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NONLINEAR ERGODIC THEOREMS FOR NONEXPANSIVE
MAPPINGS IN HILBERT SPACES

BY NORIMICHI HIRANO AND WATARU TAKAHASHI

§ 1. Introduction.

Let C be a closed convex subset of a Hubert space H and T be a mapping
of C into itself. T is said to be asymptotically nonexpansive if for each x, y^C,

\\T%x-Txy\\^(X+a%)\\x-y\\ for i = l , 2 , - ,

where l i m α ^ O . In particular if at=0, i=l, 2, •••, T is said to be nonexpansive.
τ

In [1], Baillon proved the first nonlinear ergodic theorem: Let C be a closed
convex subset of a real Hubert space H and T be a nonexpansive mapping of C
into itself. If T has a fixed point in C, then for each x in C,

converges weakly to a fixed point of T. Brezis and Browder [3] extended this
theorem to general averaging processes

Bn(x)= Σ α n . kT*x(0ύan. k, Σ an.k = l).

The argument there was very simple and elegant.
In this paper, at first, we extend Baillon's theorem to asymptotically nonex-

pansive mappings and we prove that the converse of Baillon's theorem is also
true if for each x in C, An(x) converges weakly to a point in C, then T has a
fixed point in C. Moreover, we obtain nonlinear ergodic theorems for a family
{Tt: 0^ί<oo} of mappings on C satisfying some conditions. Finally, a nonlinear
ergodic theorem for a commutative semigroup of nonexpansive mappings on C is
given by using the asymptotic center defined in Lim's paper [7].

The authors wish to express their hearty thanks to Professor Hisaharu Ume-
gaki for many kind suggestions and advice.

§ 2. Ergodic theorems for nonlinear mappings.

Let H be a real Hubert space and C be a closed convex subset of H. Let
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T be a mapping^from C into itself, then we define

1 n-i

A Σn Σ for every
n k=o

Let DdH. We denote by D the closure of D, by coD the convex hull of D and
by δ(D) the diameter of Zλ Let T map C into H, then we denote by R(T) the
range of T and by F(T) the set of fixed points of T. Let C be a nonempty
closed convex subset of a Hubert space H, and {xa: αe^4} be a bounded net in
C. Then, we define :

re(*)=sup{||*—Λ^H : β^a),

r(x)=mί{ra(x): a^A),

r=inf{r(x): I G C } .

The set { ieC: r(x)=r} will be called the asymptotic center of {xa:a^Λ} in C.
This definition is due to Lim [7]. From the above definition, the asymptotic
center of {xa: a^A) in C is a single-element set {x} in C such that

We write xn -^ x to indicate that the sequence of vectors {xn} converges weakly
to x as usual xn —> x will symbolize (strong) convergence.

THEOREM 1. Let C be a closed convex subset of a real Hilbert space H, and
T be a mapping on C such that for each z^C, {Tnz\ is bounded and for each
x,

where ϋ m α ^ O . Then for each x in C, Anx converges weakly to a fixed point

ofT.

We need three lemmas to prove Theorem 1.

LEMMA 1. Let C and T satisfy the same assumptions as in Theorem 1. Let
x^C and ε>0. Then there exists Ko>0 such that for each m^K0, there is Nm>0
satisfying

\\Anx-TmAnx\\<ε for all n^Nm.

Proof. For any u in H,

\\Ar\\ n Σ ( T " W

"Σ(T*Λ-M, T'X-U).
o k=o

Since 2{Tkx-u, TJx-u)
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= \\Tkx-u\\2+\\T>x-u\\2-\\Tkx-T3x\\2,

we obtain

If we choose n=Anx in (*), then

1 n - l n - l k 2 w-l

722 *=o j=o 72 k = o

Therefore we obtain that for each u^H,

n ι=o n ι=o

If we set u=TkAnx where k^n, then

I k-l 1 n - l

M r — Tk A r\\2— V \\Tιr Tk A r l l 2 1 V
72 i = o 72 ι = Λ

^—ΣΊlT^-TM^| | (+ Λ )n t=o n

1 n-l

72 t=0

^ — *Σ||TιΛ:-TMnΛ:||2+(2αik+αife

2) — "'^W^x-AnxW2.
n ι=o n ι=o

If we set d=δ({Tnx: 72=1, 2, •••}) and JV is positive integers,

\\Tιx~Anx\\2<d2 for all 2, ?2eiV.

