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§ 0. Introduction.

This is a continuation of the part (I) with the same title written by the
present author. We shall use the same notation in it.

The period T of any non-constant solution x(t) of the non-linear differential
equation of order 2:

(E)

with a constant n>l such that X2JΓX/2<1 is given by the integral:

dx
(0.1)

xV(n-x){x(n-x)n-1-c} '

where 0<xo<l<x1<n and c=xo(n — xo)
n 1=x1(n — x1)

n 1.
At the early stage of this work, the author imagined that T as a function

of x0 and n is monotone decreasing with respect to n(^2), in order to imply
the inequality:

(U; 1 < V 2 π ,

which can be easily proved in the case of n—2. This inequality was proved in
[8] and [9]. But this supposition is not true as is shown in the table of the
values of T for xo=l/2, 1/4 and n=2, 4, 8 in Remark 2 in §4 of the part (I)

([11]).
On the other hand, he obtained also certain negative facts for the supposi-

tion. By (1.8), (1.9) and Proposition 1 of [11], we have the formula:

dT(x0, n) _ 1 / T p i M(x, xo)dx

dn 21

where
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(0.3)

(0.4)

, x0) : =

+2n(x-l)(n-x)μ(x){λ(x)-λ(x0)},

n-l

c, x0)

λ{x)\—\og{n —
n — x

VJ"JJ -I \Λ, ΛQJ . — X\fL X) X>Q\fί XQ)

B-xin-x)11-1

(0.6) μ(x):=
U-i) 2

n(n-l)n-

for 0<x<n, xΦl,

for x=l,

(0.7) and B^n

The function M(x, x0) is real analytic for 0<x<n, positive in (x0, 1), negative
in (1, x*) and M(x0, xo)=M(l, xo)=0 by Proposition 2 in [11], where x* is the
value such that λ(xo)=λ(x*) and l<x*<n. Now, we define a function Z=Zn(x)
(O^x^l) by

(0.8) x{n-x)n-1=X{n-X)n~1,

and then we have

dX 1 — x X(n—X)

x{n-x)

Using this function, we have

1 — x

where

x(n—x)Vx(n — x)n ι—

xM(x, x0) XM(X, x0)

-K(x, xo)dx ,

(1-xWn-x (1-XWn-X

0 for χ = l.

for 0 < x < l ,
K(x, Xo) : =

We can prove that K(x, x0) is continuous for O^Xo^*^l except x=xo=O,
K(x0, xo)>0 for 0<x 0 <l. If K(x, xo)^0 for 0<Λ: 0 ^Λ:^1, we could obtain the

inequality ^ <0 for 0<x 0 <l and n>2. But, being contrary to this ex-
on

pectation, we can prove the following facts:
lim K(x0, Jto) — lim K(x, 0)=—^.

0

Through these experiments and others, the author sets the following con-
jecture.
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CONJECTURE A. The period function T(x0, n) of the solutions of the differen-
tial equation (E) is monotone increasing with respect to n(^2) for any fixed xQ

In this paper, he will try to prove this conjecture by the fundamental prin-
ciple as follows : To prove

J\4jx,xo)dxr*i _ J\4jx,xo)dx
)χo V(?ι-x)3 [xin-xT-'-c]( _ J

U ; dxo)χo V(?ι-x)3

and
M(x, xo)dx

2 —X) {x(?2 —X) ~C
(ii) lir

from which we shall obtain

v' * , -<o.

In § 1, we shall treat the fundamental formulas (1.9) and (1.10) related with (i)
and several auxiliary functions fo(x), F0(x), fχ(x), Fλ(x) and U(x, x0) appeared
in it. In § 2, we shall study properties of fo(x) and F0(x). In § 3, we shall
study the function F2(x) which is the principal factor of F0'(x). In § 4 and § 5,
we shall study properties of fi(x) and Fλ(x) according to the same method as is
used in § 2 and § 3 for fo(x) and F0(x). In § 6, we shall prove the positiveness
of U(x, x0). In §7, we shall prove an inequality on the function M(x, x0)
defined by (1.7) and the above equality (ii). In this work, we could not succeed
disappointedly in proving this conjecture (see Appendix) and need further study
of a function of x and x0 made from the quantity in the brackets of the right
hand side of (1.9), in the same way as K(x, x0) is made from M(x, x0).

However, the main purpose of the series of the present papers with the
same title is to prove the following Conjecture B or Conjecture C which implies
the inequality (U), and the first one of them is supported numerically and par-
tially by means of the data obtained by M. Urabe for the integers n=2, 3, •••,
10, 30, 50, 100 (See Fig. 9 in [6]).

