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TOTALLY COMPLEX SUBMANIFOLDS OF A QUATERNIONIC

KAEHLERIAN MANIFOLD

BY SHOICHI FUNABASHI

§ 1. Introduction.

We consider some kinds of submanifolds in a quaternionic Kaehlerian
manifold M i. e., those invariant, totally real and totally complex submanifolds.
These submanifolds are curvature invariant (see § 6). In M, invariant or totally
real submanifolds are defined as quaternionic analogues of corresponding sub-
manifolds in a Kaehlerian manifold ([6], [9]). It is known that each invariant
submanifold of M is totally geodesic. But in general an n-dimensional totally
real submanifold of M is not necessarily totally geodesic (see [3]). We shall
define totally complex submanifold in § 2 and prove in § 2 that a totally complex
submanifold is minimal.

In the present paper, totally complex submanifolds of a quaternionic
Kaehlerian manifold will be studied and the so-called pinching problem of the
length of the second fundamental form will be discussed as quaternionic ana-
logues of the arguments developed in [6] and [9] for submanifolds of a
Kajehlerian manifold. Our main result is stated in the following main theorem
which will be given in § 5. In the following theorem and hereafter, we mean
by a complex space form (resp. a quaternionic space form) a Kaehlerian
manifold with constant holomorphic sectional curvature (resp. a quaternionic
Kaehlerian manifold with constant curvature).

MAIN THEOREM. Let M2n (n^2) be a 2n-dimensional compact, connected and
complete submanifold of a An-dimensιonal quaternionic projective space HP71 with
constant Q-sectional curvature 4. Assume that M2n is totally complex in HPn and
the second fundamental form H of M2n satisfies the inequality

||//|| being the length of H. Then M2n is congruent to the complex projective space
CPn of complex dimension n, which is naturally imbedded in HPn as a totally
geodesic submanifold.
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We define totally complex submanifolds and give their fundamental pro-
perties in § 2. We also prove in § 2 that if a totally complex submanifold is
totally geodesic in a quaternionic space form M, then it is a complex space
form, and that if a totally complex submanifold is totally umbilical in M, then
it is totally geodesic. § 3 is devoted to obtain algebraic properties of the second
fundamental tensor and the structure equations of Gauss, Codazzi and Ricci of
a totally complex submanifold of a quaternionic space form. Moreover we
prove in § 3 that if for an n-dimensional totally complex submanifold M of a
quaternionic space form M of dimension An the connection in the normal bundle
is flat, then both M and M are also flat. In § 4, the Laplacian of the square
of the length of the second fundamental tensor is obtained by a straightforward
computation and a pinching theorem is proved by using the well known in-
equality given in [2]. We remark in § 5 that the complex projective space
imbedded naturally in HP71 is the standard model of totally complex submani-
folds. In the last § 6, we give an algebraic theorem of a kind of subspaces in
a quaternionic Hermitian vector space (This theorem was announced by S.
Ishihara in 1975). This algebraic theorem is very useful in studying submani-
folds of a quaternionic Kaehlerian manifold.

For geometric objects concerning quaternionic Kaehlerian manifolds, we use
the same notations as in [3] and [4] (for detailed discussions, see Ishihara [4]).
Manifolds, mappings and geometric objects under discussions are assumed to be
of class c°°. Unless otherwise, we use the following conventions of indices :

h, i, j , k = l , ••• y An) xf y, z=2m+l, •••, An

a, b, c, d, e, f=l, •••, n ά, b, c, d, e, f=l, ••• , n

a*, b*, c*, d*, e*, f*=l*, •••, n * a*, b*, c*, d*, e*, / * = ! * , - , w*

5, t = l*, " , n*, 1*, •••, w*.

The author wishes to express his sincere thanks to Professor S. Ishihara
who gave him many valuable suggestions and directions, and also thanks to his
colleague Dr. K. Sakamoto who gave him valuable advices.

§ 2. Totally complex submanifolds.

Let Min be a 4n-dimensional quaternionic Kaehlerian manifold covered by
a system of coordinate neighborhoods {0} and its quaternionic Kaehlerian
structure be denoted by (g, V) (see, [4]). Then there exists a canonical local
basis {F, G, H) of the 3-dimensional vector bundle V consisting of tensors of
type (1, 1) over M4n such that

F2=G2=H2=-Ϊ,

( 2 1 ) -HG = F, HF=-FH=G, FG = -GF=H

in each local coordinate neighborhood 0, where / is the identity tensor field
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of type (1, 1) on M47\ Moreover, the local tensor fields P, G and H are almost
Hermitian with respect to g and the equations

(2.2)

f{X)G

= q{X)F -p{X)G

q(X)ff,

are satisfied for any vector field X on Min, V denoting the Riemannian con-
nection determined by the Riemannian metric g, where p, q and f are local 1-
forms denfined on 0.

We take arbitrary intersecting coordinate neighborhoods 0 and 0' and
denote by {P, G, H) and {Pf, G', H'} canonical local basis of V in 0 and ϋf

respectively. Then we have in Ur\U/

F' I F

(2.3)

Hf

where the (3, 3)-matrix Sΰ,ΰ,=(suυ), (u, v=l, 2, 3) is a function defined on ϋr\U'
and taking its values in the special orthogonal group SO(3) of degree 3.

Since the vector bundle V admits the fibre metric <, >, we may consider
the unit sphere bundle S which consists of unit elements with respect to <, >.
Let M be a Riemannian submanifold immersed in M471 by an isometric immer-
sion f:M-*M4n. We denote by 7 the connection induced on T(M)(&N(M),
T(M) and N(M) being the tangent bundle and the normal bundle of M re-
spectively. When we restrict 7 to T(M), this connection 7 coincides with the
Riemannian connection on M. Consider the pullback f*S of S. Then the
following diagram is commutative, where π is the restriction of the projection
V — Min.

f*S-

f
M

A submanifold M is called a totally complex submanifold of M 4 n if the
following two conditions (i) and (ii) are satisfied:

(i) There is a global section / of f*S satisfying VXJ=O for any vector
field X tangent to M.

