theorem
which will be given in §5. In the following theorem and hereafter, we mean
by a complex space form (resp. a quaternionic space form) a Kaehlerian
manifold with constant holomorphic sectional curvature (resp. a quaternionic
Kaehlerian manifold with constant curvature).

MAIN THEOREM. Let M?" (n=2) be a 2n-dimensional compact, connected and
complete submanifold of a 4n-dimensional quaternionic projective space HP™ with
constant Q-sectional curvature 4. Assume that M®* 1s totally complex in HP™ and
the second fundamental form H of M*®* satisfies the wnequality

4n(n-+3)
2L TN T
|Hp< =5

|H| being the length of H. Then M*®*" 1s congruent to the complex projective space
CP™ of complex dimension n, which 1s naturally umbedded wn HP™ as a totally
geodesic submanifold.
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We define totally complex submanifolds and give their fundamental pro-
perties in §2. We also prove in §2 that if a totally complex submanifold is
totally geodesic in a quaternionic space form A7[, then it is a complex space
form, and that if a totally complex submanifold is totally umbilical in M, then
it is totally geodesic. §3is devoted to obtain algebraic properties of the second
fundamental tensor and the structure equations of Gauss, Codazzi and Ricci of
a totally complex submanifold of a quaternionic space form. Moreover we
prove in §3 that if for an n-dimensional totally complex submanifold M of a
quaternionic space form M of dimension 4n the connection in the normal bundle
is flat, then both M and M are also flat. In §4, the Laplacian of the square
of the length of the second fundamental tensor is obtained by a straightforward
computation and a pinching theorem is proved by using the well known in-
equality given in [2]. We remark in §5 that the complex projective space
imbedded naturally in HP™ is the standard model of totally complex submani-
folds. In the last §6, we give an algebraic theorem of a kind of subspaces in
a quaternionic Hermitian vector space (This theorem was announced by S.
Ishihara in 1975). This algebraic theorem is very useful in studying submani-
folds of a quaternionic Kaehlerian manifold.

For geometric objects concerning quaternionic Kaehlerian manifolds, we use
the same notations as in [3] and [4] (for detailed discussions, see Ishihara [4]).
Manifolds, mappings and geometric objects under discussions are assumed to be
of class ¢*. Unless otherwise, we use the following conventions of indices:

hy1, g, k=1, -, 4n;x, v, z=2m~+1, -+, 4n;
a,b,c,d, e f=1,,n;ab,¢éd e f=1, -,
a*, b*, c*, d*, e*, fr=1%, .. n*;a*, 5*, c*, C]*, z*, f*:j* N
S, t=1%, oo ¥, %, oo | ¥,
The author wishes to express his sincere thanks to Professor S. Ishihara

who gave him many valuable suggestions and directions, and also thanks to his
colleague Dr. K. Sakamoto who gave him valuable advices.

§2. Totally complex submanifolds.

Let M* be a 4n-dimensional quaternionic Kaehlerian manifold covered by
a system of coordinate neighborhoods {{J} and its quaternionic Kaehlerian
structure bg dgnoted by (g, 17) (see, [4]). Then there exists a canonical local
basis {ﬁ, G, H} Nof the 3-dimensional vector bundle V consisting of tensors of
type (1, 1) over M*® such that

(2.1)

~NoA~ ~ ~ A

CH=—HC=F, HF=—FA=G, FG=—GF=H

in each local coordinate neighborhood U, where I is the identity tensor field
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of type (1, 1) on M4, Moreover, the local tensor fields F, G and H are almost
Hermitian with respect to § and the equations

V3F= FXG —a(HA,
2.2) ViG=—HX)F +HOH,

Vefl= XF —pX)G
are satisfied for any vector field X on A7[4”, vV denoting the Riemannian con-
nection determinedbe the Riemannian metric g, where p, 7 and # are local 1-
forms denfined on U.

We take grbitraNry intersgctigg ~coordinate neighborhoods [Z and~ U’ and

denote by {F, G, H} and {F’, GN’, HN’} canonical local basis of V in { and U’
respectively. Then we have in UNnU’

F F
(2.3) G =G| G |,
a i

where the (3, 3)-matrix Sg,7 =@Guv), (v, v=1, 2, 3) is a function defined on OAD"
and taking its values in the special orthogonal group SO(3) of degree 3.

Since the vector bundle V admits the fibre metric {,> we may consider
the unit sphere bundle S which consists of unit elements with respect to <{,>.
Let M be a Riemannian submanifold immersed in M by an isometric immer-
sion f:M— M*. We denote by V the connection induced on T(M)PNM),
T(M) and N(M) being the tangent bundle and the normal bundle of M re-
spectively. When we restrict V to 7(M), this connection V coincides with the
Riemannian connection on M. Consider the pullback f*§ of 8. Then the
following diagram is commutative, where 7 is the restriction of the projection
V — Mm,

~ f N
AS——— S
L7V L

M M

A submanifold M is called a totally complex submanifold of M if the
following two conditions (i) and (11) are satisfied :
(i) There is a global section j of f*§ satisfying VX] 0 for any vector

field X tangent to M. N .
(ii) For each point x in M and each element K, of the fibre (/*S), such

that K, is orthogonal to fx, the algebraic conditions
2.4) Jo(ToMN=To(M), K(T(M)LT(M)

are satisfied, where the symbol | means to be orthogonal and the tangent space
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T (M) is identified with its image under the differential fx of the isometric
immersion f.

Remark. By a plane section of a manifold, we mean a 2-dimensional linear
subspace of a tangent space. Then the condition (ii) is equivalent to the con-
ditions :

(2.5) JooCT(M), K,ol T (M)

for any plane section ¢ at each point x in M because of (2.3).
We define in M a tensor field J of type (1, 1) by

(2.6) JY=JY,

Y being an arbitrary vector field on M and we denote by g the Riemannian
metric of M. Then M is of even dimension and a pair (g, J) is an almost
Hermitian structure. Similarly, we give in N(M) a tensor field J of type (1, 1)
defined by

@2.7) Je=Je,

& being an arbitrary vector field normal to M and denote by g the metric in-
duced in N(M). Then the pair (g, J) is an almost Hermitian structure of N(M).
Let M*™(m=n) be a 2m-dimensional totally complex submanifold of M and
(g, J) be its almost Hermitian structure induced from (g, V) Take a coordinate
neighorhood U in M?™ and cons1der cross-sections ], K and L are local cross
sections such that the triple {J, K, I} is an orthonormal basis of f*5. For this
cross-sections /, K and L, the equation (2.2) can be represented by