CONJECTURE B. The period function T as a function of σ=(VxΊ—l)/(Vή—1)
and n is monotone decreasing with respect to n(Ξ>2) for any fixed σ(0<σ<l).

CONJECTURE C. The period function T as a function of τ=(x1—ΐ)/(n—ϊ) and
n is monotone decreasing with respect to n(^2) for any fixed τ(0<τ<l) .

The facts obtained in this paper will be also useful in proving these con-
jectures. In Appendix, we shall give a new proof for the fact (iv) in § 0 of
Part (I), which was proved by a complex analysis on a Riemann surface in [10],
as an application of some inequalities of these facts.
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§ 1. Fundamental formulas and auxiliary functions fo(x) and /Ί(x).

Replacing the real variable x in M(x, x0), λ(x), F(x) and μ(x) by the com-
plex variable z, we obtain the corresponding complex valued functions to them.
Then, M(z, x0) is complex regular on the segment Q<x<n of the real axis.
Setting

(1.1) ψ{z)'=z{n-zγ-\

we have

{B-φ(z)}
^

Miτ χ ._Γ{4n-l-(2n+l)z} {B-φ(z)} l

1-z

2<n z) {B-φ(z)}{λ(z)-λ(x0)}

n-l>-(»

X {φ(z)-ψ(x0)}.

Hence, setting

(1.1) /0(z) 'M2n-l-z)

(1.2) f1(z):={4n-l-(2

we obtain another expression of M(z, xQ) as

(1.3) M(z, xo)=j~^γfo

Here, we notice that fo(z) and fλ{z) do not depend on xQ.
Now, using a closed curve γ on the Riemann surface £F: z{n—z)n~ι—w2—c

as in [11], we have easily

pi M(x, Xo)dx — __i_f _ M(z, xo))_dz

}xoVί^W^p-cΓ""~2 JrVΐn̂ zfizin-̂ z)"-̂ cf

d p i
"9x7 J χo V{n:^

and so

9 p i M(x, xo)dx
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~ 2 dx0 )rV(n-z)*{z(n--z)n-1--xo(n--rV(n-zY{z(n-z)n

8M(z,

Since we have

(1.4) φ'(z)=n(l-zXn-z)»-

and

we obtain from (1.3)

jM(z, xo)ψ'(xo)

(l—z)2 (n —

_) ° 5—

\Jl

3*o

X o χ n X o )

2 (l-z^n-z) '- 1 w )

Hence, setting

(1.6) U(z, xt):=2{φ(z)-φ(xt)}+n(n-xo)»{λ(z)-λ(xo)}

and

(17) Mfz x)— 1~*° , (n~z)f«(z) JJ, s

2

We obtain the following formula
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M(x, xo)dx

d

JLΓ Mfe xo)dz

Since we have

, n(l--yo)(n-xo)
n-2 (n-z)fo(z) n(,_-i(

we have

MXz,xo)dz

l-^o Γχi !_ Γ fo(x) (n-xo)n fi(x
"(n-A:0)

2 J*o Vίn-jcJΪ^W-'cΓ L ( I - / ) 2 2(n-x)n ' ( l -x

On the other hand, we have along γ the equality

d f 2/oU)

t )-7 J

Using the fact that the function -, ττί, Nn , , r ' ( ^ ) - f o ) ) is regular ana-
(z—l)3(n—z)71"372

lytic in a small neighborhood of z=x, 0^x<n, on £F, which will be proved in
Lemma 2.2, we obtain

Thus, we obtain the formula
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M(z, xo)dz

/ o W ( W - X o ) π

ΠQ) = l~X° [Xl *
; (n-xoγ)χί,V(n-x){φ(x)-φ(xo)} l(x-ϊγ 2(n-χ)n (1-

Finally, we write more exactly the function K{x, x0) in § 0. By (1.3) and
(1.6) we obtain

xM(x,x0)
l > o J~(li)Vn=Γ

, ir ^_ /,(χ) £ ! Λ
wlVn-x (l-x)3 Vn-X' (1-a-xf Vn-χ a-xγ] ψw

and

xV^x f V , v. . M _ ι xVn-xMx) Jlf

n(n — xo)
n (x—I)3

where X=Xn(x) in § 0. Therefore, we have

K(X, Xo)

1 Γ xs/n-xMx)
L

-x/o(i)

(X) Ί ψ• i f ^2 /iU) _£!_
^ n Wn-x ' a-x)s Vn-X ' (X-lf ϊ ψ(x)

REMARK. The three quantities in the pairs of brackets of (1.10) are all
negative as will be shown in Proposition 6, Proposition 2 and Proposition 4,
respectively. We obtain easily from (1.10)

τs/ \ Xi'

by Lemma 2.2 in Part (II) and Lemma 2.2 in Part (I).
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§ 2. Certain properties of fo(x) and F0(JC)

LEMMA 2.1. fo(x)<O for 0<x<l and fo(x)>O for l<x<n, when n>l.