(ii) For each point x in M and each element Kx of the fibre (f*3)x such
that Kx is orthogonal to Jx, the algebraic conditions

(2.4) JX{TX(M))=TX{M), KX(TX(M))±TX(M)

are satisfied, where the symbol J_ means to be orthogonal and the tangent space
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TX(M) is identified with its image under the differential /* of the isometric
immersion /.

Remark. By a plane section of a manifold, we mean a 2-dimensional linear
subspace of a tangent space. Then the condition (ii) is equivalent to the con-
ditions :

(2.5) JxσcTx(M), Kxσ_LTx(M)

for any plane section σ at each point x in M because of (2.3).
We define in M a tensor field / of type (1, 1) by

(2.6) JY=JY,

Y being an arbitrary vector field on M and we denote by g the Riemannian
metric of M. Then M is of even dimension and a pair (g, J) is an almost
Hermitian structure. Similarly, we give in N(M) a tensor field / of type (1, 1)
defined by

(2.7) ]ς=jξ,

ξ being an arbitrary vector field normal to M and denote by g the metric in-
duced in N(M). Then the pair (g, J) is an almost Hermitian structure of N(M).

Let M2m(m^n) be a 2ra-dimensional totally complex submanifold of Min and
(g> J) be its almost Hermitian structure induced from (g, V). Take a coordinate
neigborhood U in M2m and consider cross-sections /, K and L are local cross
sections such that the triple {/, K, L] is an orthonormal basis of /*S. For this
cross-sections /, K and L, the equation (2.2) can be represented by

(2.8) V j - 0 , VxK

X being an arbitrary vector field on M2m.
Let denote by D the connection induced in the normal bundle N(M2m).

Then the induced metric g of N(M2m) is parallel with respect to D and the
Gauss-Weingarten formulas are given by

(2.9) VXY=VXY+H(X, Y), Vxξ=-AξX+Dxξ

for any vector fields X and Y on M2m and each normal vector ξ, where H is
the second fundamental form of M2m and Λξ is a local field of symmetric linear
transformation of the tangent space of M2m defined by g(AξX, Y)=g(H(X, Y), ξ).
Then we have H(X, Y)=H(Y, X). Applying V* to (2.6) and (2.7) and taking
account of (2.9), we easily see that

(2.11)
HUX, Y)=H(X,JY)=JH(X, Y),

because M2m is totally complex. Thus we have
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PROPOSITION 2.1. Let (MAn, g, V) be a quaternionic Kaehlerian manifold of
dimension An and M2m (m^n) a 2m-dimensιonal totally complex submanifold of
MAn. Then M2m admits a Kaehlerian structure (g, J) induced naturally from a
quaternionic Kaehlerian structure (g, V) of M4n and the normal bundle iV(M2m)
also admits a complex structure J induced from (g, V) such that Vχ/=0, X being
a vector field tangent to M2m.

The equation (2.11) implies

(2.12) H(JX,JY)=-H(X, Y).

Thus we have

PROPOSITION 2.2. Let (M4n, g, V) be a quaternionic Kaehlerian manifold of
dimension An and M2m (m^n) a 2m-dιmensιonal totally complex submanifold of
Min. Then M2m is minimal.

When Min is a 4n-dimensional quaternionic space form of constant Q-
sectional curvature c, we denote such a space by M4n(c). As is well known
(cf. [4]), the curvature tensor R of MAn(c) has the form

(2.13) R(X, Ϋ)=C/A{XAΫ+FXAFΫ+GXAGΫ+HXAHΫ

-2g{FX, Ϋ)F-2g{GX, Ϋ)G-2g{HX, Ϋ)H}

for any vector fields X and Ϋ on Min(c), where {F, G, H} is a canonical local
basis of Min(c) and^ZΛf is defined as (XAΫ)Z=g(Ϋ, Z)X-g{X, Z)Ϋ for any
vector field Z in MAn(c) (see [4]).

Now we take on U a local field of orthonormal frame {ely •••, e2m, e2m+i, •••,
e4n} of Min such that elf •••, e2m are tangent to M2m and e2m+i, ~ , e4n normal
to M2m. Let Ax=Aeχ {x^2mJ

Γl, •••, An). Using (2.13), the structure equation
of Gauss is given by

(2.14) R(X, Y, Z, W)=c/A{g({XAY)Z, W)+g((JXAjY)Z, W)

-2g(JX,Y)g(JZ,W)}+ Σ g(ίAxXΛAxY)Z,W)
x=2τn+l

for any vector fields X, Y, Z and W of M2m, R being the curvature tensor of
M2m, where we have put R(X, Y, Z, W)=g(R(X, Y)Z, W). We can see from
(2.14) that the general sectional curvature k (X, Y) of M2m determined by
orthonormal vectors X and Y tangent to M2m is given by

(2.15) k(X, Y)=c/A{l+3g(JX, Y)2} +g(H(X, X), H{Y, Y))-g{H{X, Y), H{X, Y)).

Thus the holomorphic sectional curvature τ(Z) of M2m determined by unit
vector X is given as

(2.16) τ(X) = c-2g{H(X, X), H(X, X)).
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Let S be the Ricci tensor of M2m. Then we have from (2.14)

(2.17) S(X, Y)=-ϊr(m+l)cg(X, Y)- Σ g{AxX, AXY)
Z x=2τn + l

for any vectors X and Y of M2m because M2m is minimal. This implies the
scalar curvature p of M2m is given by

(2.18) p=m(m+l)c-\\H\\\

where \\H\\2 is the length of the second fundamental form of M2 m so that

Σ(2.19) \\H\\= Σ
x=2τn + l

Therefore, we have from (2.16), (2.17) and (2.18)

PROPOSITION 2.3. Let M47i(c) be a An-dimensional quaternionic space from of
constant Q-sectional curvature c and M2m (jn^n) a 2m-dimensιonal totally complex
submanifold of M*n(c). Then

(1) τ(X)^c for each unit vector X tangent to M2m,

(2) S—— (m+ΐ)cg is negative semidefinite,
Li

(3) p^m

Moreover we have from the same equations (2.16), (2.17) and (2.18)

THEOREM 2.4. Let M4n(c) be a An-dimensional quaternionic space form of
constant Q-sectional curvature c and M 2 m (m^n) a 2m-dimensional totally complex
submanifold of MAn(c). Then M2m is totally geodesic if and only if M2m satisfies
one of the following conditions (1)~(3):

(1) τ(X)=c for each unit vector X tangent to M2m

(2) S=j(

(3) p=m(

As is well known, a totally umbilical submanifold is totally geodesic if and
only if it is minimal. Then we have from Proposition 2.2 and 2.4

PROPOSITION 2.5. Let M4n(c) be a An-dimensional quaternionic space form of
constant Q-sectional curvature c and M2 m (m^n) a 2m-dimensιonal totally complex
submanifold of M4n(c). Suppose that M2m is totally umbilical. Then M2m is totally
geodesic and hence a complex space form of constant holomorphic sectional cur-
vature c.