For arbitrary ε>0, by the hypothesis, there exists Ko>0 such that (2ak-\-ak

2)
<ε2/2d2 for all k^K0. Therefore if k^K0,

) i : \ \ n \ \ / ,
n t=o

and for m^K0, there exists A^m>0 such that

-]-kΈ\\Tιx-TmAnx\\2<ε2/2 for all n^Nm .
n t=o

Therefore
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LEMMA 2. Let C and T satisfy the assumptions as in Theorem 1. Let XGC.

Suppose that a subsequence {Anix\ of {Anx} converges weakly to a point y in C.
Then y is a fixed point of T.

Proof. Suppose that a subsequence {Anix\ of {Anx} converges weakly to a
point y in C and {Tky} does not converge strongly to y. Then there exists a
subsequence {Tkιy} of {Tky} such that for a positive number ε,

\\Tk*y-y\\^ε for all it=N.

Since {An%x} converges weakly to y, for each z in H(zΦy), we have

lim inf\\Anix-y\\ <lim inf\\Anιx-z\\. (**)

Letr =\\m'mί\\Anix—y\\ and choose δ>0 such that δ<Vr2+ε2/4—r, then there
exists a subsequence {Am.χ} of {/l̂ x} such that \\Amix—y\\ <r-{-d/3,

While

\\Amix-Tky\\^\\Amix-TkAmix

By Lemma 1, there exists /ίo>0 such that if k^K0, there exists Λr*>0 satisfying

\\Anx-TkAnx\\<δβ for all n^TV,.

While there exists K{>0 such that akύδ/3\\x—y\\ for all k^Kx. If we choose
such that \\Tky-y\\^ε and ̂ ^max(KQ, KJ, then

for all nit^Nk. Therefore we have that for all mi^Nk,

\\Amix-(Tky+y)/2Γ=2\\(Amix-Tky)/2\\*

+2\\(Amix-y)/2Γ-\\(Tky-y)/2\\*

This contradicts the inequality (**).

LEMMA 3. Let C and T satisfy the assumptions as in Theorem 1. Let
then the asymptotic center of {Tkx} is a fixed point of T.

Proof. Suppose the asymptotic center x0 of {Tkx} is not a fixed point of T.
Then there exists a subsequence {Tkιx0} of {Tkx0} such that for a positive
number ε, \\Tkϊxo—xQ\\^ε. If we set r—\\msup||T*.r—xo||, then for each <5>0
such that 3<ε2/2, there exists No>0 such that

\\Tnx-x0\\2^r2+δ for all n^
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Then we have

Since l imα*=0, there exists K0>0 such that if ki^

limsup | |T n x-(T^x 0 +x 0 )/2 | |<l imsup | |Tn*-jc 0 | | .

This is a contradiction.

Proof of Theorem 1. By the weak compactness of ~cδ{Tnx), there exists
a subsequence M^x} of {Λnx} which converges weakly to a point y in C. By
Lemma 2, 3/ is a fixed point of T, and 3/ is included in Π c5{T*x: k^n}. We shall

show that 3; is the asymptotic center of {Tnx\. For u^F(T), we set d=lim inf \\Tkx
—u\\. Then for each ε>0, there exists k>0 such that \\T*x—u\\<d+ε/2. Then
there exists ; 0 > 0 such that

\\TJ+kx-u\\^Q.+aj)\\Tkx-u\\ύd+ε for all j^jQ.