(2.8) Vef=0, ViK=p)L, VxL=—3X)K,

X being an arbitrary vector field on M?™,

Let denote by D the connection induced in the normal bundle N(M®™).
Then the induced metric & of N(M?®™) is parallel with respect to D and the
Gauss-Weingarten formulas are given by

(2.9) VY=V Y+HX,Y), Vif=—AX+Dxé

for any vector fields X and Y on M?™ and each normal vector § where H is
the second fundamental form of M?™ and A, is a local field of symmetric linear
transformation of the tangent space of M?™ defined by g(4:X, Y)=g(H(X, Y), §).
Then we have H(X, Y)=H(Y, X). Applying Vx to (2.6) and (2.7) and taking
account of (2.9), we easily see that
VxJ =0, ij =0,

(2.11) .
HJX, V)=HX, JY)=JHX, Y),

because M?™ is totally complex. Thus we have
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PROPOSITION 2.1. Let (M, & V) be a quaternmonic Kaehlerian manifold of
dimension 4n and M*™ (m=n) a 2m-dimensional totally complex submanifold of
M. Then M*™ admits a Kaehlerian structure (g, J) wnduced naturally from a
quaternionic Kaehlerian structure (g, V) of M and the normal bundle N(M?™)
also admits a complex structure J induced from (g V) such that V=0, X being

a vector field tangent to M®*™,

The equation (2.11) implies
(2.12) H(JX, JY)=—HX, Y).
Thus we have

PROPOSITION 2.2. Let (M*", 8 V) be a quatermonmic Kaehlerian manifold of
dimension 4n and M*™ (m=n) a 2m-dimensional totally complex submanifold of
M, Then M®*™ 1s minimal.

When M*" is a 4n-dimensional quaternionic space form of constant Q-
sectional curvature & we denote such a space by M**(¢). As is well known
(cf. 14)), the curvature tensor R of M**(¢) has the form

(2.13) B, "=¢/4{IXNV+EXNFY+CXNCY+AXANAY
—23(FX, VYF—28(CX, V)G—25(HX, V)
for any vector fields )? and ¥ on ]\714”(c), where {F, G, H } is a canonical local

basis of M“‘(c) and XAY is defined as (XA Z=5F, 2)X—5(X, Z)¥ for any
vector field Z in M‘“‘(c) (see [4]).

Now we take on U a local field of orthonormal frame {e;, -, €sm, Com+1, ***»
¢4} of M* such that ey, -+, e, are tangent to M®™ and eyp4q, v, €4, DOrmal
to M?™. Let A,=A,, (x=2m+1, -+, 4n). Using (2.13), the structure equation

of Gauss is given by

(2.14) R(X, Y, Z, W)y=¢/4{g(XNY)Z, W)+g(JXN]Y)Z, W)
~200X, V)gUZ Wh+ 3 g(AXNAYIZ, W)

for any vector fields X, Y, Z and W of M®*™, R being the curvature tensor of
M*™, where we have put R(X, Y, Z, W)=g(R(X, Y)Z, W). We can see from
(2.14) that the general sectional curvature k(X, Y) of M®*™ determined by
orthonormal vectors X and Y tangent to M?*™ is given by

(2.15) kX, V)=¢/4{14+3g(JX, V)3 +g(H(X, X), HY,Y)—g(H(X, Y), HX,Y)).

Thus the holomorphic sectional curvature z(X) of AM*™ determined by unit
vector X is given as

(2.16) (X)=c—25(H(X, X), HX, X)).
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Let S be the Ricci tensor of M?*™, Then we have from (2.14)
2.17) S(X, Y):—;—(m—l—l)fg(X, Y)—x=§+1g(AIX, A.Y)
for any vectors X and Y of M*™ because M?™ is minimal. This implies the
scalar curvature p of M*™ is given by
(2.18) p=m(m+1)¢—| H|?,

where |[H||? is the length of the second fundamental form of A*®*™ so that
(2.19) IH|P= 3 tr A2.
r=2m+1

Therefore, we have from (2.16), (2.17) and (2.18)

PRrROPOSITION 2.3. Let 1\7[4"(5) be a 4n-dimensional quaternionic space from of
constant Q-sectional curvature ¢ and M*™ (m<n) a 2m-dimensional totally complex
submanifold of 1\714"(6). Then

(1) =(X)Z¢ for each umit vector X tangent to M®*™,

(2) S—%(m—l—l)fg 1s negatwe semidefinite,
3) p=m(m+1)e.
Moreover we have from the same equations (2.16), (2.17) and (2.18)

THEOREM 2.4. Let ]\7[4"(5) be a 4n-dimensiwonal quaterniomic space form of
constant Q-sectional curvature ¢ and M*™ (m<n) a 2m-dimensional totally complex
submanifold of M“‘(E). Then M?™ 1s totally geodesic 1f and only 1f M*™ satisfies
one of the following conditions (1)~(3):

(1) «(X)=¢ for each umit vector X tangent to M*™;

2 S:—é—(m-i—l)?g ;
3) p=mlm+1)e.

As is well known, a totally umbilical submanifold is totally geodesic if and
only if it is minimal. Then we have from Proposition 2.2 and 2.4

PROPOSITION 2.5. Let ]\7‘”’(5) be a 4n-dimensional quaternionic space form of
constant Q-secthnal curvature ¢ and M*™ (m=n) a 2m-dimensional totally complex
submanifold of M*™(&). Suppose that M*™ 1s totally umbilical. Then M?™ 1s totally
geodesic and hence a complex space form of constant holomorphic sectronal cur-
vature ¢C.

§3. Second fundamental tensors and structure equations.