% 3. Second fundamental tensors and structure equations.

Let (M471, g, V) be a quaternionic Kaehlerian manifold of dimension An and
M2n a totally complex submanifold of M4n. We take a coordinate neighborhood
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U in M2n. Let {/, K, L) be a triplet of local cross sections of M2n satisfying
the conditions (i) and (ii) and the same equations as (2.4) ̂ stated in §2. We
take now a local field of symplectic frame {elt •••, en;eι=Jelf •••, efί=Jen'te1*=
Kelt -" , en*=Ken e - v = L e l f •••, e n * = L e n } o f M 4 n s u c h t h a t eu •••, en, e-ly •••, en

are tangent to M2n and eλ*, •••, en*, e\*, •••, ̂ * normal to M2 n. With respect to
this symplectic frame field {ea, ea, ea*, βa*}, the complex structure / of M2n is
represented as

/ 0 -En

(3.1) / =
\En 0

En being the identity matrix of degree n. The induced metrics g of M2n and
g of the normal bundle N(M2n) are given respectively by

(3.2) * (
\ gha gbd

(3.3) * = ( )(

Moreover the Gauss-Weingarten formulas (2.9) are represented as

(3.4)

(3.5)

(3.6) e ί

(3.7) ^ ί aβ5=7, β j+Σ (H^'e
c a

(3.8)

(3.9)

(3.10)

(3.11) Ve.e5 Λ e { + D e _ e 5 ,

where we have put H(ee, eb)=Σ,(Hci,a'ea-+Hcb

ii'ed.) and so on. Taking account

of (2.8) and using (3.4) and (3.5), we get

which implies

(3.12) Hcbά*= — HCba* , Hcba* — Hcϊa* ,

where we have put Hcba*=Hcb

d*gd*a*, Hcba*=Hcb

d*ga*a* and so on. By similar
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devices, we have from (3.7)

(o.lo) Hcba* — fΊcbά*> ^cbd*==z^cba*

Taking account of (2.8) and (3.8), we get

which implies

(3.14) Hcba*=Hcab*, Hcba*= — HCab*

By similar computaions for (3.9), (3.10) and (3.11), we have

LEMMA 3.1. Let (MAn, g, V) be a quaternionic Kaehlenan manifold of dimen-
sion 4n and M2n a 2n-dimensιonal totally complex submanifold of M4n. Then

•Hcba* — Hcbd* = Hdcb*==1 H deb*

(3.15)
Tj H - J-J P 7 _

— ncab%-—J^cdb* — J^dbc*'— ndbc* t

-Hcbd* " cba* ** deb* - ^ deb* >

(3.16)
=zHcab*==~ffcdb*—~~Hdbc*—~Hdbc*

If we define symmetric matrices Ha* and Hd* of degree n by

(3.17) Ha*=(Hcba*), Hά*=(Hcbά*),

then the local fields Λa* and Aa* of symmetric linear transformations assosiated
to the fundamental form H are represented respectively by

(3.18)
1 TT

Ήcba*

' Hcba*

TT ^
ncba*

Hcbd* ι

H
/ \-HΛ

)-("•"

. -Ha.

(3.19)

because of Lemma 3.1 and hence the suquare of the length of the second funda-
mental form H is given by

(3.20)
α=i

As an immediately consequence of (3.18) and (3.19), we have

(3.21) tr Aa.Ar=tr Aa*A-b*=2

(3.22) tr Λ*Λ-*=

which imply
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(3.23) Σ (tr Aa>Ab>f=A Σ (tr Ha.Hb,+tv Ha.Ή-b.f,
a,b=i a,b=l

(3.24) Σ (tr Λα-45.)
2=8 Σ {(tr Hs.Hb.γ-(tr Ha.Hb.)(tr Ha,H-L.)} .

a,b=l a,b=l

Next, from (3.1), (3.18) and (3.19), we obtain

(3.25) JAa.= -Aa.J=Aa.

for each index a. Therefore we have

(3.26) A-a.*=Aa. \ (Aa*A-b*γ=-(Aa*Ab»Y.

We prepare the following three lemmas for later use.

LEMMA 3.2. The following equations hold *

(3.27) Σtr(AsAt~AtAsγ=-S ± tr Aa.*Ab?
sΦt a,b=i

= - 4 Σ {(tr Aa,AtΎ+(tr Aa.As.γ) ,
a, 6=1

(3.28)

=2 Σ {(XrAa.Ar)2+(trAa.Az.)
2}=j:(XrA8Aty.

a,b=ι s,t

Proof. Using (3.26), we have

Σ tr (AsAt-AtAsγ=-2 Σ tr (As

2At

2-(AsAtY)=-S Σ tr Aa*
2Ab*

2.
sΦt sΦt a,b

On the other hand, we have using (3.15), (3.16), (3.18), (3.21) and (3.22)

Σ tr Aa*
2Ab*

2=2 Σ tr (Ha*
2Hb*

2+Ha*
2H5*

2+Ha*
2Hb*

2+Ha*2Hb*
2)

α,6=l a,b

+2 Σ Ctr {Ha.H&.Hi.Hb.-Ha.Hli.Hb.Hΐ.
a,b

—Ha*Ha*Hb*Hb'-\- Ha*Ha*Hb*Hb*)~]

—2 Σ {\Hfea*Heda*Hdcb*HCfb*
JrHfea*Heda*H(icb*HCfb*

a, b, c, d, e, f
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- 2 Σ ί(tr H
d
.H

r
)

2
+2(χτ H

d
.H

r
)(tτ H

d
.Hj.)+(tr H

ά
Hj.)

