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PRE-RADON MEASURES ON TOPOLOGICAL SPACES
By ICHIRO AMEMIYA, SUSUMU OKADA AND YOSHIAKI OKAZAKI

§1. Introduction.

There are two directions in the study of the measure theory on arbitrary
topological spaces: the theory of Radon measures and the theory of Baire mea-
sures. The outline of the developments in these fields is referred to Bourbaki
[2], Hirschfeld [8], Schwartz [11] and Varadarajan [13].

The purpose of this paper is to study infinite Borel measures.

Originally, in 1970, the first author has proposed the notion of a pre-Radon
measure on a topological space, which is defined as a class of “measures deter-
mined by an open base with a smoothness condition” (Amemiya [1]). It seems
to be of use for the study of infinite measures, especially Borel measures on a
topological space. In this paper, we formulate a pre-Radon measure as a Borel
measure (see Definition 2.2) and develop the topics in a survey of Amemiya [1]
from a different viewpoint.

Finite pre-Radon measures are said to be r-smooth Borel measures which
have been investigated by many mathematicians. For infinite Borel measures
with r-smoothness, Fremlin [3] recently presented the class of quasi-Radon mea-
sures. Our pre-Radon measures are slightly different from quasi-Radon measures.

Main results of this paper are three constructions of pre-Radon measures
given in Section 3. The fundamental idea is suggested by Kirk [9]. In Theorem
3.1, we extend a finitely additive set function satisfying some smoothness condi-
tions defined on the ring generated by an open base to a pre-Radon measure.
Similarly, in Theorem 3.2 we consider a set function defined on the algebra
generated by an open base. In Theorem 3.4, an infinite Baire measure with z-
smoothness on a normal space is extended to a pre-Radon measure. For finite
z-smooth Baire measures, this extension is known (see for example Kirk [9]).

In Section 4, we give the decomposition theorem for o-finite pre-Radon mea-
sures.

In Section 5, we deal with the restriction of pre-Radon measures. We pre-
sent the several conditions that the restriction is a pre-Radon measure.

In Section 6, we prove the decomposability of pre-Radon measures. For
Radon measures, the decomposability is given in [2, § 1, Proposition 91 and for
quasi-Radon measures, Fremlin [2, Theorem 72B].

In section 7, we give some topological spaces with the (K)-property (for the
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definition, seevSection 2). We prove if a topological space X is a Borel subset
of its Stone-Cech compactification, then X has the (K)-property (Theorem 7.4).
In particular, topologically complete spaces and o-compact spaces have the (K)-
property.

In Section 8, we prove that there exists a one-to-one correspondence between
pre-Radon measures and smooth linear functionals.

In Section 9, we show the uncountable product of pre-Radon probability
measures is uniquely extended to a pre-Radon measure on the product space
(Theorem 9.9). In the countable product case, Tortrat [12] has proved the same
result, still we show using a Fubini type theorem (Theorem 9.6) for the sake of
completeness.

The authors would like to thank Professor T. Ohno for useful information.
And they are greatly indebted to Professor H. Sato and Professor Y. Yamasaki
for their valuable suggestions for improvements.

§ 2. Preliminaries.

Let X be a set. A family U of subsets of X is said to be a paving if it
satisfies the following conditions :

1) ¢€U;

2) U U=X;

veuy

3) If Uy, U,evU, then UN\U,eU and U,\VU,eU.
We denote by R[U] the ring generated by a paving U.

LeEmMA 2.1 (Kirk and Crenshaw [10, Proposition 1.2]). Let F be a subset of
X, then F belongs to R[U] i1f and only 1f there are sets W,, V, m U (=1, 2,
-+, n) such that the following conditions hold :

1) VzCWL (1:1; 2: Tty n);
2) (W =VInW,—=V)=0 for 1#;;

3) F= \=J1 (W,—V,).

Let m be a non-negative, exiended real valued set function on an algebra A
of subsets of X. We say m is og-fimte if there exists a countable subfamily

{A,eA; m(A,)<oo, n=1,2, -} such that X= QA"’ and m is semi-finite 1f m
satisfies
m(A)=sup {m(B); A2BCA, m(B)< oo}

for every A in JA. A measure p is a non-negative, extended real valued and
countably additive set function defined on a os-algebra 8 such that p(é)=0.
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Let (X, 8, pr) be a measure space and A be an element in 3. We denote by
¢4 the measure on the measurable space (4, ANB) defined by

plANB)=p(ANB)

for every B in 8. We call p, the restriction of p to A.
Let {(X, 8, p2); A€ 4} be a family of measure spaces such that p(X,)=1.
By g])‘ B,, we mean the product o-algebra, that is, the smallest o-algebra which

makes each projection of xl} X; onto X; measurable. Then there exists a unique
e

probabilty measure & p¢; on & B, such that
24 VY|

(@ pal(A)=pu,(As) - p12,(Az,)

for every set A of the form A4; X - ><A1n><;£[ X, in ®A.€Bz. This measure )@y,-_
2y i =
is called the product measure.

Let X be a topological space. By the Borel field #(X), we mean the minimal
g-algebra generated by all open subsets of X. By C(X), we denote the algebra
of all real continuous functions on X. The Bawe field B,(X) is the minimal o-
algebra generated by the family of zero sets

Z(X)={fX0); feC(X)}.
Now we define pre-Radon measures and Radon measures.

DEFINITION 2.2. Let X be a topological space. A pre-Radon measure p is
a Borel measure on 8(X) such that:

1) For every x in X, there exists an open neighborhood O of x such that
w0)<o;
2) For every net {O,} of open sets increasing to an open subset O, lim p(0,)

=u(0);
3) For every open subset O such that p(0)<oo,

p(O)=sup {¢(F); FCO and F is closed} ;
4) For every A in B(X),
p(A)=inf {¢(0); ODA and O is open} .

We say a Borel measure satisfying 3), 4) a regular Borel measure.
In the same manner as in the proof of Theorem (11.32) of Hewitt and Ross
[6], it follows that the above conditions 3), 4) imply the following 3):

3) For every A in B(X) such that p(A4)<oo,
p(A)=sup {u(F); FCA and F is closed} .
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Consequently, the conditions 3), 4) are equivalent to 3)/, 4).