Proof. We have easily

/o(l)=25(n-l)-(n-l) Λ - 1 2(w-l)=0, Λ(n)=(n-l)»>0
and

Λ(x)=(2n-l-x)[B- (π-x)-Mn-»+(n-l)x«} 1 #
L Z?ί— 1 — ΛΓ J

Noticing 72 — x+(n—l);t2>0 in [0, In—1], we have

"~ (n-x)(2n-l-x){n-x+(n-l)x2

Since we have

for 0<x<n, xΦly it must be

_d__ n_x) {n^x+n-l)jc^<{) f o r

On the other hand, since we have

2n—l—x Ja?=i

it must be therefore

(n—x){n—x+(n—ΐ)x2} Γ <0 for
2n—1—x [ > Q for ι<x<nf

which implies the inequalities for fo(x) in this lemma. Q. E. D.

LEMMA 2.2. The function Φ0(x) defined by

———-—-— f o r Q <C jy <, 77

(2-1) -

6(n-l) ° Λ ~ J

zs positive and real analytic for 0^x<n, when n>l.

Proof. It is clear that the statement is true for OsΞχ<n and xφl. From
the computation in the proof of Lemma 2.1, we obtain easily
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(2.2)
d (n-

dx

Hence we have

2n — l —

limΦ000=2(n—l
l

_ _ ?ι(n -l)(x-l)2(2n-x)(n-x)n-2

'~ (2n-\-xf

2n-l-x

n(n-l)(x-l)\2n-x){n-x)n

=2(n-l) lim ^ 7 - ^
x-*ι o\X — 1)

__ 2n(n-l)2 ,. (2n-x)(n-x)n~2

" 3 ™ (2n-Ί-x)2

__ 2n(n-l)2 (2n-l)(n-l)n-2 _ n(2n-l)B
~~ 3 Aiiτ^ψ ~ 6(n-l) '

Since /0(» as a function of the complex variable z has its singular point only
at z—n, the regularity of Φ0(x) at x = l is evident. Q. E. D.

(2.3)

LEMMA 2.3. The function F0(x) defined by
1 f (x^)

κn — x) {x—ij
for 0^x<n, xφl,

for x = l

is positive and real analytic for O^x<n, and

Fβφ) =
(2.4)

em :=(1 + l/m)m, when n^2.

Proof. By means of Lemma 2.2, it is clear that F0(x) is positive and real
analytic for 0^x<n.

We have from (1.1) and (2.1)

and

n ( 2 ? ί ~ 1 }

6Vn-l
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Hence we obtain

a - 2 + 1
Fo(0) 6 \τ=ϊ w ( g 2 ) + l 6 / — T " " »T

2n- l V n *,,_, 2 ^ n

Since the function — — — of ί is decreasing in the interval (0, 1), we have
\i ί

L_ /iΓΓ< l
1 V ¥ < 22
n

and so
EVI\ <3(-^ z i 1 ), when n>l.
F0(ϊ) \ en-i nen-!/

We shall show

3( en~1~~ H )<1 for n ^ 2 ,

which is equivalent to

(2.5) * - < 3 - i r for n = 2

In order to prove (2.5), we consider the function

Its logarithmic derivative is

(l + ί)(2+0 '

where ί = — . Furthermore, we have

ι + t

1 1 ί(4+30
1+ί (1+ί)2 (l+ί)2(2+ί)2 (1+0(2+0'

and

->0
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l+t

which imply

0 f ° r

Thus we have shown that the above function of x is monotone increasing for
x^l and so

Therefore (2.5) is true.
Finally we see easily that

limF 0(*)=+oo. Q.E.D.
x-* n

Now, we shall compute the derivative of the positive function F0(x) (0^
From (1.1) and (2.3), we obtain

. " " * 3 , n

{(2n+3)x-(8n--3)}/o+2(jc-l)(n-jc)/{
2(n-x)(x-l)f0

whose denominator is positive for 0<x<n, xΦl, by Lemma 2.1 and numerator
becomes

{(2n+3)x-(8n-3)}\:(2n-l-x)B-(n-x)n-1{(n-l)x2-

+2(x-l)(n-x)l-B+(n-x)n-2{(n2-l)x2-n{2n-Y)x + n2

4)x + 16n2-16n+3} B

Hence setting

(2.6) F2(

+3n(2n-l)},

we obtain

F2(x)
(2.7) F'0(x)

which shows that F2(x) is real analytic for 0^x<n and has a zero point of
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order at least 4 at x = l. Our pressing purpose of the argument in the following
is to show that F2(x) is positive for 0<x<n, xφl.