2

+(tr Hd.Hf*y-2(tr Hd*Hf.)(tr Hd.Hf*)+(tr Hd*Hf*)2}

=2 Σ [ {tr (Hd*Hf*+Hd*Hf*)} 2 + {tr (Hf.Hd.-Hf.Hd.)}2]
d,f

= J Σ {(trAf.Ad.)*+(trAf.Ad.)*}.
& d,f=i

Therefore, we have proved (3.27). Since we have from (3.26)

we see easily that (3.28) is obtained from the equation mentioned above.
Q. E. D.

We now consider the following matrix B of degree In:

tr Aa*Ap tr Aa*Ab* \ / tr Aa.Ab. tr Aa*Aδ.

tr Ad*Ab* tr A& AB I \ - t r Aa.AB* tr Aa*Ab*

Then the quantity

Σ(trΛΛ)=2 Σ {(tr^α Λ )8+(tΓi4α^g0
2}

s, ί α,6=l

is a scalar invariant, that is, it does not depend on the choice of the normal
vectors ev, •••, 0n > eι*, — , βn* consisting the symplectic frame {ea, ea, ea*, e^}.
Moreover we have

LEMMA 3.3. For a suitable choice of a symplectic frame {ea, e&, ea*, ea*} of
M4n, the equation t r ^ ^ ^ O for s^ψt holds and consequently we have

(3.29) Σ ( t r Λ Λ ) 2 ^ y l | / / | | 4 .

Proof. Consider the matrix B mentioned above. Then B is a Hermitian
matrix. Take an another symplectic frame {ef

a, e'&, e'a*, efa*} and deote by B'
the corresponding matrix for this symplectic frame. Then we have Br~tUBU,
U being a unitary matrix of degree 2n such that its real representation satisfies

e'b*= Σ (ea*Uab-ea*Uab), e'δ = Σ {ea*U&b+e&*Uab)

Therefore, the matr ix B can be diagonalized for a suitable normal basis ev, •••,

en*, ei; — , en*, that is,
tr A$ 0

0 tr A'J,

U being the real representation of a unitary matrix. Thus we obtain
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which implies

Σ (tr ΛΛ)2^2(Σ tr A£y=~
s, t a Z

This proves Lemma 3.3. Q. E. D.
We are now in position to give the structure equations of totally complex

submanifold of a quaternionic space form. Let Min(c) be a quaternionic space
form of dimension An and of constant (^-sectional curvature c and M2n a 2n-
dimensional totally complex submanifold of Min(c). With respect to the ortho-
normal frame {elf •••, en, e-u •••, en}, we put

Rdcba^Riβd, ecy eb, ea), Rdcba=R(edf ec, eb, e&),

Rdcba — Riβd, e*, es> ea), RdCbά=R(ea, ec, eb, ed), •••,

and
Scb=S(ec, eb), Scb=S(ec, eb), S-cb-=S{e-e, eb),

where R and 5 are the cuvature tensor and the Ricci tensor of M2n respectively.
We have then from (2.14) and Lemma 3.1 the following structure equations of
Gauss:

(3.30) Rdcbα — Rdcbd=zRdcbα — -^(Sdαδcb — δdbδcα)

+ Σ \Hdαe*Hcbe*-\-Hdαe*Hcbe* Hdbe*Hcαe* Hdb^Hcαe*) ,
e

(3.31) Rdcbd — Σ \Hdαe*Hcbe* Hdα^Hcbe*-\-Hdbe*Hcαe* Hdbe*Hcαe*) y
e

(3.32) Rdcbά~Yj \Hdαe*Hcbe*
e

(3.33) Rdcbά = γ(ddαδcbJrδd

Σ \Hdαe*Hc
e

Using these equations above, the Ricci tensor S of M2n has the following com-
ponents.

(3.34) S c b = S - c B = - ϊ r ( n + l ) c δ c b - 2 Σ ( H d e * H b d r M b d e ) ,
Z d,e

(3.35) S C 5 = — S c δ — 2 Σ (Hdbe*Hcde*—Hdbe*Hcde*).
d, e

For any vectors X, Y and Z tangent to M2n, we have from (2.13)

R{X, Y)Z=^r{(XΛY)Z+UXΛJY)Z-2g(jX, Y)JX]
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because M2n is totally complex. Therefore 1&(X, Y)ZY=Q, where the left hand
side is the normal component of R(X, Y)Z. Thus we obtain the following
equation of Codazzi.

(3.36) WχH)(Y, Z)-{lYHtX, Z)=0

for any vectors X, Y and Z tangent to M2n, that is,

(3.37)

where we have put

{lH){ed, ee, eb)=Σ ((V*//Λ
a

and so on.
Moreover we shall give the equation of Ricci. Let X and Y be arbitrary

vectors tangent to M2n and ξ and η arbitrary vectors normal to M2n. If we
denote by RN the curvature tensor of the connection D induced in the normal
bundle N(M2n), that is,

RN{X, Y)ξ=DxDγξ-DγDxξ-DίX,γ,ξ,

then we have

(3.38) R»(X, Y, ξ, η)=R{X, Y, ξ, η)+g(LAξ, AV1(X), Y),

where RN{X, Y, ξ, V)=g(RN(X, Y)ξ, η) and lAξy Av-]=AξAv-AvAξ. For our
symplectic frame {ea, e&, ea*, ea*}, we put

d, ec, eb*, ea ) , RNάcb*a*=RN(ed, eC9 eb*, ed*)

and so on. Using (2.13) and Lemma 3.1, the equation (3.38) of Ricci reduces to

(3.39) R dcb*a* — R dcb*ά* — R άcPa*==R dcδ*ά*— ~T\^da^cb

(3.40)

(3.41) R dcb*a* — R dcb*ά*

^-\ / TJ TJ Tj Tj IT TT 1 rr TJ _ \
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(3.42) Λ*a.».β.=/? ί Γ

i e ί.β.