Therefore {||T*x—w|| : fe=l, 2, 3, •••} converges to d. Now suppose that u is an
element of Γ\Έb{Tkx: k^n)r^F{T) and M is not equal to x0. Then

n

limsup ||T*JC—Λro|l=lϊm | | T ^ - x o | | <lim \\T*x-u
k k k

If we set E={y^H: \\y—xo\\^\\y—u\\}. E is a closed convex subset of H. By
the inequality above, there exists K0>0 such that {Tkx: k^K0}(ZE. There-
fore To{Tkx: k^K0}dE. Since u is not included in E, u^co{Tkx: k^K0}. This
contradicts the definition of u. Hence we obtain that y is the asymptotic center
of {Tkx}. Therefore {Anx} converges weakly to xQ.

Let C be a closed convex subset of H. A mapping T from C into itself is
said to be nonexpansive if \\Tx—Ty\\^\\x— y\\ for every x, y^C. The following
interesting result was obtained by [10].

LEMMA 4. Let C be a subset of a Hubert space H and T be a nonexpansive
mapping of C into itself. Then the following conditions are equivalent:

(a) 0eβ(/-T);

(b) Anx-AπTx^ 0 for every χ e C ;
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(c) Anx-AnTx-*0 for every X<ΞC.

Proof, (c) => (a). Since

A x—A Tx =
n n

= — n Σ (I-T)Tkx —> 0,
n k=o

we obtain O^cδR(I-T). By Lemma 5 in [10], we have O^R(I-T). (a) => (b)
is obvious from Corollary 1 in [10], and (b) ̂ > (c) is obvious.

THEOREM 2. Let C be a closed convex set of H and T be a nonexpansive
mapping of C into itself. Then, the following conditions are equivalent *

(a) {Tnx} is bounded for some
(a)' {Tnx} is bounded for all
(b) F(T) is nonempty;
(c) for some x^C, Anx converges weakly to a point in C;
(c)' for all x^C, Anx converges weakly to a point in C.

Moreover, if for all x^C, Px= lim Anx, then P is a nonexpansive retraction from

C onto F(T) satisfying PT=PT=P.

Proof, (a) <̂  (b) was proved by Pazy [10]. (b) => (a)' is obvious since T is
nonexpansive. (a)' => (c)' is a direct consequence of Theorem 1. (c) => (b): Suppose
that {Anx} converges weakly to a point y for some xεC. Then {Anx} is bounded.
By using methods employed in [3], we shall prove that Anx—TAnx-*0. As in
the proof of Lemma 1, we obtain that for any u in H,

I n-i 1 π-i

M r 7 / | [ 2 — V \\Tιr u\\2 —- V I I T z r — A r l l 2 (*}
n ι=o n t=o

If we set u=TAnx in (*), we find that

\\Anx-TAnx\\*

Έ \ \ n V
n k=o

— \\x-TAnx\\2+ — nX \\Tkx-Anx\\2

n n k=o
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= — \\x-TAnx\\2- — WT^x-AnxW2

^ — \\x-TAnx\\2—>0.
n

Since a Hubert space satisfies OpiaΓs condition [9], if yφTy, we obtain

Urn ||i4n*-y|| < lim \\Λnx-Ty\\

This is a contradiction. Therefore we have y=Ty. (c)'=> (c) and (a) «=> (a)' is
trivial.

It is obvious that P is a retraction of C onto F(T). We shall show that P
is nonexpansive. In fact, for all X J G C , we have

{Anx-Any, Pχ-Py)Mx-y\\\\Px-Py\\ .

So,

\\Px-Py\\2= lim (Anx-Any, Px-Py)
n

mχ-y\\\\Pχ-Py\\.

Hence, we have \\Px—Py\\^\\x—y\\ .
Let Anx-^y and AnTx—-y'. Then, since

O(ΞR(I-T)aR(I-T), it follows from Lemma 4 that Anx-AnTx — 0. So, we
have y=y', and hence PT=P. It is obvious that TP=P.

% 3. Ergodic theorems for one-parameter semigroups

Let C be a closed convex subset of a real Hubert space H, and {Tt: O f̂ <oo|
be a family of mappings of C into itself satisfying the following conditions:

(a) Tt+sx=TtTsx for all x^C and all t, s^O;

(b) Tox=x for all i ε C ;

(c) for every xeC, Ttx is continuous in t^O.