§ 3. Positiveness of F2(x).

LEMMA 3.1. When n^2, we have

for O^x^n .

Proof. Since the above polynomial of order 3 in x takes the positive values
3n(2n—1) at x=0 and n2(n—ΐ)2 at x = n, it suffices to prove the following in-
equality

P(t):=3n(2n-l)ts+(n-3)(4n-l)t2+(2n2-7n+8)t-(n~l)>0

for t> —.
n

The discriminant of the polynomial of order 2 in t

PV)=9n(2n-l)t2-\-2(n-3)(4n-l)t+2n2-7n+8
is

4(n-3)2(4π-l)2-3βπ(2n-l)(2n2-7n+8)

for n ^ 2 .

Hence F(t)>0 for any t and so P(t) is monotone increasing. Thus we see that

P(t)>0 for t>—. Q.E.D.

n
The coefficient of B in (2.6) regarding as a quadratic polynomial in x has

its symmetric axis at

and

when n>l , and

when n>3/2. Supposing n^2, we denote the root of the quadratic equation:

(3.1) (2

in the interval Kx<n by γ0. From the above facts and Lemma 3.1 we obtain
easily the following lemmas.

LEMMA 3.2. F2(x)>0 for γo^x^n.
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LEMMA 3.3. When n^2, we have

Proof. We have easily

1 {64(n-l)2-lβ(n-l)(2n2+5n-4)+(2n

and

Now, setting

Π ?) P(x) —

\O.OJ J- 3\Λ,) .

the sign of F2(x) is the same as the one of

{n~xp7xT
sM "B for

We have easily

and

Γ (n x) n " 1 P 3 (x) y
I Plx) J

12(n-l)2

2n + l

Hence it must be oϋ ι i <^o< ?

n , Q. E. D.

We obtain also

(n-x)n-ιP3'(x)-(n-l)(n-xy-ψs(x)
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where

(3.5) Qs(x) :=2n2

Hence, we have

{(n-xT-
X Pΐx)

We shall compute the quantity in the above brackets. Since

we have

~{n-x)P2\x)Plx)-P2{x)Qlx)

-(3n2-Sn+S)xs+(n-l)xά}

-{16n2-16?z+3-2(2n2+5n-4)x+(2n + l)

Thus, setting

(3.6) Q2(x) :=(2n

we obtain finally the following formula:

Π 7 N f {n-x)n-ιPs(x)Y__ n(n-l)

(3.7) I }
LEMMA 3.4. WVierc n^2, Q2(^)>0 /or x^To-
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Proof. On the graphs of the quadratic polynomials P2(x) and Q2(x), their
axes of symmetry are

2n2+5n-4 J 8n2-2n+9
* and x — -2n+l 2(2n+l)

respectively. Since we have

8n 2-2n+9 2n2+5n-4 4n2

2(2n+l) 2n + l 2(2n+l)

it must be Q2(x) for Ot^x^γ0, if we can show

(?2(ro)>o.

Now, noticing the expressions of P2(x) and Q2(x), we have

Since we have

4n2-12tt + 17>0 and ro

by Lemma 3.3, and so it must be

2n+l

2

8n3-24n2+28n-3

2n + l)(8n3-24?x2+28n-3)-(8?z-5)(4?z2-12?2+17)}

,- [8ft4-3βn3+74ft2-87ft+41] .

On the other hand, setting n—t-^2 in the polynomial of n in the above brackets,
we obtain

8n4-3βft3+74tt2-87n+41

=8ί4+28ί3+50ί2+33/+3>0 for t^O.

Thus we have proved that Q2(x)>0 for x^γ0 when ?z^2. Q. E. D.

Remark. If we substitute directly x=-^—r-τ- in the polynomial Q2(x), we
zn + 1obtain

7 R " ~ ^ X y-ί-— {(8n-5)2-(8n2-2n+9)(8?z-5)+472(27z4-l)(2n2-2?z+3)}

2
2n + l • [8π4-3βn3+β8n2-75n+35] .
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Substituting n=t+2 in the polynomial of n in the above brackets, we obtain

8n4-3βft3+68ft2-75tt+35

which is not always positive for ί^O.

LEMMA 3.5. When n^2, we have

F2(x)>0 for 0 ^ * < l and

Proof. By means of (3.4), (3.7) and Lemma 3.4, we see that the function

and hence F2{x) is positive for 0 ^ x < l and KxSϊo- Q. E. D.