Remark 2.3. In general, the above conditions 3)" and 4) are not necessarily
equivalent. If a Borel measure p is o-finite and satisfies 4). then 3)’ holds. For
infinite Borel measures, the conditions which deduce 4) from 1) and 3)’ are not
known except that X is locally compact and o-compact, as far as the authors
are concerned. We shall discuss this problem in Appendix.

Remark 2.4. There exists a non-regular Borel measure on a compact space
(see Halmos [5, 52, Exercise (10)]). This also gives an example of a Borel mea-
sure which is not a pre-Radon measure.

DEFINITION 25. Let X be a topological space. A Radon measure p is a
Borel measure on $(X) such that

1) For every x in X, there exists an open neighborhood O of x such that
HO)<oo;

2) For every open set O,

wO)=sup {u(K); KCO and K is compact} ;
3) For every A in B(X),
p(A)=inf {¢(0); ODA and O is open} .

Our definition of a Radon measure is different from Bourbaki [2] whose “Radon
measure” is a Borel measure satisfying 1) and 2) in Definition 2.5.

It follows that a Radon measure is a pre-Radon measure. Conversely it is
easily verified that a pre-Radon measure on a locally compact space is a Radon
measure. We say a topological space has the (K)-property if every pre-Radon
measure is a Radon measure.

The support of a Borel measure p on a topological space X is the set of all
points x in X with the property that, for every open set O containing x, p(0)>0.
We denote by supp p the support of ¢. We have the following easy consequence.

THEOREM 2.6. Ewvery non-zero pre-Radon measure has the non-empty support.

§ 3. Construction of pre-Radon measure.

In this section, we give three methods of constructions of pre-Radon mea-

sures.
Firstly, we discuss a set function defined on a ring.

THEOREM 3.1. Let X be a topological space, U be a paving generated by an
open base of X and m be a non-negatwe, real valued, finitely additie set function
on RLU] such that

1) For any net {Ua} of subsets in U wncreasing to a set U in U,
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lim m(U )=m(U);

2) For every U i U,
m(U)=sup {m(F); UDFER[U] and F 1s closed} .

Then m 1s uniquely extensible to a pre-Radon measure.

Proof. 1f two neis {U,} and {V.} increase to an open set O, then we have

lim m(U)=lim m(V).

For every open se: O, we put
A0)=sup {m(U); ODU=U} .

Then it follows that 1 is a non-negative, monotone and subadditive set function
on the family of open subse:s of X. It can be easily shown that for any net
{0.} increasing to O,

lim A(0,)=2(0) .

We define a set function p* as follows:
p*(A)=inf {2(0); ODA and O is open}

for every subset A of X. It is evident that ux* is an outer measure defined on
all subsets of X. We shall prove that every open subset is u*-measurable by
the way similar to Kirk [9, Lemma 1.12]. Let O be an open subset of X and
A be a subset. It is sufficient to show

wH Az (ANO)+ pH(A—-0).

We may assume that p*(A) is finite. For arbitrary ¢ positive, there is an open
subset O, containing A such that 2(0,)<e+p*(A). Let {U,} be a net in U in-
creasing to O, and V be a set in U contained in O. By the condition 2), there
exists a closed set F in R[U] with FDOV such that m(F)+e>m(V). Then it
holds

M(Ug—F)=m(Uy—V)=m(V—-F)<e,

so that it follows
e—!—li;n m(U,—V)<lim m(U,—F)=20,—F)=zp*(A—-0).
Thus we have

e+ p*(A)> A0,)=lim m(U,)

=1i£n MU\ V) +m(U,—V ) >2A0,NV )+ pH(A—0)—c¢.
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Since V is arbitrary, we have
2e+ p*(A) Z A0, NO)+ p*(A—=0)=Z p(ANO)+ p*(A—0),

which shows every open subset is g*-measurable. So the restriction g of p* to
the Borel field B(X) is a Borel measure. From the definition of g, it is obvious
that g is a pre-Radon measure.

We show y is an extension of m. By Lemma 2.1, every A in R[U] can be

n
represented as a disjoint union A= U (W;—V,). Thus we have
=1

m(A)= 3 on(W)—m(V.)= 3 (W)= (V) =p(A)

Finally we shall prove the uniqueness of g. Let v be another pre-Radon
measure extending m. For any open set O, we can find a net {U,} in U increas-
ing to O. Then we have

,u(O):liam ,u(Ua)zli‘rF m(Ua)zli;n V(U )=v(0).
By the regularity of ¢ and v, we have
p(A)=inf {p(0); ODA and O is open}
=inf {¥(0); ODA and O is open}
=y(A).

This completes the proof.
Secondly we deal with a set function on an algebra.

THEOREM 3.2. Let X be a topological space, U be a paving generated by
an open base of X and m be a non-negatwe, extended real valued, countably addi-
twe set function on the algebra ALU] generated by U. If m satisfies the follow-
g conditions:

1) There exists an increasing sequence {U,} n U such that m(U,) s finite,

and X=\) Uy;
2) For any net {U,} of subsets in U wncreasing to a set U wm U such that
m(U) 1s finite,
lim m(U)=m(U);
3) For every U wn U such that m(U) 1s finite,
m(U)=sup {m(F); UDFeA[U] and F 1s closed} ,
then m 1s uniquely extended to a pre-Radon measure.

Proof. For every open set O, we set
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AO)=sup {m(U); ODUU and m(U) is finite} .

Furthermore we put
¢*(A)=inf {2(0); ODA and O is open}

for any subset A of X. In the same manner as Theorem 3.1, every open set is
p*-measurable. Moreover, the restriction g of g* to B(X) is a pre-Radon mea-

sure,
We shall prove that g is an extension of m. For each U in v, the algebra

UNALU] is generated by UNU. In fact the family {ACX; UNA€A;,LUNUD}
is an algebra containing U, where Ay{UNU] denotes the algebra of subsets of
U generated by UNU. So this family contains ALU]. By Lemma 2.1, for every
A in A[U], we have

UnA= Q(Um W,—UAV,)  (disjoint union),
where W, and V, are in U. Particularly, if m(U)=g(U) is finite, we have

mUNA= 3 UAW)—mUNV.)