We shall call such a family an one-parameter semigroup of mappings on C.

THEOREM 3. Let C be a closed convex subset of a real Hilbert space H, and
{Tt: 0^t<oo} be an one-parameter semigroup of mappings of C into itself such
that for each z^C, {Ttz} is bounded and for each x,
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\\Ttx-Tty\\£a+at)\\x-y\\ for all x, y<ΞC,

where \ιmat=0. Then for each x in C, Aλx=-Λ Ttx dt converges weakly to a
A JO

common fixed point of mappings Tt, 0^ί

Since we can prove Theorem 3 as in Theorem 1 by using the following two
lemmas, we shall omit the proof.

LEMMA 5. Let C and {Tt: Q^t<co} satisfy the same assumptions as in
Theorem 3. Then for each χ £ C and ε>0, there exists to>O which satisfies that
for each t*zt0, there exists λo>O such that

\\Aλx-TtAλx\\<ε for all λ^λ0.

Proof. By the methods in the proof of Theorem 1, we obtain

where s^O. So, if s<λ,

Therefore, the argument in the proof of Lemma 1 completes the proof.

LEMMA 6. Let C and {Tt: 0^t<co} satisfy the assumptions as in Theorem 3.
Suppose that J E C and a subsequence {Aλix} of {Aλx} converges weakly to y. Then
y is a common fixed point of mappings Tt, 0^ί

Proof. Suppose that there exists ί>0 such that TtyΦy. Then there exists
a sequence {kt: £=1, 2, •••} such that for a positive number ε,

WT^y-yW^e for all i<=N.

Then the argument in the proof of Lemma 2 completes the proof.
We shall obtain the following lemma by a simple modification of Lemma 1

in [3].



NONLINEAR ERGODIC THEOREMS 19

LEMMA 7. Let {xt)tzo and {yt}t^o be two sequences in H, F be a nonempty
subset of Cs=Έό{J {xt}. Suppose that

(a) for each f in F, \\xt—f\\-*P(f)<co as t^co,
(b) dist (yt, Q -> 0 as t -» oo for each s^O,
(c) any weak limit of an infinite subsequence {ytί} of {yt} satisfying ί j<ί 2

< ί 3 < ••• and tτ-^oo as i—> oo lies in F.
Then {yt} converges weakly to a point of F.

Proof. We shall prove Lemma 7 by methods employed in [3]. By (a) and
(b), there is to^O such that {yt}tzt0 is bounded. So, it suffices to show that if
ytι-^f a n d ySi-^g for t1<t2<t3< •••, S χ < s 2 < •••, tx —> oo a n d sτ —> oo, t h e n f—g.

For each ί^O,

For a given ε>0, there exists m(ε) such that for ί^

and

Let Kε be the closed convex set of all u such that

\2{u-g, g-f)+p{g)-p{f)+\\g-fV\ <2ε
Then, since

+2(xt-g, g-f)-p(f)\

= 12(xt-g, g-f)+P(g)-p(f)+ }\g-f\\21

we obtain KCZD U {xλ and hence
ί>OTC)

By (b), there exists t, such that for t^te, we can find zί£ in Cm(£) such that
ί—Mjll^ε. For t>tε, it follows by yt=yt—ut+ut that

Since ySι —* ιr, we obtain that

Since ε>0 is arbitrary, it follows that

P(g)+\\g-f¥=P(f) •
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By symmetry,

p(fn\\g-f\\2=p(g).
Hence f=g.

THEOREM 4. Let C be a closed convex subset of a real Hilbert space H and
{Tt: 0^t<oo} be an one-parameter semigroup of nonexpansive mappings of C into
itself. Then the following conditions are equivalent

(a) {Ttx: 0^f<oo} is bounded for some

(a/ {Ttx: 0 ^ < o o } is bounded for all x ε C ;

(b) Π F(Tt) is nonempty

1 p
(c) —I Ttx dί converges weakly as λ —> oo for some

X Jo

1 (̂
(c)' — \ Ttx dt converges weakly as λ —• oo for all

A JO

Moreover, if for all x^C, Px—Y\m-τ\ Ttx dt, then P is a nonexpansive retraction
λ Jo

from C onto Γ\ F(Tt) satisfying
ί S O

PTt = TtP=P for all t^Q.