— Σ (Hdea*HceB*—Hcea*Hdeb*—Hdea*Hceι)*
JrHcea*HdeB*).

e

Then we have

PROPOSITION 3.5. Let Min(c), (n^2), be a in-dimensional quaternionic space
form with constant Q-sectional curvature c and M2n a totally complex submanif old
MAn(c). If the connection D induced in the normal bundle N(M2n) is flat, then
c=0 and M2n is also flat

Proof. Assume that the connection D induced in the normal bundle N(M2n)
is flat. Then we have from (3.39), (3.41) and (3.42)

-rίδdaδcb — δdbδcaϊ + Έ, {Hdae*Hcbe*
JrHda-e*Hcbe*

Σ (Hdae'Hcbe* Hdae*Hcbe*JΓHdbe*Hcae* Hdbe*Hcae*)=:^ te

Σ (Hdae*Hcbe* — Hdae*Hcbe* + Hdbe*Hcae* — Hdbe*HCae*) — 0
e

by virtue of (3.15) and (3.16). Taking account of the equations above and the
equations of Gauss (3.30), (3.31) and (3.32), we get

Since RNάcb*a*=0, we have from (3.40)

Σ (Hdae*Hc

==z-τ(δdaδcb

Jrδdbδca — 2δdcδba).

Therefore (3.33) reduces to Rdcba=cδdcδba. Using the first Bianchi's identities
and Rdcbά^O, we obtain

Hence we have
c(δbcδda—δbdδCa)=Q y

which implies n(n—ΐ)?=0. Since n^2, we have c=Q and hence Rdcba^O. This
proves our assertion. Q. E. D.

§4. Totally complex submanif olds of a quaternionic space form.

In this section, we are going to give the basic theorem of the present paper.
First we compute the Laplacian of the square of the length of the second
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fundamental tensor. Let M4n(c) be a quaternionic space form of dimension An
and of constant ζ?-sectional curvature c and M2n a totally complex submanifold
of Min(c). As stated in the previous sections, we denote by H the second
fundamental form of M2n. Then the Laplacian of the length of H satisfies

(4.1)

because of (3.20) and Lemma 3.1, where ld—gdele and ld=gd~el-e and we have
used Einstein summation convention. Since M2n is minimal (see, Proposition 2.2),
we have

— Reca* *He

bd*—Reca*
d He

b

where Hd

ba*—gdeHeba*} Recbd=zRecbagad, "' and where we have used the equation
of codazzi (3.37) and Lemma 3.1. Moreover, substituting the equations of Gauss
((3.30), (3.31), (3.33), (3.34), (3.35)), and the equations of Ricci ((3.39), (3.40), (3.41),
(3.42)) into the equation mentioned above, we have

(4.2) WdΊdHc^+Ψl-dHcba*)Hcba*=\{n+?>)c Σ tr Ha>>

- 6 Σ [(tr Ha.H<,.γ+(tΐ Ha,Hb.){tΐ HΛ.Hf.)
a, b

+(tr Ha.Hb.γ-(tτ HaΉb.)(tr //o.//5.)] .

By the same way, we have

(4.3) {lΛldHebli,+ΨlaHcba.W
bίί"=hn+3)c Σ tr i/*.2

Z a

- 6 Σ [(tr H&,HB.γ+(tr Ha.Hb,)(tτ HΛ.HS.)
a,b

+(tr Ha.Hb.γ-(tτ H,,Hb,)(tr Ha.H-b.y} .

Substituting these identities (4.2) and (4.3) into (4.1), we obtain

(4.4) ^-Δ| | / ί | | 2 =-i(n+3)c | | // | | 2 -24Σ(tr// α .// s .+tr//, .// 5 . ) 2

Z Z α,δ

-48 Σ [(tr Hd,Hb,γ-(tr Ha.Hb.){tr //α.//5.
ab

Taking accout of (3.23), (3.24), (3.27), (3.28) and Lemma 3.3, and substituting
these equations into (4.4), we have

PROPOSITION 4.1. Let Min(c) be a quaternionic space form of dimension 4n



328 SHOICHI FUNABASHI

with constant Q-sectional curvature c and M2n a totally complex submanifold of
M4n(c). Then

(4.5) |

Now we refer to the following well known lemma.

LEMMA 4.2 ([2]). Let A and B be symmetric matrices of degree n. Then

- t r (AB-BA)2^2 tr A2 tr B2,

and equality holds for nonzero matrices A and B if and only if A and B can be
transformed simultaneously by an orthogonal matrix into scalar multiplies of the
following matrices A and B respectively

0

1

0

1

0
0

0

, 5=

1

0

0

- 1

0

0

0

Moreover, if Al9 A2, Az are symmetric matrices of degree n such that

4 i9--i4 i8i4β)8=2tr Λ* 2tr Aβ

2,

then at least one of the matrices Aa must be zero.
Since Aa*

2=Aa*2 holds for each a by means of (3.26), we have

Σ tr A* tr Λ 2 = 2 ( Σ tr Aa*
2 tr Ab*

2+ Σ tr Aa*
2 tr Ab*

2)
s*t a*b a,b

= 4 Σ tr Aa,* tr Λ 2 + 2 Σ (tr Aa.*)2.
a*b a

Using this equation, Lemma 3.4 and the equation (4.5), we obtain

(4.6) ^
Z

Σ tr (A,At-AtA,)*- Σ (tr
*t

3: i(w+3)c||//||2-2 Σ tr A/ tr Af- Σ (tr
Z s*t s

- 8 Σ tr AaS tr AbS-6 Σ (tr ΛO.
α^δ α

Σ tr AJ tr Λ 2 + | - Σ (tr Λ,.
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-f- Σ (tr Aa,*-t
in a<b

J - Σ (tr ̂ α.a-tr Λ.

Therefore, we have

THEOREM 4.3. Let M4n(c) be a quatermonic space form of dimension in
(w^2) and of constant Q-sectional curvature c (c>0). Let M2n be a 2n-dimensιonal
compact totally complex submamfold of Min(c). If the second fundamental form
H of M2n satisfies the inequality

then M2n is totally geodesic and hence M2n is of constant holomorphic sectional
curvature c.

Proof. Assume that ||//||2<[π(n+3)/(4?2 — l)]c. Applying a well known
theorem of E. Hopf to (4.6), we have Δ||//||2=0, so that | |# | | 2 =0, i.e., H=0.
This means that M2n is totally geodesic. When ||//||2=[n(n+3)/(4?2-l)]c, the
square of the length of H is constant. Therefore, we obtain Δ||//|[2—0 so that
equality holds in the inequality (4.6). From this facts, we have

(4.7) tr (AsAt-AtAs)
2=-2 tv As

2tv At

2 for s*t,

(4.8) t r , 4 α * 2 = : t r , V for a^b.