Let (1\714", g, V) be a quaternionic I§aehlerian manifold of dimension 4n and
M?™ a totally complex submanifold of M**. We take a coordinate neighborhood
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U in Me». Let {J, K, I} be a triplet of local cross sections of M satisfying
the conditions (i) and (ii) and the same equations as (2.4) stated in §2. We
take now a local field of symplectxc frame {el, e, ene1=Jey, -+, e —je,, Jep=
Kel, oo, en*-Ke,,,e1 Lel, “ee ent—Len} of M such that ey, -+, en, €1, =+, €z
are tangent to M?" and ey, .-+, e, e, +-*, ez normal to M?". With respect to
this symplectic frame field {e,, ¢s, €4+ €s}, the complex structure J of M®** is
represented as

0 —E,
3.1 j:( >,
E, 0

E, being the identity matrix of degree n. The induced metrics g of M** and
£ of the normal bundle N(M?®") are given respectively by

(3.2) g=( 8va  Sova ):( Gpa 0 )}
S5a  Soa 0 O
33) g:<gb‘a* gb*a*>=< Opa 0 >
Grar Lprar 0 O
Moreover the Gauss-Weingarten formulas (2.9) are represented as
3.4 b—Veceb—{—E(ch ‘gt Hyp%es.),
(3.5) ee05= Veoeit 2 (Hs" eartHes™ear) s
(3.6) eéeb:VeEeb—l—Z(Héb eart+Hp%ear)
(3.7 0005=Veye5+ 3 (Hes™ €0+ Hes™2) »
(3.8) Ve,er=—ApectDe ey,
(3.9 Vece,—,.:—A,;*ec—l—Dece,;* s
(3.10) V., 00=—Agec+D, ey,
(3.11) V. ep=—Apes+D, 5,

where we have put Hle,, e,,)=§(ch“'ea.+ch"“eﬁ.) and so on. Taking account
of (2.8) and using (3.4) and (3.5), we get
S(Hegeat Hy"ea) =2 (— Ha™ et Haear)
which implies
(3.12) Hyoo=—Hgory,  Hepor=Hae,

where we have put Hyo=Hu%Zawar Hpa=Hu¥gss and so on. By similar
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devices, we have from (3.7)
(3.13) His0o=— Hepary Hisar=Hzpgr -

Taking account of (2.8) and (3.8), we get

Ab*ec:%) (Hp*e,—Hep" es)

which implies
(3.14) Hyor=Hgpe s Hepao=—H ap .

By similar computaions for (3.9), (3.10) and (3.11), we have

LEMMA 3.1. Let (]\7[4", 2 V) be a quatermonic Kaehlerian 1’71an£f01d of dimen-
ston 4n and M*™ a 2n-dimensional totally complex submanifold of M*™. Then

cha*: cEd*:Hch*:_Hdéb*
(3.15)
== cab':HcaE*:Hdbé’:—HdEc":
chd*:_HcBa*:"Hdcb*:'_HééE*;
(3.16)
- caE*:_Hc&b*:‘_Hﬁ.bc*:'_Héﬁé*-
If we define symmetric matrices Hy« and H;- of degree n by
(317) Ha*:(cha‘) » Hé*:(chd*) >

then the local fields A,. and Az. of symmetric linear transformations assosiated
to the fundamental form H are represented respectively by

cha" Hcl?a" Ha* '—Hé*
(3.18) Ag= = ,
éba* HEEa,* _H&* "Ha.‘
Hao Hegax H;. H,.
(3.19) A= _
Hepa Hesar H,. —Hg.

because of Lemma 3.1 and hence the suquare of the length of the second funda-
mental form H is given by

(3.20) ||H]]2———4§‘,1 tr (Hp2+ Hg?) .

As an immediately consequence of (3.18) and (3.19), we have
(3.21) tr Aa*Ab*—_—tr A@~A5*=2 tr (Ha‘Hb*_i_HdtHl;t) y
(3.22) tr AG»Ag.z—tr Aa*A,,*ZZ tr (Hatng—‘Habe*) B

which imply
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(3.23) % (tr Ag-Ap)'=4 ; (tr Ho-Hy4tr HyoHy)?

a 1 a 1

(3.24) ; (tr Ag-Ag)*=8 zb: ((tr HaeHyp ) —(tr HooHy)(tr HooHy)

a7t a5
Next, from (3.1), (3.18) and (3.19), we obtain

(3.25) JAp=—AsJ=As

for each index a. Therefore we have

(3.26) Ag?=Ae%  (ApAe)=—(AgAp)?.
We prepare the following three lemmas for later use.

LEMMA 3.2. The following equations hold -

(3.27) > tr (A, A—AA)y=—8 ; tr Ag2Ay?
% b=

a 1

=—4 3 {(tr A Ap)H(tr Aeds)}

a 1

(3.28) tr (S ADP=4 3 tr Ag.2A,

a,b=1

-2 %
, b=

a

{(tr AgeAp)*+(tr AgeAp)?} = > (tr A;A,)°.

1

Proof. Using (3.26), we have
é}l tr (A, A,— A, Ag)P=—2 ; tr (A2A,2—(A;A))=—8 thr AglAp.

On the other hand, we have using (3.15), (3.16), (3.18), (3.21) and (3.22)

ZZL tr Ag2Apt=2 thr (Hy*Hy*+Ho2Hy 2+ Ho 2 Hy + Hp* Hy %)

a 1

+2 Zb[tr (Ha*Hﬁ*HI;«Hb‘—Ha‘deHb*Hﬁt
'—Hd*Ha*HB‘Hb‘—I_H&‘Ha,‘Hb*HS*)]
=2 2 P {(era*Heda*Hdcb‘Hcfb‘+era'Heda*Hdcﬁ‘HcfE“

a,b,cd,e,

+erd‘Hed&*Hdcb*Hcfb*+erd*Hedﬁ.’Hd05‘H0f5‘
+era,‘Hedd*HdCE*Hcfb'_era‘HedE‘Hdcb‘HcfE*
_erﬁ*Heda*Hdcl?'Hcfb*+er&*Heda*Hdcb‘Hcf5‘>}



TOTALLY COMPLEX SUBMANIFOLDS 323

=2 %, {(tr HooH ' +2(ex HoH o HyHp)+ (e HaH )

+(tr H5~Hf.)2—2(tr H@*Hf«)(tr Hdef~>+<tr deHjc>2}
=2 X L{tr (Hy-H oot Ha-Hyo)*+ {tr (Hy-Ha— Hy-Ho )}

1 2 , ,
:? E {(tr A_pAd*)‘%—(tr Afojt)z} .
d, f=1
Therefore, we have proved (3.27). Since we have from (3.26)
tr (3 A%)2=4 Z;’ tr AgAy?,

we see easily that (3.28) is obtained from the equation mentioned above.
Q.E.D.
We now consider the following matrix B of degree 2n:

< tr Aa*Abc tr AaxAgc )

( tr Ag.A, trAa*A,;*)
tr Agedp tr AgeAs ’

—tr Ag. Az tr Ag Ay
Then the quantity

S (tr AA)=2 33 ((tr Agr AV (tr Ao As))

a 1

is a scalar invariant, that is, it does not depend on the choice of the normal
vectors ey, -+*, €4+, @i, >+, ez consisting the symplectic frame {eq, ¢a, €4, €a+}.
Moreover we have

_ LEMMA 33. For a switable choice of a symplectic frame {eq, €a, €a:, €a'} of
M**, the equation tr A;A,=0 for s=t holds and consequently we have

(329) 3 (o A A) S 5 IHI*.