Noticing F2(l)=0, we obtain from Lemma 3.2 and Lemma 3.5 the following

PROPOSITION 1. When n^2, we have

F2(x)>0 for 0^x<l and Kx^n,
and

F2(l)=0.

PROPOSITION 2. When n^2, we have

XVn—X

where X=Xn(x) defined by (0.8).

Proof. By means of Proposition 1 and (2.7), F0(x) must be monotone increas-
ing in the interval 0<x<n, hence we obtain

F0(X)>F0(x) for
i.e.

f 0 Γ(rc-Z)"- 3 ' 2 ( Z - l ) 3 ^ (n-x)"" 3 ' 2 (x-1)3

Since we have X(n—X)n~1—x{n — x)"'1, the last inequality is equivalent to

—X .,,,* x-Vn—x ., . . . , _ ^

/ffl), TTΓ/OW for 0 < x < l . Q.E.D.

§ 4. Certain properties of ΛW

In Lemma 4.2 in [11], we introduced the function

(4.1) h(x):={4n-l-(2n + ϊ)x}μ(x)-n(n-

which is positive in (0, 1) and negative in (1, n).
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LEMMA 4.1. fi(x)=(l-x)2h(χ)

and Λ(x)>0 for 0<x<l and Mx)<0 for Kx<n.

Proof We obtain easily

(l-x)2h(x)= {4n-l-(2n + l)x} {B-x{n-x)n~1} -n(n-x)n-\l-x)2

The signs of fλ(x) in (0, 1) and (1, n) are evident from this equality and Lemma
4.2 in [11]. Q. E. D.

LEMMA 4.2. The function Φλ{x) defined by

for O^x^n, xΦί

(4.2)

_ ^ 3

+ l)J5
for x=lβ(n-l)

is positive and real analytic for 0^x<n, when n>l.

Proof It is clear that the statement is true for 0^x<n and xΦl. From
(1.2), we get easily

Next we have

{Λoλ \{n-x)n-1{nH2n-l)x-{n + l)x2} \'
I 4n i—(2n + ϊ)x I

_ ?ι(n-x)n-2q-x)2{6n2-(n+l)(2n

Hence we obtain

lim Φ^x)—l{n--Y)Λ\m γΛ Γ T -
x-i x->i (1 — X)

^ ^

=2(n-l).hm

2n(n-l) r (n-x)n"2{6n— lim
3 χ"ί {4n-l-(2n + l)z}2

3 ΐζn^2 = "~6(n-l) '
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Since fx{z) is complex regular except z=n, the above computation implies that
Φι(x) is regular analytic on 0^x<?2. Q. E. D.

(4.4)

LEMMA 4.3. The function Fx(x) defined by

OΓ̂ iTΓ t ^ Γ for Oίχ<n, xΦl

w(4n + l)J3 / n(4n + l) \ . ,

is positive and real analytic for 0^x<n, and

(4.5)

Proof. By means of Lemma 4.2 it is clear that F^x) is positive and real
analytic for 0^x<n. The values of Fx(x) at x=0, 1, n are easily calculated.
Since we have

-1/2 4n —1 —ngn-!

the inequality i?

1(0)<7?

1(l) is equivalent to the following inequality;

Regarding the right hand side of (4.6), we consider the function of t:

\2ί + 3/2
)( 1

1 + j for f>0.

We shall show this function is monotone decreasing. In fact, we have

d / iyί+3/2 / iγί+3/2, l+t ( 3 y 1 l

(
i

Putting — = we obtain

=log(l + M)—
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Both functions log(l + w) and — ί l + —wj of u take the same value 0 at

u=0 and their derivatives with respect to u are

—— and —
l + u

respectively. Since we have

14- 3 3 ^

2 A 1

it must be

log(l + w)—: fl + —wj<0 for zί>0.

Hence, we obtain

-yj <0 for ί>0,

which implies

M_L λ > lira (l + y ) ~ e %

i.e.
/ 1 \ 2n-l/2

>e2 for

On the other hand, supposing 72Ξ>2, we have

6(4n-l-ngw-1) ^ 6(4n-l-2n) = 6(2n-l) < g 2

4n + l = 4n + l 4n + l

Therefore (4.5) is true when n^2. Q. E. D.
Now, we shall compute the derivative of the positive function Fx(x) (0^

x<n). From (1.2) and (4.4), we obtain

2n~Ύ 3 f

whose denominator is positive for 0<x<n, xΦl by Lemma 4.1 and numerator
becomes



230 TOMINOSUKE OTSUKI

+ l)x2} B

Hence, setting

(4.8)

we obtain

(4.9) ^ _ ^ ^_^

which shows that Fs(x) is real analytic for 0 ^ x < n and has a zero point of
order at least 4 at x=l. Our pressing purpose of the argument in the follow-
ing is to show that Fz(x) is positive for 0<x<n, xΦL

§ 5. Positiveness of F3(x).