= B (UUAW)—UNV)

=u(UNA).
For every A in ALU], we have
m(A)=lim m(U,NA)

=lim p(U,NA)

=u(A).

Consequently p is an extension of m.
From the arguments in Theorem 3.1, the uniqueness of g is clear. The

proof is complete.

Remark 3.3. In Theorem 3.2, if m is totally finite, finitely additive set func-
tion on A[U] satisfying the conditions 2) and 3), then it is easy to verify that

m is uniquely extended to a pre-Radon measure.
Lastly we consider a set function defined on the Baire field B,(X). We

recall that a cozero set is the complement of a zero set. We denote by U(X)
the family of all cozero sets of X.

THEOREM 3.4. Let X be a normal topological space and m be a non-negatie
extended real valued, finitely additwe set function on B(X) satisfying the follow-
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ing conditions:

1) For any x wn X, there exists a cozero set U contaiming x such that m(U)
18 finile;

2) For any net {U,} of cozero sets increasing to a cozero set U,
lim m(Ugy)=m(U);
«

3) For every Bawre set A in B,(X),

m(A)=sup {m(Z); ADZ=Z(X)}
=inf (m(U); ACU<UX)} .
Then m 1s umquely extensible to a pre-Radon measure.

Proof. In the same manner as in the proofs of Theorem 3.1 and 3.2, we
obtain a pre-Radon measure g which coincides with m on U(X). The uniqueness

is trivial if p is an extension of m. We only prove that x is an extension of
m. For every Z in Z(X), we have

UZ)=inf {¢(0); ODZ and O is open}
Zinf {p(U); ZCUeUX)}
=m(Z).

Conversely, since X is normal, for any open set O containing the zero set Z,
there exists a cozero set U such that ODUDZ. Consequently we have wp(Z)=

m(Z) for every Z in Z(X). Let A be any Baire set in 8,(X). Then we have

p(A)=inf {¢(0); ODA and O is open}
<inf {p(U); ACU€U(X)}
=inf {m(U); AcUeU(X)}
=m(A)
=sup {m(Z); ADZeZ(X)}
=sup {u(Z); ADZeZ(X)}
=plA).

Thus g is identical to m on B,(X). This proves the theorem.

Remark 3.5. We can prove the same result as in Theorem 3.4 even if m is
defined on the algebra generated by Z(X).
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§4. Decomposition theorem.

LEMMA 4.1. Let p be a pre-Radon measure on a regular space X. Then
there exists a umique Radon measure v such that vy is absolutely continuous with
respect to p and v(K)=u(K) for every compact subset K.

Proof. For any open subset O, put
m(0)=sup {#(K); KCO and K is compact} .

Then we can easily prove that lim m(0,)=m(0O) for every net {O,} of open sub-
sets increasing to an open subset 0. Let O, and O, be two open subsets, then
we have

m(0;\JO,) =m(0y)+m(0,)

since p is a regular Borel measure. Since X is a regular space, we have
m(0)=sup {m(W); WCWcO and W is open}

for every open set O, where W is the closure of W in X.
We define a set function on the family of all subsets of X as follows:

v¥(A)=inf {m(0); ODA and O is open} .

Then it follows that y* is an outer measure. In the same manner as in the

proof of Theorem (11.30) of Hewitt and Ross [6], we can show every Borel

subset of X is v*-measurable. We denote by v the restriction of v* to B(X).
For any compact subset K, we have v(K)=p(K). In fact, we have

y(K)=inf {m(0); ODK and O is open}
<inf {¢(0); ODK and O is open}
=uK).

On the other hand, for any open subset O containing K, we have m(0)=p(K).
Thus we have v(K)=u(K).

It is obvious that v is Radon measure and absolutely continuous with respect
to p. The uniqueness of v is obvious from the definition of Radon measure.
This completes the proof.

We shall prove the following decomposition theorem.

THEOREM 4.2. Let X be a regular space and p be a pre-Radon measure on
X. Then there umquely exist a Radon measure v and a pre-Radon measure o
such that

D p=vtp;

2) p(K)=0 for every compact subset K.
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Furthermore 1f p 1s o-finite, then p 1s singular with repect to .

Proof. 1f we put
U={U; U is open and p(U)< o},

then U is an open base of X. We define a set function m on R[U] by
m(A)=p(A)—v(A)

for every A in R[U], where v is a Radon measure obtained in Lemma 4.1. By
Theorem 3.1, m is uniquely extensible to a pre-Radon measure p. Then it is
clear that p(0)=v(0)+p(0) for every open subset O. If we remark that both g
and v+p are pre-Radon measures, then we have p=v+p. For every compact
subset K we have p(K)=p(K)—v(K)=0. The uniqueness of the decomposition

is obvious.
Assume that g is o-finite, then v is also o-finite, which implies for a o-com-

pact subset L, v(X—L)=0. On the other hand we have p(L)=0. Hence p is
singular with respect to v. The theorem is proved.

Remark 4.3. In our original version, we assumed that p is o-finite. The
improvement of the theorem is based on a suggestion of Fremlin (personal com-
munication).

§5. Restriction of pre-Radon measure.

In this section we consider the restriction of pre-Radon meaures to subsets.

Let (X, 8, 1) be a measure space. We denote by (X, 3, ) the completion
of (X, 3, 1)

LEMMA 5.1. Let p be a regular Borel measure on a topological space X and

A be a subset in B(X). Then the restriction fiy, of fi to A 1s a regular Borel
measure on A.

Proof. 1t is obvious from the definition of the completion.

By Lemma 5.1, it is easy to verify the following theorem.

THEOREM 5.2. Let p be a pre-Radon measure on a topological space X and
O be an open subset of X. Then the restriction p, of p to O 1s a pre-Rondon

measure.

