N. HIRANO AND W TAKAHASHI
KODAI MATH. J.
2 (1979), 11-75

NONLINEAR ERGODIC THEOREMS FOR NONEXPANSIVE
MAPPINGS IN HILBERT SPACES

By NorimicHI HIRANO AND WATARU TAKAHASHI

§1. Introduction.

Let C be a closed convex subset of a Hilbert space H and T be a mapping
of C into itself. 7 is said to be asymptotically nonexpansive if for each x, yeC,

1T =Ty | =1 +a)|x—y) for 1=1, 2, -,

where lim a,=0. In particular if «,=0, i=1, 2, ---, T is said to be nonexpansive.

In [1], Baillon proved the first nonlinear ergodic theorem: Let C be a closed
convex subset of a real Hilbert space H and T be a nonexpansive mapping of C
into itself. If T has a fixed point in C, then for each x in C,

An(X):%(x—(- Tx+ - +T" %)

converges weakly to a fixed point of 7. Brézis and Browder [3] extended this
theorem to general averaging processes

Ba(x)= g)oan, ¢ TEx(0=an, s, goan. =1).

The argument there was very simple and elegant.

In this paper, at first, we extend Baillon’s theorem to asymptotically nonex-
pansive mappings and we prove that the converse of Baillon’s theorem is also
true; if for each x in C, A,(x) converges weakly to a point in C, then 7 has a
fixed point in C. Moreover, we obtain nonlinear ergodic theorems for a family
{T,: 0=t<oo} of mappings on C satisfying some conditions. Finally, a nonlinear
ergodic theorem for a commutative semigroup of nonexpansive mappings on C is
given by using the asymptotic center defined in Lim’s paper [7].

The authors wish to express their hearty thanks to Professor Hisaharu Ume-
gaki for many kind suggestions and advice.

§2. Ergodic theorems for nonlinear mappings.

Let H be a real Hilbert space and C be a closed convex subset of H. Let
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T be a mappinggfrom C into itself, then we define

=

-1
Apx= :Z)Tkx for every x<C.
=0

(TP

Let DCH. We denote by the closure of D, by coD the convex hull of D and
by d(D) the diameter of D. Let T map C into H, then we denote by R(T) the
range of T and by F(T) the set of fixed points of 7. Let C be a nonempty
closed convex subset of a Hilbert space H, and {x,: a= A} be a bounded net in
C. Then, we define:

re(x)=sup{x—xsll : 8=a},
r(x)=inf{ry(x): ac A},
r=inf{r(x): x=C}.

The set {xeC: r(x)=r} will be called the asymptotic center of {x,:a< A} in C.
This definition is due to Lim [7]. From the above definition, the asymptotic
center of {x,: a= A} in C is a single-element set {x} in C such that

lim sup||x—x.||=inf {lim sup||y—x.|| : y=C}.
a a

We write x, — x to indicate that the sequence of vectors {x,} converges weakly
to x; as usual x, — x will symbolize (strong) convergence.

THEOREM 1. Let C be a closed convex subset of a real Hilbert space H, and
T be a mapping on C such that for each z=C, {T"z} 1s bounded and for each
x, yel,
1T x—Tyl=1+a)|x—yll,

where lim @;=0. Then for each x wn C, A.x converges weakly to a fixed point
k2
of T.
We need three lemmas to prove Theorem 1.

LEMMA 1. Let C and T satisfy the same assumptions as in Theorem 1. Let
x€C and ¢>0. Then there exists K,>0 such that for each m=K,, there 1s Ny >0

satisfying
NAzx—T™A, x| <e for all n=N,.

Proof. For any u in H,

lAwx—ul’=l- S (T -l

2

nf—_,‘l n}_,:‘l(Tkx——u, T'x—u).
n° =0 k=0

Since 2(T*x—u, T7x—u)
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=Tt x—ul*+ T x—ul*— [T x—Tx*,
we obtain
2 n-1 1 n-1n-1 )
21 Apx—ulP=—Z I T*x—ul*——5 X Z I T*x—T"x|* *)
n k=o n° k=0 3=0
If we choose u=A,x in (*), then
1 n-1
n

LSS e o= 2 P A
7=0 n k=0

2 =0
Therefore we obtain that for each usH,
1 »-1 1 n-1 )
[Apx—ul?=— 2| T'x—ul*—— T T x—Ayx|*.
7 =0 7 2=0
If we set u=T*A,x where k=n, then

JAux—TH A= S T T Ayl = | T =T Al

1 »-1
—— 2T x—Aux|*
n =0

1 k-1 1 n-&-1
SE— 2T x—T* A x|*+A+a,)*— X [T'x—A.x|?
n =0 n 1=0
LS T A
n =0
=

LRI T A Rt ) S I T Al
1= i=

3‘.—‘

If we set d=0({T"x: n=1, 2, ---}) and NV is positive integers,
1T x— A, x| < d? for all 1, neN.