Proof. Consider the matrix B mentioned above. Then B is a Hermitian
matrix. Take an another symplectic frame {e’,, ¢’s, ¢’4., ¢’3.} and deote by B’
the corresponding matrix for this symplectic frame. Then we have B'=‘UBU,
U being a unitary matrix of degree 2n such that its real representation satisfies

n n
e’y: 0.21 (eaanb—edtUab) y e’,;\z a,gl (ea.U@,,—}—ed.Uab) .
Therefore, the matrix B can be diagonalized for a suitable normal basis e;., -+,

e v, ++*, €3y, that is,
tr A2 0
t{UBU= s
0 trAZ

U being the real representation of a unitary matrix. Thus we obtain
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Zt (tr A;A)'=23 (tr A%)?,
which implies

3 (tr A AU tr A= LI

This proves Lemma 3.3. Q.E.D.

We are now in position to give the structure equations of totally complex
submanifold of a quaternionic space form. Let 1\71‘”‘(5) be a quaternionic space
form of dimension 4n and of constant Q-sectional curvature ¢ and M?" a 2n-
dimensional totally complex submanifold of A7I4"(c~). With respect to the ortho-
normal frame {ey, -+, e,, €1, -, e;}, we put

RdcbazR(edy €c, €, ea)’ Rdcbd:R(ed, €y €y, é@),

RdEE&:R(ed) €z, €5 eﬁ.)) R(icbﬁ:R(e&: €¢y €oy ed)’ Tty
and
Scbzs(ec; ), Ses=S(e., e) , Ses=S(es, ),

where R and S are the cuvature tensor and the Ricci tensor of M?" respectively.
We have then from (2.14) and Lemma 3.1 the following structure equations of
Gauss :

(3-30) Rdcba:Rchci:R(iEEd:i‘(adaacb—adbaca)

+4§ (Hdae*che*+Hdaé‘ché‘_Hdbe‘Hcae""Hdbé‘ché*) s

(331) Rdcbzi:Ze (Hd ae'ché‘—Hdaé‘che“!"Hdbe'Hcaé“"Hdbé*Hcae') s
(332) Rd6562§ (HdaE*che’—Hdae'ché'+Hdbe*Hcaé*_'Hdbé*Hcae*) s
(3'33) Ricbc‘z:'%(5da5cb+5dbaca+25d05ba)

—ZC) (Hd ae‘che*‘l'Hdaé*ché*+Hdbe*Hcae‘+Hdbé*Hcaé‘) .

Using these equations above, the Ricci tensor S of M?*" has the following com-
ponents.

1 X
(334) Scb:SEEZ'2—(n+1)6500_2dze(Hdce*Hbde‘+Hdcé‘Hbdé*) B
(3-35) Si= —Sab=2dZ‘é (Hdbé‘Hcde*—'Hdbe‘Hcdé*) .
For any vectors X, ¥ and Z tangent to M?*®, we have from (2.13)

BX, NZ= (XA Z+(JXAN]Y)Z—28(X, Y)]X}

N
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because M?" is totally complex. Thgrefore [R(X, Y)Z1¥=0, where the left hand
side is the normal component of R(X, Y)Z. Thus we obtain the following
equation of Codazzi.

(3.36) (NxH)Y, 2)—(NyHXX, Z)=0

for any vectors X, Y and Z tangent to M?®", that is,
vdcha‘_vcHdba‘:O » Vdcha*—vCH&ba‘:() ,

(3.37) . ) )
Vdcha‘—vcHdbu‘ZO » v&cha'—-VCH&bd'IO y

where we have put
(VH)(eq, e, eb):; (VaHe*)ear+(VeHp ™ )ess)

and so on.

Moreover we shall give the equation of Ricci. Let X and Y be arbitrary
vectors tangent to M?®* and & and 7 arbitrary vectors normal to M?". If we
denote by R¥ the curvature tensor of the connection D induced in the normal
bundle N(M*"), that is,

RN(X, Y)E:DXDYE—DYDXE—D[X.Yf;
then we have
(3.38) RYX, Y, & n)=R(X, Y, & n)+g(lA:, A,1X), Y),

where RY(X, Y, § n)=F(RY(X, Y)§, 5) and [A, A,]J=A:A,—A,A:. For our
symplectic frame {eq, es, ¢4+, ¢a+}, We put

RNdcb‘a‘:RN(edy Ccy Cpvy ea‘)) RNicb‘li‘:RN(eJ: €cy Cpry ed‘)
and so on. Using (2.13) and Lemma 3.1, the equation (3.38) of Ricci reduces to
¢
(3.39) RNdcb*a*:RNch‘d‘:RN&éb*a‘:RN&EP&*:Z(adaacb_adbaca)

+; (Hdea’Hceb'—Hcea’Hdeb‘+Hde&‘Hcez}'—'Hceﬁ‘Hdeﬁ*) »

(340) RNticb*d‘:_ (5da5cb+5dbaca‘25d05ba>

~M sb[f‘sz

+ (Hdea*Hceb"I'Hcea‘Hdeli*+Hdeﬁ*Hce5*‘|‘Hcea'Hdeb') >
(3.41) RNdcb‘d‘:RNﬁEb‘ﬁ‘

:; (Hdezi‘Hceb"_ Hced*Hdeb’—'Hdea*Hce5* +Hcea‘Hdel3‘) »
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(342) RY e as=R" gc5var
= Ze) (Hyea-Heesr— HeearHaerr— Hyea-Heer - Heear Haepr)
Then we have

PROPOSITION 3.5. Let A7I“‘(6), (n=2), be a 4n-dimensional quaternionic space
Jorm with constant Q-sectional curvature ¢ and M®™ a totally complex submanifold
M), If the connection D wnduced in the normal bundle N(M®™) is flat, then

=0 and M*®** 1s also flat.