If ¢ is semi-finite, then the restriction of ¢ to any Borel subset is a pre-
Radon measure. In general we have the following theorem.

THEOREM 5.3. Let p be a pre-Radon measure on a topological space X and A
be a subset in B(X) such that fi, 1s semi-fimte on (A, ANB(X)). Then fiy is a
pre-Radon measure.

Proof. At first, we shall prove in the case that #(A) is finite. Let {O,} be
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a net of open subsets of A increasing to an open subset O of A. Since A be-
longs to B(X), there exist a set A4, in B(X) and a set N such that

A=AUN and p*(N)=0,

where p* denotes the outer measure induced by p. There exists an open subset
0 of X such that OO,AAO—O,%(\A0 for every «. Since g is a _regular measure,
there exists an open subset O of finite measure such that Or\Ao—Of\AO and
OCUO We put

ﬁa:(ﬁgaéﬁ)mé ’
then this net {ﬁa} of subsets of X increases to the open set O. Thus we have
lim f2,(0—0x)=lim 14,(ON A= T 40)
<lim wO—U)=0.

We consider the general case that Z, is semi-finite. Let {O,} be a net of
open subsets of A increasing to an open subset O of A. If f7,(0) is finite, then
from the first step we have

£4(0)={2:(0)=lim f2o(0.)
=lim 7,(0) -

If 7,(0) is infinite, for any natural number N there exists a set B in ANB(X)
such that BCO and N<f,(B)<oo. Since the net {O,\B} increases to B, we
have

N< f1.4(B)=/15(B)
=lim 72,(0a\B)
<lim 72,(0.).

Thus we have lim 7,(0,)=#,0). By Lemma 5.1, i, is a pre-Radon measure on

B(A). This completes the proof.
Let (X, 3, ) be a measure space and Y be a p-thick subset of X. Then
there exists a measure uy on (¥, 8NY) such that

#(Bf\y):ﬂY(B>
for every set B in @ by Hylmos [5, §17, Theorem A].

THEOREM 5.4. Let p be a pre-Radon measure on a topological space X and Y
be a p-thick subset of X. Then py 1s a pre-Radon measure on Y.
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Proof. Let {0, be a net of open subsets of YV increasing to an open sub-
set O of V. There exists an open subset O, of X such that O,N\Y=0,. Putting
0= U Og, {Us is a net of open subsets of X increasing to U U, such that

F:EY a

ﬁof\Y:Oa. Since p is a pre-Radon measure, we have
1 (O)=pr(JU)NY)
=u(UU.)
= lim p(U.)
= lim pwr(T.nY)
= lilxxn 2r(04) .

Since p is a regular Borel measure, it is easy to verify that py is a regular
Borel measure. Therefore py is a pre-Radon measure, which completes the proof.

Let (X, 8, 1) be a measure space and A be any subset of X. We say a set
B in # is a minimal measurable cover of A if A is pp-thick in B, that is,
(pp)+(B—A)=0, where (¢p)+ is the inner measure induced by pz. If p is o-finite,
then there exists a minimal measurable cover of every subset. We define the
restriction of g to A. Since A is pp-thick in B, (up)4 exists. It is clear that
(us), is identical to (p¢p), for another minimal measurable cover B’ of A. Put-
ting ps=(ugn)4, we call u, the restriction of g to A.

Under the above preparations we have the following final result in this sec-
tion.

THEOREM 5.5. Let p be a pre-Radon measure on a topological space X and
A be subset of X. If A has a minimal measurable cover B in B(X) such that
the restriction fig of fi 1s semu-finite on (B, BNB(X)), then the restriction py of p
to A 1s a pre-Radon measure.

Proof. 1t follows from Theorem 5.3 and 5.4.

COROLLARY 5.6. Let pu be a o-fimite pre-Radon measure on a topological space
X. Then for any subset A of X, py 1s a pre-Radon measure.

Proof. Since p is o-finite, A has a minimal measurable cover.

Remark 5.7. Fremlin has pointed out the followings:

1) Let ¢ be a pre-Radon measure on X. If A has a minimal measurable
cover, then it holds p(B)=inf {¢(C); C€®(X) and CDB} for every B in
ANB(X).

2) If p is a quasi-Radon measure, then every subset A has a minimal mea-
surable cover. Particularly g can be restricted to A and the restriction 4 is a
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quasi-Radon measure on A.

§ 6. Decomposability.

Let X be a topological space and g be a pre-Radon measure on X. A sub-
set A of X is called locally negligible if p*(ONA)=0 for every open set O such
that ¢(0) is finite, where p* denotes the outer measure derived from p.

For pre-Radon measures, we give the following decomposition theorem which
is similar to Bourbaki [2, § 1, Proposition 9].

THEOREM 6.1. Let p be a pre-Radon measure on a topological space X. Then
there exists a family {B.} of closed sets satisfying the following:

1) Each (B.,) 1s finite and supp ptp,=Ba;

2) The family {B.} 1s pairwise disjont;

3) X—EJBQ 15 locally negligible

4) If A s a Borel set of finite measure, the cardinal of {a; BaNA+0} 15 at
most countable and 1t holds

(A= pANB).

Proof. Let A be the collection of all disjoint families {C;} of closed sets of
finite measure satisfying supp p¢,=C.

Since the family {¢} satisfies these conditions, the collection A is non-void.
By Zorn’s lemma, 4 has a maximal family {B,}. We shall show the family
{B.} satisfies the conditions 1), 2), 3) and 4). Let O be any open subset of
finite measure. If B,NO is non-void, then we have

0 < ﬂBa(BamO):ﬂ(BamO) < ﬂ(o) < oo s

for supp p, equals B,. Consequently the cardinal of {a; BanO#0} is at most
countable. Hence ON(X—UB,) is a Borel set. Assume p(ON(X—\UB,)) is

positive. Since g is regular, there exists a closed subset F' of X contained in
ON(X—\UB,) such that u(F) is positive. Since pr is a pre-Radon measure on

F by Theorem 5.3, the set B=supp pr is closed in X and we have

pr(B)=p(B)>0.