Since the indices s and t run over the range 1*, •••, n*, 1*, •••, n*, at most two
of the matrices Λ^, •••, An*, A-λ*, •••, Aή* are nonzero because of Lemma 4.2.
On the other hand, taking account of (3.25) and (3.26), we have

i4α*=0 if and only if Aa*=0.

tr (Aa.Ab.-Ab.Aa*)2=-2 tr Aa*
2 tr Ab*

2 if and only if

tr (Ad*Aδ*-AB*Aa*)2=-2 tr A^ tr AB**.

tr (Aa*A5*-A5*Aa*)2=-2 tr AJ tr A-b*
2 if and only if

tr G4a.A - Λ i4*02=--2 tr Ad*
2 tr Ab*

2.

Hence only Aa* and Ad* may not vanish for some a. Without loss of generality
we may assume a*=l*, Ab*=0 and A*=0 for 6=2, •••, n and that
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Aι*Λ1*)2=—2trΛ1*
2trΛi*

2. However, according to Lemma 4.2, Aλ* and A\* have
the special form A^—λΆ Aι*=μB respectively. But we have from (4.8) tr Ax

2=
2Λ2=0, tr Aϊ*2=2μ2=0. Hence we have λ=0 and μ=0 so that Aί*=0 and Aι*=Q.
Therefore, in this case, M2n is totally geodesic. Q. E. D.

Next we consider a totally complex submanifold which is an Einstein space.
First, we prove the following lemma for later use.

LEMMA 4.4. Let Min(c) be a quaternionic space form of dimension An and
of constant Qsectional curvature c and M2n a In-dimensional totally complex
submanifold of M4n(c). Assume that M2n is an Einstein space. Then

(4.9) t r Aa*Ab*= ^

(4.10) t r Aa.As.=0

for each a, b=l, •••, n.

Proof. Since M2n is an Einstein space, the equation (3.34) reduces to

2^Σ {Hdac*Hbdc* + Hdac*Hbdc

p being the scalar curvature of M2n, where we have used (2.18). Using Lemma
3.1, we have

Σ \Hdac*Hf)ac*JrHdac*Hbdc*)=ztτ (Ha*Hb*-}-Ha*Hb*).
c, d

From this and (3.21), we obtain (4.9).
As similar way, taking account of Lemma 3.1 and (3.22), we have

tr Aa*Ab*=2 t r (Ha H5.-Hά.Hb.)=2 Σ {Hdca*Hcdb>-HdCa*Hcdb*)
c, d

—2 Σ \Hdbc*Hadc*—Hdbc*Hadc*)=:::zSab=0 y
c, d

because M2n is an Einstein space. Thus we obtain (4.10). Q. E. D.
Corresponding to Theorem 4.3, we have the following

THEOREM 4.5. Let Min(c) be a quaternionic space form of dimension 4n and
of constant Q-sectional curvature c (c>0) and M2n a In-dimensional totally
complex submanifold of M4n(c). Assume that M2n is an Einstein space and that
the second fundamental form H of M2n satisfies the inequality

Then M2n is totally geodesic and hence M2n a complex space form of constant
holomorphic sectional curvature c.
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Proof. By our assumption and the previous Lemma 4.4, we have from (4.5)

Since M2n is Einstein, we get Δ | |# | | 2 =0 by the theorem of E. Hopf. We have
then | | i/ | |=0 so that M2n is totally geodesic. Q. E. D.

§ 5. Totally complex submanifolds of HPn.

In the previous sections, we have obtained the fundamental properties of
totally complex submanifolds of a quaternionic Kaehlerian manifold. In this
section, the first what we do is to give an example of totally complex sub-
manifold of a quaternionic space form. We use the same notations as used in
[3]. Let {ξ, η, ζ} be a Sasakian 3-structure on S47l+3 induced from the standard
quaternionic structure {I, J, K} of the (4n+4)-dimensional Euclidian space RAn+4

whose components have the form

(5.1) / =

/0 -E

E 0

0

0

0 E

-E 0 /

0

E 0

0 E

-E 0\

0 -E

0

κ=

/
0

0

( -E

E

0

0

-E

0

0

/

E being the unit matrix of degree n + 1 (see [5] and [8]). Let π :S4n+3 -> HP71

be the Hopf fibration. Then, as is well known, HP71 is a quaternionic space
form of constant Q-sectional curvature 4 (see [4]).

Consider the (2?2 + l)-dimensional unit sphere S2n+1 defined by S2n+I={p=
(x, y, 0, 0)\p(ΞS4n+3, x=(x°, •••, xn), y=(y°, •••, yn)} which is a totally geodesic

submanifold of Sάn+S. We denote by V the induced connection on S2n+1. Since
the structure vector ξ is tangent to S2n+1 and η and ζ are normal to S2n+1, a
Sasakian structure ξ0 of S2n+1 is induced from ξ on Sin+S and ξ0 coincides with
the Sasakian structure induced from the natural complex structure Io of the
(2n+2)-dimensional Euclidian space R2n+2, where /„ has the same components
as / appearing in (3.1). Moreover we consider a tensor field φo=^lζo of type
(1, 1) in S2n+1. If we denote by ϊ: S2n+1 -> 5 4 n + 3 the inclusion map, then ϊ*ξo=ξ.
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Let {φ, ψ, θ) be the triplet of the structure tensor fields for the Sasakian 3-
structure {ξ, η, ζ} (see [8]). Take an arbitrary point p in S2n+1. Then (Tp(S2n+1))
is a subspace in Tv(S2n+ί) transversal to (ξo)p such that Tp(S2ΐl+1)±.ψ(Tp(S2n+1)),
Tp{S2n+1)_Lθ{Tp{S2n+1)). Moreover for every point p of S2n+1 each of linear
subspaces φ(Tp(S2n+1)), ψ(Tp(S2n+1)) and θ(Tp(S2n+1)) is horizontal in Siΐl+S with
respect to the Hopf fibration π : Sin+Z -> HP71.