Proof. Assume that the connection D induced in the normal bundle N(M?")
is flat. Then we have from (3.39), (3.41) and (3.42)

T Gaadar—0ubed)+ 3 (Haaw Hovor - Hage Hore

_Hdbe'Hcae*_Hdbé‘Hca.é‘):O ’
Ze (Hdae'ché‘_Hdaé‘che‘+Hdbe‘Hcaé‘_Hdbé‘Hcae*)ZO ’

Ze (Hdaé‘che‘_Hdae‘ché‘+Hdhe‘Hcaé‘"'Hdbé‘Hcae‘)zo

by virtue of (3.15) and (3.16). Taking account of the equations above and the
equations of Gauss (3.30), (3.31) and (3.32), we get

Ricwa=Racsa=Ris5a=0, Rica=0, Rasa=0.
Since RV ze5-=0, we have from (3.40)

; (Hd ae*che"‘I'Hd aé'ché‘+ Hdbe*Hcae‘+Hdbé*Hcaé*)

= (GaaBort-0usdca—20uc010) -

Therefore (3.33) reduces to Rga=0804.050. Using the first Bianchi’s identities
and Rg;5=0, we obtain

Resaa+Rsaca=0.
Hence we have

E(abcada_abdaca):o )
which implies n(n—1)¢=0. Since n=2, we have #=0 and hence R;.,;=0. This
proves our assertion. Q.E.D.

§4. Totally complex submanifolds of a quaternionic space form.

In this section, we are going to give the basic theorem of the present paper.
First we compute the Laplacian of the square of the length of the second
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fundamental tensor. Let 1\7[4”(6) be a quaternionic space form of dimension 4n
and of constant Q-sectional curvature ¢ and M?*" a totally complex submanifold
of A7I4"(5). As stated in the previous sections, we denote by H the second
fundamental form of M?". Then the Laplacian of the length of H satisfies

(41) %A”H”224[(Vdvdcha*_‘_v&Vécha*)HCba*
+(V9V g Hepar+V V3 Hepao) H ¥ I+ | VH| *

because of (3.20) and Lemma 3.1, where V¢=g%¥, and V¢=g%V, and we have
used Einstein summation convention. Since M?*" is minimal (see, Proposition 2.2),
we have

VdVdcha‘+V&vécha':Scdeba*—Sc&Hdbﬁ.'
"’Recdeeda*’I"Recb&Hedd'+Récdeedd*+Récb&Heda'
_Reca'd‘Hebd*—Reca‘&‘Heb&*'l‘Réca,'d‘Heb&‘—'Réca*a*Hebd' ’

where H%:.=g%%Hpa+, Recv®=Rocrag??, -+ and where we have used the equation
of codazzi (3.37) and Lemma 3.1. Moreover, substituting the equations of Gauss
((3.30), (3.31), (3.33), (3.34), (3.35)), and the equations of Ricci ((3.39), (3.40), (3.41),
(3.42)) into the equation mentioned above, we have
42) (V49 4 HopqA- V2T g Hop ) H = %(n+3)c~ 3 tr

—6 Eb[(tr H,.Hy.)*+(tr Hy.H,.)(tr Hs.Hjz.)

+(tr HoeHy)*—(tr Hg-Hy)(tr Ho-Hy)J .

By the same way, we have
43) (V4 Hopgr V4 g Hopg Y HH = - (92 3 tr Ho?
—6 aEh [(tr Hg-H5.)*+(tr Ho-H,)(tr Hg Hs.)
+(tr Hg Hy)*—(tr Hg-Hy)(tr Hy.Hz)] .
Substituting these identities (4.2) and (4.3) into (4.1), we obtain
(4.4) -%—AIIHHz: —;—(n +3)¢| H|*—24 g‘z(tr HyHy+-tr HyeHpe)?
—48 gb[(tr HaHyp)?—(tr HoHyp)(tr Ho-Hy)]+|VH| 2.

Taking accout of (3.23), (3.24), (3.27), (3.28) and Lemma 3.3, and substituting
these equations into (4.4), we have

PROPOSITION 4.1. Let M*™#) be a quaternionic space form of dimension 4n
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with constant Q-sectional curvature ¢ and M*" a totally complex submanifold of
M), Then

45) 3 AIH*= o (n 43 HI*—6 T [(tr A Ap)+er AgeAs I+ TH]?

1 ~
=5 (L HI*+ 2 tr (A A= AA)— 3 (tr AA) -+ VH|®

1
= 7(71 +3)¢| H||*+ .;L tr (A;A;— A, A — ? (tr A2 +||[VH|?.
Now we refer to the following well known lemma.

LEMMA 4.2 ([2]). Let A and B be symmetric matrices of degree n. Then
—tr (AB—BA)*<2tr A*tr B?,

and equality holds for nonzero matrices A and B if and only if A and B can be
transformed simultaneously by an orthogonal matrix wnto scalar multiplies of the
followwng matrices A and B respectively;
01
0
1 0]
0 |o 0

A=

Moreover, if A,, A;, A; are symmetric matrices of degree n such that
—tr (A, Ap—ApAs)=2tr A tr Ag?, 1a, B=3, axp,

then at least one of the matrices A, must be zero.
Since A,*=Ag* holds for each a by means of (3.26), we have

gttr Al tr A,2=2(a§ tr Ag2tr A2+ GZ% tr Ag2 tr Ap?)
=4 Zb tr Ag-?tr Ap2+2 3 (tr Ag-%)2.
ax a

Using this equation, Lemma 3.4 and the equation (4.5), we obtain

1

(46) S AIHI=1 NI+ S tr (A A=A AY— 3 (er A+ VHI?

=+ (n+3)¢| H||*—2 Z}t tr A2 tr A — 3 (tr A%+ VH|?

(n+3)¢| HHZ—SEbtr Agltr Ap®—6 X (tr A2 || VH|?

—~ o= o= ]

:?(n+3)c~||H|[2—4[2 3 tr Agter Al,ﬁ+-§— S (e Aa.2)2]+uvm|2
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_1 aEnesal 1 o
= (n+3)e| H| +4[ g Z(tr Agi—tr 4,

(2 5 (B tr 4wy +ITHI:
= %[(n+3>5—(2— —217;)HH\\2] Pzl

+4[7177 e Agt—tr A0 +[THI,
Therefore, we have

THEOREM 4.3. Let A7I‘”’(6) be a quaternionic space form of dimension 4n
(n=2) and of constant Q-sectional curvature ¢ (¢>0). Let M*" be a 2n-dimensional
compact totally complex submanifold of M*™&). If the second fundamental form
H of M*®" satisfies the inequality

n(n+3)
Hlz< 2N &
|Hps 0
then M?®" is totally geodesic and hence M?" 1s of constant holomorphic sectional
curvature C.