For every x in B and any open neighborhood V of x in B, there is an open
subset V of F such that VN\B=V. Thus we have

(V)= pe(V)=ppe(V\I(B°NF))
gﬂF( 17)>0 »

for supp ¢r is equal to B. Hence we obtain
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supp ps=20.

Consequently the family {B,}\J{B} belongs to A, which contradicts to the
maximality of {B,}. Therefore we have

#ONX=UBa)=0.

This shows that X—\UB is locally negligible.

Let A be a Borel set in B(X) of finite measure. Then it follows that the
cardinal of {a; ANB.#0} is at most countable. In fact, there exists an open
subset O containing A such that p(O) is finite. Hence the set AN(X—\UB,)

belongs to 8(X) and it holds that
‘u(Am(X—KC{Ba))ZO .
Thus we have
HA=2(ANBa).
This completes the proof.

For a set {a,; A4} of non-negative numbers, we define the sum of {a;;
A4} by
Sa;=sup { 2 a;; 4, is a finite subset of A}.
2€4 A€4y
In the semi-finite case the following corollary holds.

COROLLARY 6.2. Let p be a semr-finite pre-Radon measure on a topological
space X. Then for the family {B,} obtained in Theorem 6.1 we have
4)" For every A in B(X);

HA)=Zp(ANBY);
5 u(X—UBg)=0,
where p+« denotes the inner measure defined from p.
Proof. Since p is semi-finite, we have
p(A)=sup {¢(B); BCA and u(B) is finite}
=sup {%}y(BmB,,) ; BCA and p(B) is finite}

=SuANBIZHA),

which shows 4)’.
Let C be any Borel set in B(X) contained in X—\UB,. For any Borel set
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B of finite measure contained in X—\UB, we have u(B)=0 by Theorem 6.1.
Thus we have -
¢(C)=sup{u(B); BCC and p(B) is finite}
<sup{u(B); BCX—\{BQ and p(B) is finite}

=0.

§7. (K)-property.

Let « be a pre-Radon measure on a topological space X and f be a con-
tinuous mapping of X into another topological space V. We denote by f(y) the
image measure of p defined by

S(e)(A)=p(f7(A)

for every Borel set A in 8(Y). In general, it is not true that the image mea-
sure f(y) is a pre-Radon measure. But the following theorem holds.

THEOREM 7.1. Let p be a pre-Radon measure on a topological space X and
f be a continuous mapping of X into a regular space Y. If we put

Yo={yeY; there exists an open neighborhood U of y
such that p(f~%(U))<co},

then there uniquely exists a pre-Radon measure v on Y, such that
v(0)=p(f7(0))
for every open subset O of Y.
Proof. We remark that Y, is an open subset of Y. If we put
U={UCY,; U is open in Y, and p(f *(U)) is finite} ,
then U is an open base of Y, If we define a set function m on R[U] by
m(A)=p(f7(A)

for every A in R[U7], then for any net {U,} of subsets in U increasing to U
in U it follows that

lim m(Ua):liLn p(f Y (Ug)

=u(f(U)=mU).
Since Y is regular, we have

m(U)=sup {m(V); VCVcU and V is open}
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for every U in U, where V is the closure of V in Y. By Theorem 3.1, there
exists a pre-Radon measure v on Y, extending m. For each open subset O of
Y there exists a net {U,} in U increasing to O. Thus we have

v(0)=35p v(Ua)
=sup m(Ug)
=sup w(f(Ud)

=u(f0)).
The uniqueness of v is clear, which completes the proof.

COROLLARY 7.2. In the above theorem, 1f p 1s finite, then Y, equals Y and
S(p) 1s a pre-Radon measure. Therefore v 1s 1dentical with f(p).

If X is a Borel subset of Y, then the restriction of v to @B(X) is identical
to ¢ on B(X).

LEMMA 7.3. Let X be a Borel subset of aregular space Y, p be a pre-Radon
measure on X and vy be the pre-Radon measure obtained in Theorem 7.1. Then
the restrichion of v to B(X) 1s equal to p on B(X).

Proof. Let A be any Borel set in 8(X) and W be an open subset of X
containing A. Then there exists an open subset W of Y, such that W=WnX.
Hence we have

w(W)=v(W)=inf {»(0); ODA and O is open in Y,}
=u(A)
by Theorem 7.1. Since g is regular, we have
p(A)=inf {(W); WDA and W is open in X}

=v(A).
Conversely, we have

y(A)=inf {v(0); ODA and O is open in Y}
=inf {(ONX); ODA and O is open in Y}
=inf {¢£(0); ODA and O is open in X}
=p(A).
This proves the lemma.

We present a sufficient condition under which a topological space has the
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(K)-property.

THEOREM 7.4. Let X be a completely regular Hausdorff space such that X 1s

a Borel subset of its Stone-Cech compactification BX. Then every pre-Radon mea-
sure p on X 1s a Radon measure, that 1s, X has the (K)-property.

Proof. Let ¢ be the natural embedding of X into SX, (8X), be the open
subset of 8X obtained in Theorem 7.1 and v be the pre-Radon measure on (8X),
in Theorem 7.1. Since (BX), is locally compact, v is a Radon measure. If we
remark that the restriction of the Radon measure v to the Borel set X is a
Radon measure on X, p is a Radon measure by Lemma 7.3. The proof is com-
plete.

We recall that a completely vregular Hausdorff space is topologically complete
if it is a Gzsubset of its Stone-Cech compactification.

COROLLARY 7.5. Every topologically complete space has the (K)-property.
Particularly, a complete metric space has the (K)-property.

COROLLARY 7.6. Every completely regular Haussdorff, o-compact space has
the (K)-property.

§8. Smooth linear functional.

In this section, we show that there is a one-to-one correspondence between
pre-Radon measures and smooth linear functionals.