For arbitrary ¢>0, by the hypothesis, there exists K,>0 such that Q2a,+a.?
<e?/2d* for all k=K, Therefore if k=K,

Cantan) "2 T — Al <e/2,

and for m=K,, there exists N,,>0 such that

k-

-

—i— (T x—T™A, x||?<e?/2 for all n=N,, .

i

1

Therefore
NAx—T™A, x)|*<e?/2-+e%/2=¢.
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LEMMA 2. Let C and T satisfy the assumptions as in Theorem 1. Let x=C.
Suppose that a subsequence {A,x} of {Anx} converges weakly to a pownt y wn C.
Then y ts a fixed pownt of T.

Proof. Suppose that a subsequence {A,x} of {A,x} converges weakly to a
point y in C and {T*y} does not converge strongly to y. Then there exists a
subsequence {T*y} of {T*y} such that for a positive number ¢,

1T y—yll=ze for all i€ N.
Since {A,,x} converges weakly to y, for each z in H(z#y), we have
lim inf|| Ap x—y| <lim inf| A, x—z]. ()
Letr =lim inf||A,,x—y|| and choose >0 such that 6< /r*+¢e?/4—r, then there
exists a subsequence {A,.x} of {A,x} such that [[Anx—y|<r+d/3, 1€N.

While
[ Anx=T* =N Anx—T* Ay x|+ T* A x—T*yl|

SApx—T*Apxl+ I Angx—yll+arllx—y] .
By Lemma 1, there exists K,>0 such that if k=K, there exists N,>0 satisfying
A x—T*A.x|<d/3  for all n=N,.

While there exists K;>0 such that a,=0d/3||lx—y| for all k=K,. If we choose
k>0 such that |T*y—yl|=¢ and k=max (K,, K,), then

| Ap,x—T*y| <6/3+0/3+(r+0/3)=r+0
for all m;=N,. Therefore we have that for all m;=N,,
A x—(T*y+2)/2°=2|(An x—T*y)/2|*
+21(Anx—)/21°—=I(T *y—y)/2]?
S(r+0)—e?/4<rr.
This contradicts the inequality (**).

LEMMA 3. Let C and T satisfy the assumptions as in Theorem 1. Let x=C,
then the asymptotic center of {T*x} is a fixed point of T.

Proof. Suppose the asymptotic center x, of {T*x} is not a fixed point of 7.
Then there exists a subsequence {7 *wx,} of {T*x,} such that for a positive
number ¢, [T ux,—x,|=e. If we set r=limsup||T*x—x,|, then for each >0
such that d<¢?/2, there exists N,>0 such that

T x—x,|?=7v*+0 for all n=N,.
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Then we have
IT7x—(T *exo+20)/21°=20(T " x— T *+20)/ 21>+ 2I(T " x— x,) / 2]
— (T *2xo—x0)/2]®

1 1
= At @n PI T Fox =+ I T = ) = 1T el
= (b an I b xol o r2+5/2—

Since liin a =0, there exists K,>0 such that if £2,=K,,
lim sup || T"x—(T *ux,+x,)/2| <lim sup | T"x—x,]l.
This is a contradiction.

Proof of Theorem 1. By the weak compactness of co{7T"x}, there exists
a subsequence {A,x} of {A,x} which converges weakly to a point y in C. By
Lemma 2, y is a fixed point of 7, and y is included in N co{T*x: k=n}. We shall

show that y is the asymptotic center of {T"x}. For usF(T), we set d=lim inf|T *x
—ull. Then for each ¢>0, there exists >0 such that |T*x—u| <d+e/2. Then
there exists j,>0 such that

1T x—u| SEA+a)| T x—ul| =d+¢ for all j=j,.