Proof. Assume that ||H|*<[n(n+3)/(4n—1)]¢. Applying a well known
theorem of E. Hopf to (4.6), we have A|H|*=0, so that |H|*=0, i.e.,, H=0.
This means that M?" is totally geodesic. When |H|*=[n(n+3)/(4dn—1)]¢, the
square of the length of H is constant. Therefore, we obtain Al H|?*=0 so that
equality holds in the inequality (4.6). From this facts, we have

4.7 tr (AsA,— A; A)t=—2tr A tr A,? for s=t,
(4.8) tr Ag2=tr Ay for a=b.

Since the indices s and ¢ run over the range 1%, -, n*, 1%, ..., 7%, at most two
of the matrices A, -+, Ag., A, -+, Az are nonzero because of Lemma 4.2.
On the other hand, taking account of (3.25) and (3.26), we have

Agl=0 if and only if A;=0.
tr (AgsAp— Ay Agr)?=—2tr Ag2 tr Ay® if and only if
tr (AgAsp— ApAg)i=—2tr Azl tr Azp®.
tr (AgeAp— A5 Ag)?=—2tr Azl tr Az’ if and only if
tr (AgeAp—ApAg)'=—21tr Az tr Ap.

Hence only A, and Az may not vanish for some a. Without loss of generality
we may assume a*=1% A,.=0 and A3;=0 for b=2, ---, n and that tr(A;.Ap—
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A Ap)?=—2tr A% tr A1.>. However, according to Lemma 4.2, A,. and A;. have
the special form A,=214 Ai*zyﬁ respectively. But we have from (4.8) tr A=
222=0, tr Ap>=2p*=0. Hence we have 41=0 and p¢=0 so that A,,=0 and Ay=0.
Therefore, in this case, M?" is totally geodesic. Q.E.D.

Next we consider a totally complex submanifold which is an Einstein space.
First, we prove the following lemma for later use.

LEMMA 4.4. Let 1\71‘”‘(5) be a quaternionic space form of dwmension 4n and
of constant Q-sectional curvature ¢ and M*" a 2n-dimensional totally complex
submanifold of M*™¢). Assume that M*" 1s an Einstein space. Then

Il HJ*

(4~9) tr AawAbx:tr AQ'AI;.:Tn—

50177

(4.10) tr AgAz=0

for each a, b=1, -+, n.
Proof. Since M*" is an Einstein space, the equation (3.34) reduces to

_ 1 X __ 1Al
202(Hdac*Hbdc"}’Hdae'Hadé*)*fn—(n(?’l‘*‘l)ﬂ‘ p)aab“——‘ﬁ—aaby

o being the scalar curvature of M*", where we have used (2.18). Using Lemma
3.1, we have

CEd(Hdac‘Hbdc‘+Hdué*Hde‘):tr (Ha‘Hb‘+Hd*H5‘) .

From this and (3.21), we obtain (4.9).
As similar way, taking account of Lemma 3.1 and (3.22), we have

tr Ag-Ap=2tr (Ha‘Hﬁ"—Hd'Hb*):z Ed (Hdca‘Hch?’—Hdcd*Hcdb*)
=2 :L—l:i(Hdbé"Ha.dc‘—Hdbc‘Hadé‘):Sa5:0 s

because M?" is an Einstein space. Thus we obtain (4.10). Q.E.D.
Corresponding to Theorem 4.3, we have the following

THEOREM 4.5. Let ]\7[“‘(5) be a quaternionic space form of dimension 4n and
of constant Q-sectional _curvature ¢ (c>0) and M?*™ a 2n-dimensional totally
complex submanifold of M*™(¢). Assume that M?" is an Einstein space and that
the second fundamental form H of M*®*® satisfies the inequality

n(n+3)
—*—“—3 C.

Then M®" is totally geodesic and hence M*®*" a complex space form of constant
holomorphic sectional curvature ¢.

I1H|*<
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Proof. By our assumption and the previous Lemma 4.4, we have from (4.5)

1 1
o AlH|*= 5 (n+ 3| HI*—6 2 (tr Ae-Ap)*+ | VH]?

= L 0(n+3)— S| HITIIHIPZ0.

Since M?*""is Einstein, we get A|H||?*=0 by the theorem of E. Hopf. We have
then ||H||=0 so that M?" is totally geodesic. Q.E.D.

§5. Totally complex submanifolds of HP".

In the previous sections, we have obtained the fundamental properties of
totally complex submanifolds of a quaternionic Kaehlerian manifold. In this
section, the first what we do is to give an example of totally complex sub-
manifold of a quaternionic space form. We use the same notations as used in
[3]. Let {§ 5, {} be a Sasakian 3-structure on S****induced from the standard
quaternionic structure {/, /, K} of the (4n-+4)-dimensional Euclidian space R*"**
whose components have the form

0 —E| —E 0
0 0
E 0 0 —E
6.1 I= —| = J= - ,
0 E E 0
0 0
i—E 0 0 E
0 E
0
—E 0
K=f—————,
0 E
0
—E 0;

E being the unit matrix of degree n+1 (see [5] and [8]). Let #:S****— HP"
be the Hopf fibration. Then, as is well known, HP" is a quaternionic space
form of constant @-sectional curvature 4 (see [4]).

Consider the (2n+1)-dimensional unit sphere S?"*! defined by S*"*'={p=
(x, v, 0, 0)| p=S3, x=(x° -+, x™), y=(»°, ---, y™} which is a totally geodesic
submanifold of S***%, We denote by % the induced connection on S®***!. Since
the structure vector & is tangent to S*"*! and % and { are normal to S***!, a
Sasakian structure & of S2**! is induced from £ on S**® and &, coincides with
the Sasakian structure induced from the natural complex structure [, of the
(2n+2)-dimensional Euclidian space R*"*?, where [, has the same components
as J appearing in (3.1). Moreover we consider a tensor field ¢,=V§&, of type
(1, 1) in S?**1. If we denote by 7:S%**'— S***3 the inclusion map, then i.&=¢&.
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Let {p, ¢, 6} be the triplet of the structure tensor fields for the Sasakian 3-
structure {&, 7, {} (see [8]). Take an arbitrary point p in S***1. Then (T ,(S***"))
is a subspace in T,(S?"*!) transversal to (&), such that T ,(S*™**) L¢(T ,(S***),
T (ST LO(T ,(S***%). Moreover for every point p of S***!' each of linear
subspaces (T ,(S**)), H(T ,(S***1)) and O(T,(S***")) is horizontal in S**** with
respect to the Hopf fibration #:S***®— HP™,