Let C(X) be the Riesz space of all real continuous functions on a completely
regular Hausdorff space X. A Riesz subspace J of C(X) is said to be order-
dense if for every x in X, there exists f in J such that f(x)#0. A positive linear
functional @ on a Riesz subspace J of C(X) is called smooth if for every net
{fa} in J decreasing to 0,

lim O(f£,)=0.

THEOREM 8.1. et pu be a pre-Radon measure on a completely regular Haus-
dorff space X and [, be the Riesz subspace of all p-integrable continuous func-
tions. Then [, 15 an order-dense wdeal and the functional @, on ], defined by

0.(N)=[ fdp

1S a smooth linear functional.

Proof. For every x in X, there exists an open neighborhood U of x such
that p(U) is finite. There exists f in C(X) such that

1) 0=/=1;
2) fo=1;
3) f=0 on U,
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where U° means the complement of U. Since it holds
0,(N=] fdpSpU)<eo,

f belongs to J,, which shows J, is an order-dense ideal.
Let {fs} be a net of non-negative functions in J, increasing to f in J,.
Since f is non-negative, we have

Q)#(f):jxf d/‘l:f%{r, f(r)>71}fd‘u

=lim f{l; f(1)>71}fd# .

N—oco

For any positive ¢, there exists n such that

PN (s sewroay fdrte.

Since the sequence {fAm} converges to f, there exists m such that

f{l‘; f(r)>—711-}fdfu<j{z; f(z)>71}f/\m d/l'f’e .

If we remark that p({x; f(x)>1/n}) is finite and fAm is bounded, in the same
manner as in the proof of Theorem 24 of Varadrajan [13, Part I] we obtain

j{r; f(r)>ni}f/\m dﬂ:hin J.{I; f(x)>71}fa/\m d/,l

= har‘n j'X fadp.
Thus we have

0, (N=lim B, (f.).

Let {f.} be a net in J, decreasing to 0. If we fix a,, the net {f,,—f.} increases
to fx, Then we have

ligl ¢/z(fa0 —fa):@/_c(fao) .
Hence we have
lim @,(f,)=0.
This completes the proof.

The idea of the proof of the following theorem is essentially due to Fremlin
(37, Hewitt and Ross [6] and Kirk [9].

PROPOSITION 8.2. Let | be an order-dense ideal of C(X) and @ be a non-
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negatiwe smooth linear functional on J. Then there exists a unique pre-Radon
measure g such that J 1s contaned wn J, and

o(f)=] fdp
for every f in J.
Proof. Let M™* be the set of functions {lim f,; {f.} is an increasing net,

each f, belongs to J'}, where /" is the subspace of all non-negative functions
in /. We define a functional @ on M*, by

@@mﬂ@WM-

This definition of @ is well-defined, in fact, if lim fazli{n f4in M* it follows
that
lim (D(fa)=li5n O(f3) -

From the definition, we have
D(cg)=cD(g)

for every g in M* and any positive number c.
For every net {g,} in M™* increasing to g in M*, we obtain

lim D(g)=0(g)

in the same manner as in the proof of Theorem 11.13 of Hewitt and Ross [6].
Therefore we have

D(g,+2,)=D(g)+P(g,)

for gy, g, in M*.
Since J is an order-dense ideal and X is completely regular, the characteristic
function %, of an open subset O of X belongs to M*. We put

m(0)=B(y,)

for every open subset O. Then for any net {O,} of open subsets increasing to
an open subset O, we have

lim m(0,)=m(0) .

«@

Moreover for open subsets O, and O,, we obtain

m(0,V0;) =m(01)+m(0,)

in the same manner as in the proof of Lemma 1.10 of Kirk [9].
If we set

p*(A)=inf {m(0); ODA and O is open}
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for every subset A of X, then u* is an outer measure. Since X is a regular
space, it holds
m(0)=sup {m(W); WCWCO and W is open}

for every open subset O. Hence it follows that every Borel subset is p*-mea-

surable (see for example, Hewitt and Ross [6, Theorem (11.30)]). If we denote

by p the restriction of p* to the Borel field B(X), u is a pre-Radon measure.
We show it holds that

o())={ sdp

for each fin /*. In the same manner as in the proof (a) of Lemma 71 F of
Fremlin [37], we have

Nz fdp

for every f in J*.
In order to prove the converse, we slightly modify the proof (b) of Lemma

71 F of Fremlin [3]. For any f in J*, we put
Sa=fN2" =N,
then the sequence {f—f,; n=1,2, -} in J* decreases to 0. Therefore for an,
positive number ¢, there exists n such that
D()=D(fr)+e.
If we set
H={x: flx)=27"},
p(H) is finite. There exists a positive number ¢ such that

wU)—p(H)<e/2",

where U={x; f(x)>2""—c¢}. By Varadarajan [13, Part I, Theorem 10], there
exists g in J* such that

1) 0=g=1;

2) g=1on H;

3) g=0on U°".
Then we have

0<P(g)—p(H)<e/2™.

Thus we obtain

O()SO(fn)+e
=0(f)+0(2"g)—B(2"g)+¢
=2"0(g)—B(2"g—f,)+e



PRE-RADON MEASURES ON TOPOLOGICAL SPACES 121
=2°0(g)—[ (2"g—fa)dp-te
<2 u(H)+o—[ 2gdpt| fudpte
<2 pu(H)=2"u(H)+ [ _fadpt-2e

<[ sdut2e.
Hence we have
o(f)={ fdp

for every f in J*.
Lastly we prove the uniqueness. Let O be any open subset of X and {f.}

be any net in J* increasing to x., we have

pO)=tim [ fodp.

In fact, for 0<d<1, putting
Ua:{x; fa(x)>5} ]

{U,} increases to O. Since it follows
lim w(U)=p(0),
we have
[ fudp={  JeduZ0mUD.
Thus we have

o Stim | fudp=p(0).
Since 0 is arbitrary, we have a v X

wO)zlim | fudpz(0).
Let v be another pre-Radon measure satisfying
o())=] fdp={ fav

for every f in J*. By the preceeding argument, we have
#(0)=1(0)

for each open subset O. Since g and v are regular measures, v is identical with
p. The theorem is proved.
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§9. Product measure.