Therefore {|7T*x—ul: k=1, 2, 3, ---} converges to d. Now suppose that u is an
element of N\ co{T*x: k=n} NF(T) and u is not equal to x,. Then
n

limksup IITkx~xo||=li£n 1T *x—x,| <li£n T x—u
=limksup T x—ul .

If we set E={ysH: |y—xJ<|y—ul}. E is a closed convex subset of H. By
the inequality above, there exists K,>0 such that {T*x: k=K,}CE. There-
fore co{T*x: k=K,)CE. Since u is not included in E, usco{T*x: k=K,}. This
contradicts the definition of u. Hence we obtain that y is the asymptotic center
of {T*x}. Therefore {A,x} converges weakly to x,.

Let C be a closed convex subset of H. A mapping T from C into itself is
said to be nonexpansive if |Tx—Ty|=|x—y| for every x, y=C. The following
interesting result was obtained by [10].

LEMMA 4. Let C be a subset of a Hilbert space H and T be a nonexpanswe
mapping of C into itself. Then the following conditions are equivalent:

(a) 0eRUI-T);
(b) Ax—A,Tx—0 for every xeC;
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() A x—A,Tx—0 for every x<C.

Proof. (c)=> (a). Since

Ax— A Ty=2 _ T
n n

= LS oy s,
n k=0

we obtain 0=coR(I—T). By Lemma 5 in [10], we have 0= R(I—T). (a)=> (b)
is obvious from Corollary 1 in [10], and (b) = (c) is obvious.

THEOREM 2. Let C be a closed convex set of H and T be a mnomexpansive
mapping of C into itself. Then, the following conditions are equivalent -

(@) {T"x} 1s bounded for some xC;

(a) {T™x} is bounded for all xC;

(b) F(T) 1s nonempty;

(c) for some x=C, A,x converges weakly to a pownt in C;

(¢) for all x=C, A,x converges weakly to a point in C.
Movreover, 1f for all x€C, Px= 7l(im Aux, then P 1s a nonexpansive retraction from

C onto F(T) satisfying PT=PT=P.

Proof. (a)e (b) was proved by Pazy [10]. (b)= (a)’ is obvious since T is
nonexpansive. (a)’ = (c)’ is a direct consequence of Theorem 1. (c) > (b): Suppose
that {A,x} converges weakly to a point y for some x=C. Then {A,x} is bounded.

By using methods employed in [3], we shall prove that A,x—TA,x— 0. As in
the proof of Lemma 1, we obtain that for any u in H,

1 n-1 1 n-1
[Asx—ul?P=—" 2T x—ul’~— 2T x—Anx|*. (*)
n =0 n =0
If we set u=TA,x in (¥), we find that
[Apx—TApx|?
1 2 1 na k 12
=—|x—TAux|*+— Z I T*x—T Apx|
n n k=1
1 n-1
—— 2 Tkx—Anx|?
n k=0
1 2 1 ng2 k 2
S—|x—=TAux|*+— 2 IIT*x— Anx|
n n k=0

BRI YT TPy
711 k=0
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= L T A = T — A
n n

énillx—’l’./l,,xll2 —0.

Since a Hilbert space satisfies Opial’s condition [9], if y#Ty, we obtain
lim [Apx—yll <lim [[Anx—Ty|
= lim (| Apx—TApx |+ T Anx—Tyl)

<l

nL—oo

| Apx—yll .

This is a contradiction. Therefore we have y=Ty. (¢) > (¢) and (a) = (a) is
trivial.

It is obvious that P is a retraction of C onto F(T). We shall show that P
is nonexpansive. In fact, for all x, y=C, we have

(Anx—Any, Px—Py)=|x—yll|Px—Pyll .
So,
|Px—Py|*=lim (A,x—A,y, Px—Py)
Slx—ylllPx—Pyll .

Hence, we have ||Px—Py|=|x—y|.
Let A,x—y and A,Tx—y’. Then, since

0 RU—T)CR(I—T), it follows from Lemma 4 that A,x—A,Tx— 0. So, we
have y=y’, and hence PT=P. It is obvious that TP=P.

§3. Ergodic theorems for one-parameter semigroups

Let C be a closed convex subset of a real Hilbert space H, and {7, : 0=t <oo}
be a family of mappings of C into itself satisfying the following conditions:

(@) Tiex=T,Tyx for all x=C and all ¢, s=0;
b)) Tux=x for all x=C;
(c) for every xC, T,x is continuous in ¢=0.