We now consider the Hopf fibration z:S%***'— CP". Then the natural
Kaehlerian structure (g, J) of CP™ is given by g(X, Y)er=g(m+X%, 7+Y%) and
szn*(gooXL) for any vector fields X and Y in CP™, where nx is the differential
of the submersion = and X” denotes the unique horizontal lift of X (see [1]
and [7]). Therefore we have an isometric immersion 7:CP" — HP™ such that
the following diagram is commutative. Then CP™ is totally geodesic, ix&=¢,

Szn+1 Sdﬂ+3
l T l %
cpr HP"

and the almost complex structure J induced in cpr comc1des with that induced
from F belonging toa canonical local basis {F, G H} defined as FX= n*(goX ),
CX= ‘r*(goXL) and AX= u(ﬁXL) for each vector field X tangent to HP™ (see [5]).
Therefore, we see easily from the theory of Riemannian submersion ([5], [7])
that CP" is a totally complex submanifold of HP".

Similarly, the complex projective space CP™ of complex dimension m (m=n)
is a totally geodesic and totally complex submanifold of HP™ with constant
holomorphic sectional curvature 4. We call such a submanifold CP™ (m<n) the
standard totally complex submanifold of HP™.

We now give the following rigidity theorem for totally complex submanifold
of a quaternionic space form as the results analogous to those proved in [3].

THEOREM 5.1. Let HP™ be the 4n-dimensional quaternionic projective space
and M?™ (m<n) a connected and complete 2m-dimensional submanifold of HP™.
Assume M?™ is totally geodesic and totally complex. Then M*™ is congruent to
the standard complex projective space CP™ of complex dimension m.

As the immediate consequence of Theorems 4.3 and 5.1, we have our Main
Theorem mentioned in § 1.

§6. Appendix; Subspaces of a quaternionic Hermitian vector space.

An algebraic theorem. We here prove an algebraic theorem classifying the
subspaces of a quaternionic Hermitian vector space under the some condition.

Let W*" be a real vector space of dimension 4n with a posmve definite
inner product {,», and {F G H} be a quatermomc structure on W*", which
satisfies (2.1). Assume that each F, G and A are Hermitian with respect to
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the inner product <,>. In such case, W is called a quaternionic Hermitian
vector space. We denote by |X| the length of a vector X in W*" and by Q(X)
the Q-section determined by X which is defined in [4], that is,

QX)) ={V|V=aX+bEX+cGCX+dAX ;a, b, ¢, d=R} .

Suppose that there is given an m-dimensional linear subspace W™ (m<4n)
of Wr, When W™ satisfies the condition that FWm=Wm, GWm=W™ and HW™
=W™, we call W™ a wvariant subspace. When W™ satisfies the condition that
Fwmn=wm, wm | GW™ and W™ HW™, we call W™ a totally complex subspace.
In addition, when W™ satisfies the condition that W”‘J_F‘W”‘, Wm 1 GW™ and
W”‘J_ﬁW’", we call W™ a totally real subspace.

We now prove the following Lemmas 6.1~6.5. In this section, let’s consider
a linear subspace W™ of W:¢" having the following property

(6.1) FY, X>FX+<CY, X>CX+<AY, XoHX=Wn
for any vectors X and Y in W™

LEMMA 6.1. Let Y and Z are arbitrary vectors of W™ where the vector Z 1s
assumed to be orthogonal to each of FY, GY and HY. Then we have

(6.2) CFY, XoFZ+<(GY, X>CZ+<AY, XyHZ=Wn
for any vector X of W™,

Proof. Let X be an arbitrary non-zero vector of W™, Replacing X in (6.1)
by X+Z, we have

FY, X+2ZYFX+2)+<GY, X+2>G(X+2)+<HY, X+Z>H(X+2)
=(FY, X>FX+<GY, X>GX+<HY, X>HX
H(EY, X5EZH<CY, X>GZ+<AY, X>HZ=Wn

which implies from (6.1) that <FY, X)FZ4+<GY, X>GZ+<HY, Xy HZe W™,
Q.E.D.
We denote by Q(Z) a linear closure generated by FZ, GZ and HZ for any
vector Z in W™. Let X be an arbitrary fixed non-zero vector in W™, We now
consider the following four cases:

Case 1. dim (W"NQ(X)=0, i.e, FX, GX, HXeW™;

Case 2. dim (W"NQ(X)=1, i.e, FXeW™, GXeW™ and HX&W™;
Case 3. dim (W"NQ(X)=2, i.e., FX, GXeW™ and AXeW™;
Case 4. dim (WNQ(X)=3, i.e, FX, GX, HXsW™

LEMMA 6.2. In the case 1, the linear subspace W™ 1s a totally real subspace
of W provided that m=n.



334 SHOICHI FUNABASHI

Proof. When m=1, Lemma 6.2 is trivially established. So, we may assume
that 2=<m. By the assumption, it is clear that each of vectors F‘X, GX and
HX does not belong to W™, Take an arbitrary vector Y in W™ such that Y is
orthogonal to X. We are going to show that dim (W™~\Q(Y))=0. To do so,
taking account of (6.1), we have (EFY, X>EX4+<(GY, X>GX+<HY, X>HX=W™.
On the other hand, since dim (W™~Q(X))=0, this implies

(6.3) (X, FY>=<(X, GY>=<(X, BY>=0.

Assume that there is a linear combination a FY+bGY+cHY belonging to W™
for some real number a, b and ¢. However, as was proved by (6.3), X orthogonal
to FY, GY and HY. Then we have from Lemma 6.1

CFY, aBY+bGY+cHYSFX+<GY, aFY+bGY+cHYYGX
< BY, aFY G Y+ cAYYHX=CY, Y aFX+bGX+cHX)sWm.

Thus, since dim (W"NQ(X)=0, we get a=b=c=0 so that dim (W"NQ(Y))=0.
Since (FY, X>FY4<(GY, X>GY+<HY, Xy HY W™ because of (6.1), we have
<ﬁY, X>:<§Y, X>:<ﬁY, X>=0. Therefore, W™ is totally real, because Y is
taken arbitrary in W™ Q.E.D.

LEMMA 6.3. In the case 2, the linear subspace W™ 1s of even dimensions m=
2p (p=n) and W™ 1s a totally compelx subspace of W*™.