Proof, (b) => (a)' is obvious since T is nonexpansive. Though (b) ̂ > (c)' is a
direct counsequence of Theorem 3, we shall give its proof by using Lemma 7.

Let F= Γ\ F(Tt), xt = Ttx and yλ=—\λTtx dt. If t>t' and / G F , it follows that
ί^O X Jo

\\τtx-f\\mτt,χ-f\\.

So, \\Ttx—f\\ converges to />(/)<+ oo.
Since for each s^O,

\\\\?'Ttx dt-~(\STsxdt+['Ttx dt)\\ - 0 , as *-*oo,
XJo χVJo Js /

we obtain that dist (3';., Cs) -> 0 as x1 -^ 00 for each s^O. By methods in the proof
of Theorem 1, we obtain that

\\yχ-T,yλ\\2=\\*\\Ttx-T,yΛ2dt
X Jo

-\\'\\TtX-yxVdt.
X JO

So, if s<λ,
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Since {Ttx: t^O} is bounded, it follows that \\yλ—Tsyλ\\ -> 0 as Λ —> ex? for each
s^O and hence (c) in Lemma 7 holds.

1 N
Therefore, it follows from Lemma 7 that -r-l Ttx dt converges weakly to a

A Jo

point of F.
1 f<*

(c)=>(b). Suppose that yλ=—\ Ttx dt converges weakly to a point y in C.
A Jo

Then, as in the proof of (c) >̂ (b) in Theorem 2, we obtain that

\\yx-Tsyx\\ -» 0 as λ -> cχ5 for each s^

Therefore, it follows that y^F=r\{F(Tt): t^O}.
(b) => (a) is obvious.
(a) >̂ (b). Suppose that {Ttx : t^O} is bounded, then it follows that {yλ: Λ^O}

is bounded and \\yχ—Tsyλ\\-*Q as λ-+oo for each s^O. Since yxt—*y for some
subsequence {yλι} of {yλ} satisfying λτ<λ2< ••• and λt -> oo, we obtain that

1 f̂
Suppose that for any x in C, τ Ttx dt converges weakly to a point y in C.

A Jo

If P;c=:j;, it is obvious that P is retraction of C onto F=r\{F(JΓt)\ t^
Since

for all

P is nonexpansive on C.
For any s^O,
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1 Γ' 1 C*

τ Ttxdt—γ\ TtTsxdt
X Jo X Jo

1 Γ ; 11 Γ ; 1 f + s

=-r\ Ttx rfί—r-\ Tux du
X Jo X J

If5 1 f̂ +s
= -τ-\ Ttx dt—r-\ Tux

X Jo A Jλ

λ rs 1 Γs

X Jo X Jo

du

Since {T^} is bounded for each z in C,

-γ[λTtx dt-\[λTtTixdt-+0 as — oo for each s^O.
X J o / J o

Hence we obtain that PTt=P for all f^O. It is obvious that TtP=P for all ί^O.

§ 4. Ergodic theorem for a commutative semigroup.

In this section, we shall prove an ergodic theorem for a commutative semi-
group of nonexpansive mappings.

LEMMA 8. Let C be a nonempty bounded closed convex subset of a real Hilbert
space H, and {xa : a^Λ} be a net in C, then the asymptotic center x0 of {xa : a^A}
is an element in Έb{xa: a^A}.

Proof. Let z be the nearest point to x0 in Έb{xa\ α e A } , then

\\z-y\\Mx*~-y\\ for all y in cδ{χa : a^A}.

So, we have

lim sup|!z—A'α||^lim sup||x0—^«||
a a

=inf {lim sup|b~za | | : y^Q .
a

Since the asymptotic center is one point, we have z=Xo- Therefore, x0 is in
cδ{xa a^A}.