LEMMA 5.1. When n>l, we have

for — oo<χ<oo.

Proof. The discriminant of the quadratic polynomial of x of the left hand
side of the above inequality is

--4(n-l) 2 (32n 2 -8n-13).

Since 32n2—S?ι — l3>0 for n > l , this discriminant is negative. Hence, the state-
ment of this lemma is true. Q. E. D.

Now, setting

(5.1) P2(x) :-3(2n-l)(6n-l)-2(16n 2+3n-4)x+(2n+l)(4n+l)x 2,

(5.2) P,{x) :=3^(4?2-l)+3(2n2-7n+l)x-(8

the sign of F6(x) is the same as the one of
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by means of Lemma 5.1. We have easily

(5.3) μ^r^Λuη

since P2(l)=JP3(l)=12(n-l)2, and

= Pt{(n-x)"-1Pt'-(n-lXn-x)n-tPi} -(.n

(P*y
We obtain also

= -(n-*)»"»&(*),

where

(5.4) Q3(x) :=6

Hence, we have

0 1 ^ ) ^ P 3 ( x ) i ' _

P2(x) J ~

We shall compute the quantity in the above brackets. Since

=3n2(4jι-l)+3?ι(2n2-lln+2)x-(8?ιs+9n2-29?ι+-3)x2

+(2?23+lb22+4n-8)x3-
we have

-(n-x)P2\x)P3(x)-P2(x)Q3(x)
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+ 4 n ( 2 0 2 n 4 + 1 8 n 3 - 2 n 2 + 7 ) Λ : 2 - 6 n ( 8 4 n 4 + 5 β n 3 + 4 w 2 + n + 5 ) λ ' 3

Thus, sett ing

(5.5) (32

we obtain finally the following formula:

LEMMA 5.2. When n>l, Q2(x)>0 for —

Proof. The discriminant of Q2(x) is given by

= -3(2ft+l)2[-3(lβn3+l(k2-9tt+3)2

= -3(2n+l)2[-3(25β?ί6+320n5-188n4-84n3+141n2-54n+9)

+8(112n6+7βn5-44n4-2n3+7n2+n]

--3(2n+l)2[128n6-352n5+212n4+23βn3-367τ22+170n-27].

Substituting n = t+l in the polynomial of n in the last brackets, we obtain

128π6-352?25+212π4+23βtt3-367n2+Γ70n-27

which is always positive for ί>0. This fact implies that

Q2(x)>0 for - c o < χ < + o o . Q.E.D.

PROPOSITION 3. When n>l, we have

F,(x)>0 for 0^x<l and l<x<n,
and
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Proof. By means of (5.3), (5.6) and Lemma 5.2, we obtain

^TμiΞL<B for <>**<», *#1,

which implies

F3(x)=P2(x)B-(n-x)n~1P1(x)>0 for 0£x<n, xΦl

by means of Lemma 5.1. Q. E. D.

PROPOSITION 4. When n > l , we have

where X=Xn(x) defined by (0.8).

Proof. By means of Proposition 3 and (4.9), Fλ(x) must be monotone increas-
ing in the interval 0<x<n, hence we obtain

( ) ) for
i.e.

Since we have X(n—X)n~1—x(n — x)n~1, the last inequality is equivalent to

X2 r 2

(l-x)Vn-/11

§ 6. Positiveness of U(x9 JC0).

In this section we shall investigate the function

(6.1) U(x, xQ)=2{ψ(x)-ψ(x0)}+n(n-x0)
n{λ(x)-λ(x0)}.

PROPOSITION 5. When n^2, we have

U(x, xo)>O for

Proof. From (6.1) we obtain easily

by (1.4) and (1.5). Since 0 < j r o < l < * i < n , let tc=κ(x0) be the constant such that
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Here, we check the following inequality

for n^2.

It is equivalent to the inequality

n-\

or
2(n-l)

which is clear, because

for n ^

We have easily
, Λ:0)=0 .

I H HI IV

In the following, we shall devide the proof in the four cases shown in the
above figure according to the size of K.