We shall call such a family an one-parameter semigroup of mappings on C.

THEOREM 3. Let C be a closed convex subset of a real Hilbert space H, and
{T,: 0=t<oo} be an one-parameter semugroup of mappings of C wnto itself such
that for each z=C, {T,z} 1s bounded and for each x, y&C,
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I1Tex—Ty| =(1+a))x—y|  for all x, yeC,

!
where lim a,=0. Then for each x wn C, Apc:%SoT,x dt converges weakly to a

common fixed pownt of mappings T,, 0=t <oo.

Since we can prove Theorem 3 as in Theorem 1 by using the following two
lemmas, we shall omit the proof.

LEMMA 5. Let C and {T,: 0=t<oco} satisfy the same assumptions as in
Theorem 3. Then for each x€C and e>0, there exists t,>>0 which satisfies that
for each t=t,, there exists 2,>0 such that

|Ax—T A;xll<e  for all 2=2,.
Proof. By the methods in the proof of Theorem 1, we obtain
12 1¢2
||142x_‘TsA1X“2:750||Tcx‘_TsAxXH2dt—TSOHTtx—— Ayx|tdt,

where s=0. So, if s<2,

s 2
nAzx~TsAaxuz=%gonTlx—TsAzxuzdtJr%SsuTlx—TsA;.qudt
1¢2
— T Auipat
1¢s 1 ca-s
< | I ToAudt+ (a1 o= Auldt
AJo AJo
1 (2 .
— =1 7a— Ao

(3 A=
< I T A+ ot a7 Tox— Al
Therefore, the argument in the proof of Lemma 1 completes the proof.

LEMMA 6. Let C and {T,: 0=t<co} satisfy the assumptions asin Theorem 3.
Suppose that x€C and a subsequence {A;x} of {Axx} converges weakly to y. Then
y 15 a common fixed point of mappings T,, 0=t <oo.

Proof. Suppose that there exists >0 such that T,y#y. Then there exists
a sequence {k,: 1=1, 2, ---} such that for a positive number ¢,

|Tky—yll=e  for all ieN.

Then the argument in the proof of Lemma 2 completes the proof.
We shall obtain the following lemma by a simple modification of Lemma 1

in [3].
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LEMMA 7. Let {x}:z0 and {y.}iz0 be two sequences in H, F be a nonempty
subset of CSZE)tU {x.}. Suppose that
zs

(@) for each f wm F, |x;—f|— p(f)<co as t — oo,

(b) dist(y,, C;) =0 as t —co for each s=0,

(c) any weak limit of an wnfinite subsequence {y.} of {y.} satisfying t,<t,
<t;< -+ and t,— o0 as 1— oo lies in F.
Then {y,} converges weakly to a pownt of F.

Proof. We shall prove Lemma 7 by methods employed in [3]. By (a) and
(b), there is #=0 such that {y;};.,, is bounded. So, it suffices to show that if
yi,—f and y;, — g for £, <t,<t;< -+, 5,<5,< +++, £, — 0 and s, — oo, then f=g.

For each =0,

lx.—fI*=lxc—gl*+/—gll*+2(x.,—g, g—).
For a given £>0, there exists m(e) such that for t=m(e),
[p()—llx.—gll*| <e
[p(N)—lx—S1?] <e.
Let K. be the closed convex set of all u such that

12(u—g, g—1)+p(g)—p(N+Ig—f1*] <2e.

and

Then, since
2¢> | p(g)—llx—gllP 1+ [x—f 12— p ()]

=z 1p(g)—llxe—gl*+lx.—gl*+lg—fI?
+20e—g, g—)—p(N)l
=12(x.—g, g—N)+p(g—p(N)+lg—fI?],
we obtain K‘SD»%LJ@) {x;} and hence K.DC, (.

By (b), there exists ¢. such that for ¢=f,, we can find u, in Cp(, such that
lyi—ul|<e. For t=t., it follows by y,=y,—u,+u, that

12(y.—g, g=)+ () —p(N+lg—SI°|
=2e+2e|g—fIl.
Since ys, — g, we obtain that
Ip(g)—p(N)+lg—SI°| <2e+2elg—/fI .
Since ¢>0 is arbitrary, it follows that

p(@+lg—=/1"=p(f).
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By symmetry,

p(H+lg—flIF=p(g).
Hence f=g.