Let Σ be a commutative semigroup with identity, then Σsr\Σt(~sΣr\tΣ)φφ,
for all s, t^Σ. So, if we define an order t^s by t^Σs, I7 is a directed set. By
methods employed in [1], we shall prove the following lemma.

LEMMA 9. Let C be a bounded closed convex subset of a real Hilbert space
H, and Σ be a commutative semigroup of nonexpansive mappings on C. Define
F(Σ)={x^C: Tx=x for all TΪΞΣ} and let Po be the metric projection of C onto
F(Σ), then for each xeC, {PQTX}T<EΣ converges strongly to a point I in F(Σ).
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Proof. Define lτ=P0Tx for each T^Σ. If S, T E I and S^T, then there
exists U(ΞΣ satisfying S=UT. Then

\\Sx-ls\\ = \\UTx-luτ\\^\\UTx-lτ\\

= \\UTx-Ulτ\\^\\Tx-lτ\\ .

Therefore, {||T*—/Γ|| : T e l 7 } is a decreasing net. Define d=lim \\Tx-lτ\\ and

\\lτ-TxΓ=d2+ετ.
Since

and | |-—^--S^II^H^-SΛ ll̂ rf, we have

Hence, we obtain that {P0Tx} converges strongly.

THEOREM 5. Let C be a bounded closed convex subset of a real Hilbert space
H and Σ be a commutative semigroup of nonexpansive mappings on C. Then there
exists a nonexpansive retraction P of C onto F{Σ) satisfying the following conditions *

(a) PT=TP=P for all T in Σ

(b) PχtΞcδ{Tx: T e l 7 } for all x in C.

Proof. We shall first show that for x^C, the asymptotic center x0 of {Tx:
T<=Σ} is a common fixed point of Σ. For each U^Σ,

lim sup||t/jco-7*||=lim sup\\Uxo-UTx\\

Since the asymptotic center is unique, UxQ=-x0 for all U in Σ. Next we shall
show that for each U^Σ, the asymptotic center of {Tx: T>U} in C is x0. For
each z^H,

lim sup||z—T(Ux)\\=\\m sup\\z—UTx\\
S TzS S Ti S

= l i m sup || ^—Tx\\
SzU TzS

=lim sup||^—Tx\\ .
S TzS

So,
lim sup||3/0-T(t/*)||=lim

-S T^S S
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p|
S TzS

=\im sup\\xo-T(Ux)
S TzS

^\imsup\\yo-T(Ux)\\.
S TzS

Since the asymptotic center is unique, we obtain yo=Xo- Now we define a map-
ping P on C as follows. For each x^C, Px is the asymptotic center of {Tx:
T^Σ). Then P is a retraction of C onto F{Σ). It follows from the discussion
above that P satisfies (a) and (b). Finally, we shall show that P is nonexpansive.
As in Lemma 9, define lτ=PQTx for each T e J , and ί=lιm P0Tx. By the deflni-

T
t i o n of PQ,

So, we have

lim sup ||/-7x|| glim sup||/-/Γ||+lim sup\\Px-Tx\\ .
5 T^S S T^S S T^S

Since lim||/—lΓ\\=0, by Lemma 9, we have
T

lim sup\\l-Tx\\glim sup\\Px-Tx\\ .
S TΪLS S T^S

Since the asymptotic center is unique, Px=l. Hence, we obtain

\\Px-Py\\=\im\\PoTx-PoTy\\^\im\\Tx-Ty\\
T T

Remark 1. In Theorem 5, we do not know whether 'commutative' can be
replaced by 'amenable'.

Remark 2. The following example show that F(Σ)r\cδ{Tx: T G I } is not
necessarly one point.
Let C=[—2, 2] and let us define a nonexpansive mapping T on C by

Tx^-x for - 2 g
and

Tx=x for 0g*g2.

Then, we have F(Σ)r\cδ{Tn(-l): n=0, 1, 2, -}=[0, 1].
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