Case I: X

In this case, we see easily that -^— U{x, x0) is positive for xo^x</c,

and negative for κ<x<l. Since we have

l, xQ)=2{B-ψ(x0)}+n(n-x0)
n{λ(l)-λ(x0)}

=2{B-φ(xo)}+2n(n-ιc)n{λ(X)-λ(<xo)}
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>2{B-φ(xo)}+2n(n-ΐ)n{λQ)-λ(x*)}

=2F(l)>0,

where F(x) is defined by (0.5) and positive for xQ<x^xλ by Lemma 3.1 in [11].
Hence it must be U(x, xo)>Q for xo<x^xlt

Case II: κ=l.

In this case, we see easily that —~—U(x, x0) is positive for xo^x<l and 1<

^xλ and so the claim is evident.
Case III:

In this case, we see easily that —=—U(x, x0) is positive for xo^x<l and κ<

^Xx and negative for \<x<κ. Since we have

-ψ(xo)} +n(n-xo)
n{λ(κ)

=2F(/t)>0,

it must be U(x, xo)>O for x*<xikxi.
Case IV: x^/r.

In this case, we see easily that —^—U(x, x0) is positive for xo^x<l and

negative for Kx<xλ. Furthermore, it must be

U{xlf x0)=-n(n-Xo)7l

since we have the inequality:

(6.2) ^(x1)-^(x0)>0 for

by Lemma 2.2 in [11]. Hence we obtain also U(x, xo)>O for xo<x^Xi.
Q. E. D.

Using Proposition 5, we obtain the following

PROPOSITION 6. When n^2, we have

Proof. By means of Propositions 5 and 2, we have

XVn-X~fo(X) xVn-xfo(x)
/χγγ u \Λ> χo) (χyγ υ\X> χo)

7^ {U(X, xo)-U(x, x0)}
X l)

, v XSj Yl

= n(n-xo)
n rx

which is positive by (6.2) replaced with xQ=x, Xχ=X(x). Q. E. D.
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§7. Certain properties of M(x, x0) and M(x, x0).

PROPOSITION 7. When n^2, we have

xM(x, Xp) XM(X, X0) ̂ n

(l — x)Vn — x (l—X)Vn—X

Proof. We use the expression of the right hand side of (1.7) for M(x, x0).
Then we have

xM(x, xo) XM(X, x0)

(X-xWn-x (l-XWn-X

7 I \3 U\X, XQ)\

H ^—2 " 1 (]_χγ(1 _ V\n-l/2 /i W 1 — "I 7 *" 1

By means of Proposition 6, the quantity in the first brackets is positive.
We have also the inequality:

(7 2) ΊΓ-xni-xr-^ - ( i - , ) t - V - >0 for 0<x<1'
since it is equivalent to the one:

/A -̂/ -̂  7l\^; ^ r\ r Π / v ̂  1
-ΛjVn-A (l-i)Vn-Ji:

because x(n—x)7 l"1=Z(n—Z)7 1"1, which was proved in Proposition 4. Therefore,
the right hand side of (7.1) must be positive since 0 < x 0 < K ^ and ψ(x)—ψ(xo)>O
for xo<x<L Thus we obtain the inequality of this proposition. Q.E.D.

T-1}

PROPOSITION 8. When n^2, we have
x°' M{x,xQ)dx

Proof. We have the equalities

M(x, x0) __ xM(x, x0)
( 7 " 3 ) V(n-xy{φlx)-ψ(x0)} n-x ' xV(n-x){φ(x)-ψ(xo)\ '

where

Mix x ) - H n l ( 2 n + l ) * W " ( " * ) F(x x )M{x, x0)- nin-xT-1 { ' o )

+2n{x-ϊ)(n-x)μ{x){λ{x)-λ{x,)},
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F(x, xo)=ψ(x)-ψ(xo) + n(n-xT{λ(x)

φ\x)=n(rι-x)n-\l-x),

237

by (0.3), (0.5), (1.4) and (1.5).
First of all, for any small ε>0 we take δλ>0 such that if l—δι<xQ<l, then

X(x0)—xo<ε. Next, substituting suitably x with 1 in — — — of the right
71 X71 — X

hand side of (7.3) by noticing the above expressions and the mean value theorem,
we consider the following constant:

n—1
r 1 ) . . t + B ( B _ 1 ) . l

(n —I) 2

and furthermore using (0.6) this constant becomes n\n—l)n~4ε. Then, by the
continuity of related functions here we can choose a positive constant δ^δi
such that if

then

xM(x, x0)

n — x
Hence, for such xQ we obtain the inequalities

M(x, xo)dx

dx

(n — x){ψ(x)—ψ(x0)}

^ _ Λ / 2 T Γ

VnφΓ
by (0.1) and (U) in § 0, from which we have

lim I [Xl^_=Mί£L,ΞM£=χo-i \)χ0V(n — xf{ψ{x)—φφ{x0)}

and therefore it must be

V(n — xf {φ{x)—φ(xo)}
Q. E. D.
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Appendix

In the original manuscripts, the present author made a serious mistake such
that from (1.8) he derived the following equality:

dx0 Jχ0V(n — ;

M(x, xo)dx

M(x, xo)dx

The right hand side of this can be expressed as

1 - x Γ xM(x, x0)Γ x
^c}* 1 ( 1 -

XM(X,
n^x (l-X)V τ=x\dx>

of which the quantity in the brackets is positive by Proposition 7. Thus, he
believed at first he succeeded in proving Conjecture A. But this integral be-
comes +cχ?.