THEOREM 4. Let C be a closed convex subset of a real Hilbert space H and
{T,: 0=t<oo} be an one-parameter senmigroup of nonexpansive mappings of C into
itself. Then the following conditions are equivalent

(@) {T.x: 0=t<oc} 1s bounded for some x=C;
(@) {T.x: 0=t<oo} is bounded for all x=C;

(b) QOF(T‘) 15 nonempty ;

12
(c) TSOTLJC dl converges weakly as 2 — oo for some x=C;

2
(cY —i—goﬂx dt converges weakly as 21— oo for all x€C.

2
Moreover, 1f for all x=C, szlim—llz—g T.x dt, then P1s a nonexpansive retraction
0

Jrom C onto QOF(T,) satisfying
PT,=T,P=P  for all t=0.

Proof. (b) = (a)’ is obvious since T is nonexpansive. Though (b) > (¢)’ is a
direct counsequence of Theorem 3, we shall give its proof by using Lemma 7.

Let F= N\ F(T), x=T.x and yzz%gj’m dt. If t>¢ and fEF, it follows that

ITex—=f1=1Twx—f1 .

So, [|T.x—f| converges to p(f)<-oo.
Since for each s=0,

Il %SZT,A— dt—%(Sszx dt—!—SjT[x dt>|| —0,as A—co,

we obtain that dist(y,;, C;) — 0 as 2 — oo for each s=0. By methods in the proof
of Theorem 1, we obtain that

1 ¢
lvi=Toilt=2 | I Tex—=Toyilirar
12
— =i =yt

So, if s<4,
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. LT(s .
Iy=Toilr=5 | {ITx =T alrar

2 . 2 R
+ I =Toirdt={ 1T —yapar|

P
0

:%U:”TLX‘Tsyznzdf—FS T et =T villPdu
[T yilira]

1s
= [T x=Topaleat.

Since {T,x: t=0} is bounded, it follows that |y;—7T,y:l —0 as 14— oo for each
s=0 and hence (c) in Lemma 7 holds.

2
Therefore, it follows from Lemma 7 that %‘SOTLX dt converges weakly to a

point of F.

12
(¢) > (b). Suppose that y,= TSoT‘x dt converges weakly to a point y in C.

Then, as in the proof of (¢) = (b) in Theorem 2, we obtain that
ly:i—Tsyil =0 as A— oo for each s=0.

Therefore, it follows that ye F=N\{F(T,): t=0}.

(b) > (a) is obvious.

(a) > (b). Suppose that {7,x:¢=0} is bounded, then it follows that {y;: 2=0}
is bounded and |y;—7,y:ll — 0 as 2— oo for each s=0. Since y,, —y for some
subsequence {y;} of {y;} satisfying 2,<2,< --- and 1, — oo, we obtain that

yen{F(Ty: 120} .

. 1¢2
Suppose that for any x in C, 7—5 T.x dt converges weakly to a point y in C.
0
If Px=y, it is obvious that P is retraction of C onto F=\{F(T,): t=0}.

Since

| Px—Py|*=li (—1—527‘ dt—ing It, Px—P
R VI D 7ty abhix y)
Zlx—y)|Px—Py| for all x, yeC,

P is nonexpansive on C.
For any s=0,
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i 2
—%SOTM' dt— %SOT‘TSX dt

2 A+s
=%S:Ttx dt— %S: Tuxdu

A+s
:%SZT” dt—%g; Tux du

1
T2

1

SOT;x dt_ 2

SZTthx dt.

Since {T,z} is bounded for each z in C,

1
A
Hence we obtain that PT,=P for all +=0. It is obvious that T,P=P for all {=0.

2
Sthx dt~%SOT,Tsx dt—0 as A—oo for each s=0.

§4. Ergodic theorem for a commutative semigroup.

In this section, we shall prove an ergodic theorem for a commutative semi-
group of nonexpansive mappings.

LEMMA 8. Let C be a nonempty bounded closed convex subset of a real Hilbert
space H, and {x.: a € A} be a net in C, then the asymptotic center x, of {x.: a< A}
is an element in co{x,: ac A}.

Proof. Let z be the nearest point to x, in co{x,: a< A}, then

z—yl < lxo—yl for all y in Co{x,: a< A}.
So, we have

lim supllz—x,/| Slim sup|x,— x|
a a
=inf{lim supfy—x.| : y=C}.