The purpose of this section is to study the product of pre-Radon measures.
The proof of the following lemma is easy.

LEMMA 9.1. Let X be a topological space, U be a paving generated by an
open base containing X and m be a non-negatwe, totally finite real valued finitely
additwe set function on R[U] such that

1) For any net {U,} of subsets in U wncreasing to X,
lim m(Uy,)=m(X);

2) For every U wn U,
m(U)=sup {m(F); UDFeR[U] and F 1s closed} .
Then we have for any net {U,} of subsets in U wncreasing to a set U in U,

ligl m(Ugy)=m(U) .

To begin with, we investigate the finite product case.

THEOREM 9.2. Let p, v be totally finite pre-Radon measures on topological
spaces X, Y vespectwely. Then the product measure p=pQv on (XXY, B(X)Q
B(Y)) 1s uniquely extensible to a pre-Radon measure on the product space XXY.

Proof. Let U be the paving generated by
{UXV; Ulresp. V) is open in X(resp. Y)}

and {W,} be a net of subsets in U increasing to XXY. If {U,xV,} is the

collection of open subsets of XX Y such that each U,XV, is contained in W,

for some «, we have U(U,XV,)=XXY. For every x in X, the family {V,; x
7

belongs to U,} covers Y. Since v is a pre-Radon measure, for any positive
number ¢, there exists {y{, 75, -, row} such that

n(z)
(U V) >u(Y)—e.

n(x)

We set U(x)= "\ U;s. Since p is a pre-Radon measure, there exists {x,, -, Xz}
1=1 ?

such that

i\ U > X —e.

From the definition of product measures, it follows
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k nlzj;

p(]g }__Jl)(U(xJ‘)X VTfJ)):p(]Q [(U(xi)—:g U(xp) Xﬂ:@f)VrfJ])
k J-1 n(zj;)
= ];1 P((U(XJ)—I}:JI U(xp)) X zk=)1 Vrfj)
>J§k} /«‘(U(xa)—g Uxp))((Y)—e)

k
=u( ng Ul ))w(Y)—e)>(p(X)—e)(w(Y)—e) .
Since {W,} is directed, there exists @, such that
kE nlzp
WayD U1 U Ux))X Vi, .
J=1 1=1 v

Therefore we have
lim p(Wo)=p(XXY).

By Lemma 9.1 and Theorem 3.2, the restriction p, of p to R[UI=A[V] is uni-
quely extended to a pre-Radon measure p, on XX Y. By Halmos [5, §13, Theo-
rem AJ, p coincides with g, on the product c-algebra B(X)RB(Y). This com-
pletes the proof.

Now we argue o-finite product measures on finite product spaces in the fol-
lowing theorem.

THEOREM 9.3. Let p, v be g-finite pre-Radon measures on topological spaces
X, Y respectwely. Then the product measure p=pXy on (XXY, B(X)RB(Y)) s
uniquely extensible to a pre-Radon measure on XXY.

Proof. Let U be the paving generated by
{UXV; U(resp. V) is open in X(resp. Y) and
wU)< o, y(V)< oo}
and {W,} be a net in U increasing to W in U. If we write W:g(le V),
we have WCU,XV,, where Uo::;UlUl and V‘):lgjl V.. By Theorem 9.2 uy &Qvy,
is extensible to a pre-Radon measure on UyXV, Thus we have

ligl (2Qv)( Wa>:1iam (g Quy YW o)

:(F‘U0®VV0)<W)
=pRQv(W).
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By Theorem 3.2 the restriction p, of p to A[U]is uniquely extensible to a pre-
Radon measure g,. Since p is o-finite, 7, is an extension of p, which proves
the theorem.

Next we investigate a Fubini type theorem.

LEMMA 94. Let p be a semi-finite pre-Radon measure on a topological space
X and M*(X) be the set of all non-negatwe, extended real valued lower semi-
continuous functions on X. If a net {f} m M*(X) wcreases to f wm M*(X),
then we have

i =]

Proof. Firstly we prove the case that f is a simple function X a,Xz,, where
1=1

{E;} is disjoint. Since pg, is a pre-Radon measure (Theorem 5.3), by the way
similar to the proof of Theorem 8.2 we have

im| fuledps=a(E,).

Thus we obtain

lim jX fadpp=lim 3} { Salsdp

Next we prove the general case. If we put

ner p—1 k1 k
&= k=1TX{X; —2T<f(x)§“—2n—}+ﬂxu.f<x>>m ,

then we have
hin J‘Xg,,d/,z:j‘xf duy.
If we remark that g, is lower semi-continuous, we have

fo dp=lim fxgnd#=linm lim foa/\gn dy

=lim lim j Salgadp
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~lim { lim fangadp
=tim | _furfdy

~lim { adpr.
The lemma is proved.

LEMMA 95. Let p, v be o-finite pre-Radon measures on topological spaces X,

Y respectwely and p®v be the pre-Radon extension of p@v. Then for every
open subset W of XXY, we have

p@u(W)=prov,(Xw(x, ¥)) .
Proof. Let U be the paving generated by
{UXV; U(resp. V) is open in X(resp. Y)}

and {W,} be a net in U increasing to W. By the way similar to Bourbaki [2,
§2, n°6, Prop. 117 the function

x> v (Xw (%, ¥))
is lower semi-continuous on X. By Lemma 9.4 it follows that
lim vy (X o (2, D=2y (X%, ),
which shows that the function
x> vy (X (x, )
is lower semi-continuous. Hence we have

EEHW)=lim p@u(W,)
=lim 10, (Lo (%, )

= vy (Xw(x, ) -
The proof is complete.

Under the above preparations, we present a Fubini type theorem.