In the following, we shall show that a large number of the facts obtained
in §1~§7 will be useful in a study of the period function T, by giving anew
proof of the following theorem which was proved in [10] by a considerable
complicated complex analysis on the Riemann surface ΞF given in § 1.

THEOREM D. The period function T(x0, n) of the solution of the differential
equation (E) is monotone increasing with respect to x0 ( 0 < ^ 0 < l ) for any fixed n

Proof. By (1.4) in Part (I), we have

dx0

where c=xo(n — Xo)71'1-

Now, setting

(2)

(n-z)n-3/2dz

we divide the closed path γ on the Riemann surface £F: z(π— z) n - 1 — w2=c, as is
shown in the following figure :

^-plane w -plane
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where ψ(ao)=ψ(a1), Vψ(ao)—c = h, XQ<ao<Ka1<x1 and γ=γ'-\-γ»-{-γf"-\-γ< v%

Then, we have

Γ Λ Λ _ 2 f (n-zy<*dw

_ 2 rVn—z 1 Ί 2 r f —1 Jn—zλdz2 r f

= 2 ΓVn-z J_Ί l r
n L l - z ' w \dr n ) r

Since this equality holds for any path on £F, we have

4 Vn-fl 0 2 Γαo (2n—1 — x)dx
n ( l -

J 3 W ; n (βl-l)/z n J ^ α - i M n - i ) ^ ) - ^ '
and

Hence, we obtain

1 /Vn-flo Vn- fli
n /ι \ 1 — a0 ax—l

- 2
«i {n-x)n-zl2dxC

Since both of the integrals in the braces of the right hand side tend to 0 as
aQ—tXo a n d ax—> xlf w e o b t a i n

On the other hand, we have

V n - i Vn-x
B-c
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where b2=B—c. The second term of the last side tends to 0 as x —» x0 or
x —> xx. Hence we have

2 . r2Vn-aQ{B-φ(a0)} 2Vn-a1 {Bj-j^aj

(n — x)ndx

~n)a0V(n^W{ψ(x)-

Setting
Λ7f \ Vn — x{B—ψ(x)} / ,
V(x) := —^ = (x-l)Vn-xμ(x),

X 1

which is real analytic in the interval (0, n), we obtain

W Jλϊ)~ n αo™ L ft2" n

Now, since we have

n J α 0 VO

_ V_(x) V_ 2{φ(x)-c} V'(x)-n(X-xXn-x)n-zV(x)

we get

2 V{a^—V{aQ

b2 Vφ(ao) — c

2 fαi/

1 Γαi

JαoV(n-A:)Γ{0W-^

The numerator of the integrand of the last integral can be expressed as fol-
lows :

)-c\ • Γ (2n-l-x){B-φ(x)} 1H X) J
-n(n-x)n-sl2{ψ(x)-c}

hence we have

j % H £ 0

^ Γ Vφ~(ao)-c
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b2 U0

Thus, we obtain the important formula as follows:

= 2 r * i

nb2 )χ0

Mx)dx
,o (x~l)W(n-x){φ(x)-c} '

because we have

{2n-l-x){B-ψ(x)} -nix-lfin-x)71-1

=(2n-l-x)B-(n-x)n-1{x(2n-l-x)+n(x-l)2}

=(2n-l-x)B-(n-x)n-1{n-xJr(n-l)x2}=fo(x).

Finally using this formula and (0.9), we have

*i fo(x)dx
χ0 (x-l)W(n-x){φ(x)-cf

foWdx , f*o fo(X)

χ0 (x-l)W(n-x){φ(x)-c} Ji (X-l

x(n-x) ' l-X d x

(Z-l)3 (x-iγ Wψ(x)-c '

that is,

By means of proposition 2, we obtain

/s(r)<0,
hence

^^dx U) > Q Q.E.D.

REMARK. The formula (β) will play an important role in Part (III) to con-
tinue to the present part, in which we shall try to make Conjecture B or Con-
jecture C a theorem.
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