We now consider the Hopf fibration π : S2n+1 -> CPn. Then the natural
Kaehlerian structure (g, J) of CPn is given by g(X, Y)°π=g(π*XL, π*YL) and
JX—π*(φ0X

L) for any vector fields X and Y in CPn, where π* is the differential
of the submersion π and XL denotes the unique horizontal lift of X (see [1]
and [7]). Therefore we have an isometric immersion i:CPn —> HP71 such that
the following diagram is commutative. Then CPn is totally geodesic, ϊ*ξo=ξ,

Qpn

and the almost complex structure / induced in CPn coincides with that induced
from F belonging to a canonical local basis {F, G, H} defined as FX=π*(φXL),
GX=π*(φXL) and HX=π*(ΘXL) for each vector field X tangent to HP71 (see [5]).
Therefore, we see easily from the theory of Riemannian submersion ([5], [7])
that CPn is a totally complex submanifold of HPn.

Similarly, the complex projective space CPm of complex dimension m (m^n)
is a totally geodesic and totally complex submanifold of HP71 with constant
holomorphic sectional curvature 4. We call such a submanifold CPm (mf^ri) the
standard totally complex submanifold of HP71.

We now give the following rigidity theorem for totally complex submanifold
of a quaternionic space form as the results analogous to those proved in [3],

THEOREM 5.1. Let HP71 be the in-dimensional quaternionic projective space
and M2m (m^ri) a connected and complete 2m-dimensional submanifold of HPn.
Assume M2m is totally geodesic and totally complex. Then M2m is congruent to
the standard complex projective space CPm of complex dimension m.

As the immediate consequence of Theorems 4.3 and 5.1, we have our Main
Theorem mentioned in § 1.

§ 6. Appendix Subspaces of a quaternionic Hermitian vector space.

An algebraic theorem. We here prove an algebraic theorem classifying the
subspaces of a quaternionic Hermitian vector space under the some condition.

Let Wn be a real vector space of dimension 4n with a positive definite
inner product <,>, and {P, G, H} be a quaternionic structure on Win, which
satisfies (2.1). Assume that each F, G and H are Hermitian with respect to



TOTALLY COMPLEX SUBMANIFOLDS 333

the inner product <, >. In such case, W4n is called a quaterniomc Hermitian
vector space. We denote by | |^ | | the length of a vector X in Win and by Q(X)
the Q-section determined by X which is defined in [4], that is,

Q{X)={Ϋ\Ϋz=aX+bPx+cGX+dίίX'ta, b, c, d^R) .

Suppose that there is given an m-dimensional linear subspace Wm (m^4n)
of W*n. When Wm satisfies the condition that FWm=Wm, GWm=Wm and HWm

— W™, we call Wm a invariant subspace. When Wm satisfies the condition that
PWm=Wm, Wm±GWm and Wm±.HWm, we call Wm a totally complex subspace.
In addition, when Wm satisfies the condition that Wm±Pwm, Wm±.GWm and
Wml_HWm, we call Wm a totally real subspace.

We now prove the following Lemmas β.l~β.5. In this section, let's consider
a linear subspace Wm of Wn having the following property

(β.l) (FY, X}FX+(GY, X>GX+<HY, X}HX^Wm

for any vectors X and Y in Wm.

LEMMA β.l. Let Y and Z are arbitrary vectors of Wm where the vector Z is
assumed to be orthogonal to each of FY, GY and HY. Then we have

(6.2) (FY, X}FZ-\-<GY, X)GZ+<HY, X}HZ^Wm

for any vector X of Wm.

Proof. Let X be an arbitrary non-zero vector of Wm. Replacing X in (β.l)
by X+Z, we have

(FY, X+Z)F(X+Z)+<GY, X+Z)G(X+Z)+<HY, X+Z)H(X+Z)

=<FY, X>FX+<GY, X}GX+<HY, X>HX

, X>FZ+(GY, X>GZ+<HY,

which implies from (6.1) that {FY, X}FZ+<GY, X}GZ+<HY, X>ffZt=Wm.
^Q.E.D.

We denote by Q{Z) a linear closure generated by FZ, GZ and HZ for any
vector Z in Wm. Let X be an arbitrary fixed non-zero vector in Wm. We now
consider the following four cases:

Case 1. dim (Wmr\Q(X))=0, i. e., FX, GX, HX& Wm

Case 2. dim(WmnQ(X))=h i.e., PX^Wm, GXeWm and
Case 3. dim(Wmr\Q(X))=2, i.e., FX, GX<=Wm and
Case 4. dim(Wmr\Q(X))=3, i.e., PX, GX, HX^Wm.

LEMMA 6.2. In the case 1, the linear subspace Wm is a totally real subspace

of Win provided that m^n.
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Proof. When m=l, Lemma 6.2 is trivially established. So, we may assume
that 2^m. By the assumption, it is clear that each of vectors FX, GX and
HX does not belong to Wm. Take an arbitrary vector Y in Wm such that Y is
orthogonal to X. We are going to show that dim (WmΓ\Q(Y))—0. To do so,
taking account of (6.1), we have (FY, XyFX+(GY, XyGX+(HY, XyHX^Wm.
On the other hand, since dim (WmnQ(X))=0, this implies

(6.3) (X, Pγy=(x, δγy=(X, fϊγy=o.

Assume that there is a linear combination aFY+bGY+cHY belonging to Wm

for some real number a, b and c. However, as was proved by (6.3), X orthogonal
to FY, GY and HY. Then we have from Lemma 6.1

(FY, aFY+bGY+cHYyPX+(GY, aFY+bGY+cHYyGX

+ <HY, aFY+bGY+cHY>HX=<Y,

Thus, since dim (WmΓΛQ(X))=0, we get a = b=c=0 so that dim (WmΓ\Q(Y))=0.
Since {FY, XyFY+(GY, Xy&Y+(HY, XyHY^Wm because of (6.1), we have
(FY, Xy=(GY, Xy=(HY, Z>=0. Therefore, Wm is totally real, because Y is
taken arbitrary in Wm. Q. E. D.

LEMMA 6.3. In the case 2, the linear subspace Wm is of even dimensions m=
2p (p^n) and Wm is a totally compelx subspace of Wiΐl.