Proof. Clearly, we have m=2. When m=2, the lemma is obviousely true.
So, we may assume that m>2. Take any non-zero VectorNY in WN/"‘ such that
Y is orthogonal to X and ﬁX, where Fxewr, Since~<G Y, X)GX+<I-1Y, X>
HXxe W™, we have <GNY, X>:<P7Y, X>=0 because of GX&E W™ and Axewn,
Hence Y is also orthogonal to the Q-section Q(X)DQ(X). This implies by
Lemma 6.1 that [X|*fYeW™ Thus, as | X|=0, we have FY<W™. Finally,
we shall show that both GY and HAY do not belong to W™, To do so, we
assume that GY W™, Since Y is orthogonal to Q(X), we easilNy see that GX
is orthogonal to Q(Y). Using Lemma 6.1, we have <V, FYYFGX+<GY, FY)
G*X+<HY, FYyHGX=|Y|* HXe W™, which contradicts AX< W™, since | Y] 0
and |X|20. By a similar way, we have GY& W™, Therefore, we can conclude
that W™ is even dimensional and that FVe wm, KGY, X>=<HY, X>=0 because
of (6.1). Since Y is a non-zero vector arbitrary taken in W™, the subspace W™
is totally complex. Q.E.D.

LEMMA 6.4. The case 3 does not occure.

Proof. We assume that the Case 3 occures for W™. Suppose that m>3.
Then we can take a non-zero vector Y in W™ such that Y is orthogonal to X,
FXand GX. On account of 6.1), we get <HY, X>HX=W™ which implies that
<ﬁY, X>=0. This means that Y is orthogonal to the Q-section Q(X). Hence
we have, from Lemma 6.1, <FX, FX)FY4+<GX, FX)CX+<HX, FX)HAX=
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[[X[]ZﬁYe Wm. Thus, since |X|=0, it follows that FYeWwn, But, as Y is
orthogonal to the Q-section Q(X), we get <FY, ﬁY>ﬁ§X—|—<C~}Y, FyyGe:x+
Ay, FY yHGX=|Y|*HX=W™ by Lemma 6.1. Since AXe&W™, we have Y=0,
which is a contradition. Next, we assume that m=3. Then W™ is spanned by
X, FX and GX. We now take a non-zero vector Z= X+FX+GX in W™ By a
straightforward computation, we have FZ=— X—I—FX—|—HX, GZ-—X-{—GX 1204
and HZ=—FX+GX+HX which do not belong to W™. This means that dim
(Wm~Q(Z))=0. Consequently, the linear subspace W™ is totally real as a con-
sequence of Lemma 6.2. Therefore, we have dim (W”~Q(X))=0, which con-
tradicts the assumption that dim (W™\Q(X))=2. Q.E.D.

LEMMA 6.5. [In the case 4, the linear subspace W™ 1s a wmvariant subspace of
wee,

Proof. Since dim (W™N\Q(X))=3, we have Q(X)CW™. When Q(X)=W™, the
lemma is obviously true. So, we may assume that dim W™>4. Take an arbitrary
non-zero vector Y in W™ which is orthogonal to the Q-section Q(X). Substitut-
ing FX for X and Y for Z in Lemma 6.1, we have |X|2FY<=Wm™. Hence we
obtain FYeWm™ because of IX]|#0. In addition, we easily see that both GY
and HY are orthogonal to the Q sectlon Q(X) Puttmg Y=X and Z=GY in
Lemma 6.1, we have (FX, FX>FGY+<GX FX>GY+<HX, FX>HGY—|IX[(2HY
e W™ which implies that HYE Wm. Putting Y=2X and Z=HY in Lemma 6.1,
by similar devices, we have Gyewn, Summing up, we can see that the linear
subspace W™ is invariant. Q.E.D.

Taking an element §=(8,,) (u, v=1, 2, 3) of the special orthogonal group
SO(@3), we can defined by (1.3) the action of § on quaternionic structures
{F, G, 1-7} on W', So, the group SO(3) acts transitively on the set of all
quaternionic structures in W*". Taking account of this fact and summing up
the Lemmas 6.2~6.5 obtained above, we have

THEOREM 6.6. Let W*™ be a quatermonic Hermitian vector space with positive
definite inner product {,> and quatermonic structure {F, G, H}. Let W™ (m=4)
be an m-dimensional linear subspace of W**. Then W™ satisfies the property

BY, XoFX+<GY, X>CX+<AY, Xo>HxesWn

for any vectors X and Y wmn W™ 1f and only 1f W™ 1s one of the following

(1) W™ 1s a wmvariant subspace of Wee, that 1s, Wm=W;

2) Wm™isa totally real subspace of W', that 1s, W™ 1 W, where W denotes
the divect sum FW’"@GW”‘@HW”‘ and the symbol L shows to be orthogonal,

3) Wm™isa totally complex subspace of W' that 1s, jW”‘-—W"‘ for some
complex structure ] such that ] aﬁ+bG+cH a*+0*+-c*=1 where a, b, ¢ are
real numbers.

Curvature wmvarant submanifolds. Let M“‘(E)N be a 4n-dimensional quater-
nionic space form and M a submanifold of AM**7). If we denote by R the
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curvature tensor of NNI“"(E), then R has the form of (2.13). Take an arbitrary
point x in M and consider the tangent space T,(M) at x. If for any vectors
X and Y in T (M)

(6.4) RX, YXT(M))CTT (M)

holds, then we call M a curvature wnvariant submanifold of 1\7[“‘(5). Taking ac-
count of (2.13) and (6.4), we have easily

PROPOSITION 6.7. Let M*™(¢) be a quatermonic space form of constant Q-
sectional curvature & (¢x0) and of dimension 4n (n=2). Let M be a submanifold
of A/{‘”(f). Then M 1s a curvature wmvariant submanifold of M) 1of and only
of (EY, X>OFX+<GY, X)GX+<HY, X>HX is tangent to M for any vector fields
X and Y tangent to M, where {,) 15 the Riemannian metric of M*™¢).

Let {A7[“", g " be a 4n-dimensional quaternionic Kaehlerian manifold and
M a submanifold of M*‘". If each tangent space at each point in M is invariant,
we call M an invariant submanifold of M*". By the same way as mentioned in
[3] or §2, we see that each invariant submanifold of M** is totally geodesic.
If each tangent space at any point in M is totally real, we call M a totally real
submanifold of M*" ([3]). We see easily that any invariant or totally real or
totally complex submanifold of ]\714"(6) is curvature invariant.
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