Since the asymptotic center is one point, we have z=x, Therefore, x, is in
co{x.: as A}.

Let X be a commutative semigroup with identity, then s\ Y#(=s2Nt2)#¢,
for all 5, t= 2. So, if we define an order t=s by t€JYs, 5 is a directed set. By
methods employed in [1], we shall prove the following lemma.

LEMMA 9. Let C be a bounded closed convex subset of a real Hilbert space
H, and 3 be a commutative semigroup of nonexpanswe mappings on C. Define
FQ)={xeC: Tx=x for all T€ZX} and let P, be the metric projection of C onto
F(2), then for each xC, {P,Tx}rey converges strongly to a point [ in F(Z).
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Proof. Define [;=P,Tx for each T<X. If S, T3 and S=T, then there
exists Ue X satisfying S=UT. Then

1Sx—Ils|=11UTx—lyr| S| UTx—Iz|
=|UTx—Ulr| = Tx—I7l .
Therefore, {|Tx—I7||: T€2X} is a decreasing net. Define d:lilgn \Tx—Ir]| and
Mp—Tx|*=d*+eq.

Since
lls—lrl?=2|ls—Sx[I*+2|/lz— Tx||?
s+ Lp—2Sx?
and | —ZSSZUL —Sx|=|ls—Sx|=d, we have

lls—Irl*=2(d*+es)+2(d*+er) —4d*=2(eptes) -
Hence, we obtain that {P,Tx} converges strongly.

THEOREM 5. Let C be a bounded closed convex subset of a real Hilbert space
H and X be a commutative semigroup of nonexpansiwe mappings on C. Then there
exists a nonexpansiwve retraction P of C onto F(X) satisfying the following conditions -

(a) PT=TP=P forall T wmn 2;
(b) Pxeci{Tx: Ted} for all x wn C.

Proof. We shall first show that for x=C, the asymptotic center x, of {7Tx:
T2} is a common fixed point of 2. For each Usld),

lim sup||Ux,— Tx|=lim sup||Ux,—UTx|
S T=8 SzU T=S8
<lim sup|lx,—Tx| .
S Tz28

Since the asymptotic center is unique, Ux,=x, for all U in 2. Next we shall
show that for each U<J, the asymptotic center of {Tx: T=U} in C is x,. For
each ze H,

lim supllz— T (Ux)||=lim sup|z— UTx||
S T=8 S T=8

=lim sup|/z—Tx]||
SzU T=S8

=lim sup|lz—7Tx] .
S T=8

So,
lim sup || yo—T(Ux)|=lim sup | y,—Tx|
S T=8 S T=28
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=1lim sup | xo—Tx||
S T=8

=lim sup | x,— T(Ux)|
s 128

=lim sup|ly,— T(Ux)] .
S T=8

Since the asymptotic center is unique, we obtain y,=x,, Now we define a map-
ping P on C as follows. For each x&C, Px is the asymptotic center of {7x:
Te2X}. Then P is a retraction of C onto F(2). It follows from the discussion
above that P satisfies (a) and (b). Finally, we shall show that P is nonexpansive.
As in Lemma 9, define [;=P,Tx for each T2, and lzliTm P,Tx. By the defini-

tion of P,
I=Txl ==zl +lz—Tx|

=S| —=Ip|+1Px—Txlf .
So, we have

lim sup||{—Tx| =lim sup|{—I7|+1lim sup | Px—Tx| .
S T=8 S r=8 S T=8
Since lim||/—/;]]=0, by Lemma 9, we have

T

lim sup||{—Tx||<lim sup||Px—Tx]| .
S T=8 S T=8

Since the asymptotic center is unique, Px=I[. Hence, we obtain

| Px—Py||=lim||P,Tx— P, Ty| lim|| Tx—Ty||
T T

Slx—yll.

Remark 1. In Theorem 5, we do not know whether ‘commutative’ can be

replaced by ‘amenable’.
Remark 2. The following example show that F(X)~co{Tx: T2} is not

necessarly one point.
Let C=[—2, 2] and let us define a nonexpansive mapping 7 on C by
Tx=—x for —2=<x<0

and
Tx=x for 0=x=2.

Then, we have F(2)nco{T*(—1): n=0, 1, 2, ---} =[O0, 1].
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