Proof. Clearly, we have ra^2. When m=2, the lemma is obviousely true.
So, we may assume that ra>2. Take any non-zero vector Y in Wm such that
Y is orthogonal to X and FX, where FX^Wm. Since (GY, XyGX+<HY, Xy
HX<=Wm, we have (GY, Xy=(HY, Xy=ϋ because of GX$Wm and HX$Wm.
Hence Y is also orthogonal to the ©-section Q(X)Z)Q(X). This implies by
Lemma 6.1 that \\X\\2FY<ΞW™. Thus, as ||Z||=0, we have FY^Wm. Finally,
we shall show that both GY and HY do not belong to Wm. To do so, we
assume that GY^Wm. Since Y is orthogonal to Q(X), we easily see that GX
is orthogonal to Q{Y). Using Lemma 6.1, we have (FY, FYyFGX+(GY, FYy
G2X+(HY, FYyHGX=\\Y\\ΉX^Wm, which contradicts HX<=Wm, since | |F| |^0
and ||Z||^=0. By a similar way, we have GY&W771. Therefore, we can conclude
that Wm is even dimensional and that FY^Wm

y (GY, Xy=(HY, Z>-=0 because
of (6.1). Since Y is a non-zero vector arbitrary taken in Wm, the subspace Wm

is totally complex. Q. E. D.

LEMMA 6.4. The case 3 does not occure.

Proof. We assume that the Case 3 occures for Wm. Suppose that m>3.
Then we can take a non-zero vector Y in Wm such that Y is orthogonal to X,
FX and GX. On account of (6.1), we get (HY, XyHXtΞ Wm which implies that
(HY, X>=0. This means that Y is orthogonal to the Q-section Q(X). Hence
we have, from Lemma 6.1, (FX, FXyFY-\-(GX, FXyGX+(HX, FXyHX=
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\\2FY^Wm. Thus, since | |Z | |^0, it follows that FY^Wm. But, as Y is
orthogonal to the Q-section Q(X), we get <FF, FY>FGX+(GY, FY)G2X+
<HY, FY}HGX=\\Y\\2HX^Wm by Lemma 6.1. Since HX^Wm, we have Y=0,
which is a contradition. Next, we assume that m—3. Then Wm is spanned by
X, F Z a n d GX. We now take a non-zero vector Z=X+FX-i

rGX in Wm. By a
straightforward computation, we have FZ=-X-\-FX+HX, GZ=-X+GX-HX
and HZ=-FX+GX+HX which do not belong to Wm. This means that dim
(WmΓ\Q(Z))=0. Consequently, the linear subspace Wm is totally real as a con-
sequence of Lemma 6.2. Therefore, we have dim (Wmr\Q(X))=0, which con-
tradicts the assumption that dim (WmnQ(X))=2" Q. E. D.

LEMMA 6.5. In the case 4, the linear subspace Wm is a invariant subspace of
Win.

Proof. Since άim(WmnQ(X))=3, we have Q(X)dWm. When Q(X)=Wm, the
lemma is obviously true. So, we may assume that dim Wm>i. Take an arbitrary
non-zero vector Y in Wm which is orthogonal to the Q-section Q(X). Substitut-
ing FX for X and Y for Z in Lemma 6.1, we have \\X\\2FYeiWm. Hence we
obtain FY^.Wm because of ||Z||=£θ. In addition, we easily see that both GY
and HY are orthogonal to the Q-section Q(X). Putting Y=X and Z=GY in
Lemma 6.1, we have <FX, FX)FGY+<GX, FX)G2Y+<HX, FX>HGY=\\X\\ΉY
<=Wm which implies that HY^Wm. Putting Y=X and Z=HY in Lemma 6.1,
by similar devices, we have GY^Wm. Summing up, we can see that the linear
subspace Wm is invariant. Q. E. D.

Taking an element s=(suυ) (w, v=l, 2, 3) of the special orthogonal group
50(3), we can defined by (1.3) the action of s on quaternionic structures
{F, G, H} on Win. So, the group SO(3) acts transitively on the set of all
quaternionic structures in WAn. Taking account of this fact and summing up
the Lemmas 6.2~6.5 obtained above, we have

THEOREM 6.6. Let WAn be a quaternionic Hermitian vector space with positive
/•v /v r^j

definite inner product <,> and quaternionic structure {F, G, H}. Let Wm

be an m-dimensional linear subspace of W4n. Then Wm satisfies the property

<FY, XyFXΛ-iGY, X>GX+<HY, X}HX^Wm

for any vectors X and Y in Wm if and only if Wm is one of the following
(1) Wm is a invariant subspace of Wn

y that is, Wm = W;__ _
(2) Wm is a totallyjeal subspace of Wn, that is, Wm±W, where W denotes

the direct sum FWm@GWm@HW7ϊl and the symbol _L showsjo be orthogonal,
(3) Wm is a totally complex subspace of Wn, that is, JWm~Wm for some

complex structure j such that f—aF-^bG-^cH, a2jrb2jrC2=l where a, b, c are
real numbers.

Curvature invariant submanifolds. Let Min(c) be a 472-dimensional quater-
nionic space form and M a submanifold of MAn(c). If we denote by R the
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curvature tensor of Mάn(c), then R has the form of (2.13). Take an arbitrary
point x in M and consider the tangent space TX(M) at x. If for any vectors
X and Y in TX(M)

(6.4) R(X, Y){Tx{M))dTx{M)

holds, then we call M a curvature invariant submanifold of Min(c). Taking ac-
count of (2.13) and (6.4), we have easily

PROPOSITION 6.7. Let Min(c) be a quaternionic space form of constant Q-
sectional curvature c (C^FO) and of dimension 4n (n^2). Let M be a submanifold
of MAn{c). Then M is a curvature invariant submanifold of M*n(c) if and only
if <FY, X>FX+(GY, X>GX+<HY, X>HX is tangent to M for any vector fields
X and Y tangent to M, where <, > is the Riemanman metric of M4n(c).

Let {MAn, g} V} be a 4n-dimensional quaternionic Kaehlerian manifold and
M a submanifold of M4n. If each tangent space at each point in Mis invariant,
we call M an invariant submanifold of M471. By the same way as mentioned in
[3] or § 2, we see that each invariant submanifold of Min is totally geodesic.
If each tangent space at any point in M is totally real, we call M a totally real
submanifold of M4n ([3]). We see easily that any invariant or totally real or
totally complex submanifold of M4n(c) is curvature invariant.
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