THEOREM 9.6. Let p, v be o-fimite pre-Radon measures on topological spaces

X, Y respectwely and p@y be the pre-Radon extension of p@v. Then for every
Borel subset B of XXY, we have

L&v(B)= provy,(Xs(x, ).
Proof. We recall that for every Borel set B, Xx(x, y) is separately Borel
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measurable function on XX Y. Let M, be the class {FCB(XXY); v,(xz(x, )
is B(X)-measurable}. Since v is o-finite, ¥, is a monotone class. Furthermore
we can easily prove that #; contains the algebra generated by all open subsets

of XxXY. Thus M, equals B(XXY).
Let M, be the class

{ECB(XXY); p@v(E)=pw,(Lp(x, )} .

Since ¢ and v are o-finite, S#, is a monotone class. By Lemma 9.5, ¥, includes
the algebra generated by all open subsets of XXY. Thus %, is equal to

B(XXY). This completes the proof.

COROLLARY 9.7. Let f be a non-negatwe, extended real valued Borel measur-
able function on XXY, then we have

D x> f(x 3)du(3) is S(X)-measurable;

2 y— | L J(x 3)dp(x) is S(Y)-measurable ;

8) [ duo)f e av(n)=] du») [ fix »duc)
=[_fx ).

Next we consider the countable product of pre-Radon measures.
THEOREM 9.8. Let p, be a pre-Radon probability measure on a regular space
X, (n=1,2,---). Then the product measure ‘u:néﬂ" on (ﬁXn, g.@()(n)) 18
uniquely extensible to a pre-Radon measure on the product space ngn.
Proof. Let U be the paving generated by
CU(,:{}D::IIU,,; U, is open in X,, U,=X, except finitely many n}

and {W,} be a net in U increasing to ﬁXn. If {ﬁUZ,} is the collection of
n=1 n=1

open subsets in U, such that each TII U} is contained in W, for some «, we

n=1
have U HlU;:HlX"' We put
7 = n=
I'(R)={y; Ut=X, for all n>Fk}
and put
U= \J T1U:.

yENK) n=1

We define a finitely additive set function v on the algebra A= LZ(_CB( f[le)
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X II X,) as follows:
>n
(B, X TI Xp)= ® pi(Bn)
>n 1=1

n T n
for every B, in (1] X,), where & p, denotes the pre-Rodon extension of & ..
1=1 1=1 =1

From Corollary 7.2 v is well-defined. We shall show v is countably additive by
the way similar to Halmos [5, §38, Theorem B]. Let {E,} be a decreasing
sequence in A. Suppose there exists ¢>0 such that v(E,)=¢ for every k. We
put for every E=Byg)X P>1;I(E)Xp in A

E(xl, Tty xn):{(xn-\'-ly xn+2,~ ‘); (xly ) xn; Xn+1y “‘)EE} )
and

Rie
lLt“”(E(.Xl, Tty xn))':l %lﬂi(BN(E)(xl’ Ty xn)) .

If we put
Fk:{x1€X1; ﬂ(l)(EkOfl))Z%} .

then it follows by Theorem 9.6

N(E,

W(Ey)= ((% ),ui(Ek)

=@ ® m)ED
:L pP(E(x))dp(x)
:ij ﬂu)(Ek(xl))dﬂl(xl) +fpz /"(”(Ek(%))d/«ll(xl)

§H1<Fk)+—§‘.

Thus we have
15}
>_7
#I(Fk): 2 1)
which implies there exists %, in X; such that

HOBLT)Z

for every k. Similarly there exists (%,) in ﬁ X, such that
n=1
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n) = z €
Y(E(Fy, -, xn))ZFZT
for every k. If we remark that (%,) is in kﬂ E,, v is countably additive.
=1
Since v is countably additive, for arbitrary >0 there exists k, such that
ko ky Ry
1—e<u(Uke)= & #i( U o).
1=1 re]“(ko) 1=1

By Theorem 9.2 there exists {rj, -~ , rp} in I'(k;) such that

1 Cs

ko ko
@ p(\J T Um>1—¢.
1=1 1=1

q
» ko

Since {W,} is directed, there exists a, such that W, contains U 1"[1 Ulax I;Ik X,
g=1 1= m>kg

lim p(W,)=1.
By Lemma 9.1 and Theorem 3.2, the restriction g, of g to R{U]=A[V] is uni-
quely extended to a pre-Radon measure 7 on ﬁXn. By Halmos [5, § 13, Theo-
n=1

rem AJ, ¢ is identical to Z on the product o-algebra éi B(X,). Thus the theo-
rem is proved.

Now we discuss the uncountable product of pre-Radon measures.

THEOREM 9.9. Let p, be a pre-Radon probability measure on a regular space
X: AsA). Then the product measure ﬂ:;(e%& on (IIJAXI, z(X;_@(Xz)) is extended
= (=

to a umique pre-Radon measure on 2]__[ Xa
€4

Proof. Let U be the paving generated by

{xHA U;; U, is open in X, U;=X; except finitely many 2}
(=3

and {W,} be a netin U increasing to th X3 We put c=sup p(W,). Then there
S o

exists {a,} such that c=lim ;z(Wan):y(D W,,). For simplicity we set W
n n=1

N(a)
= Wa,. We can write W,=\U TIU$* If we set

n=1 n=1 A€A
Ay={2e4; U'=X, for every n and 1=1,2, .-, N(a,)},
then A,=A—/, is a countable set. Since W equals q‘(W>><er}0 X,, we have
”(WF(Z@IW)(%(W»’ where g, is the projection of ZI:IAXl onto zgl X,

In the first step, we assume supp #; is equal to X; for every 4 in A. Sup-
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pose ¢<1. Then there exists a, such that (1@/1) 2(q: (W) —q(W))>0, for by
€41
Theorem 9.8 it holds sup (x E@j 2@ (Wa))=1. Therefore, for some 1, 1=1= N(a,)
1
it follows ( ® w)( II U§o*—q,(W))>0. If we remark that ( ® u)( IT U3>%)>0,
A€, 2€4; A€4g 1€4
we have
c=u(WIW o) = (W HA Usioh)
s

=#(W)+#(£A Ugor—w)
=#(W)+p<(xl} Ugor—q (W)X Ig Usgot)
(<3 1 iE 0

=p(W)+(Q ) IT Ui =W)X & p)(IT U™

>c,
which is a contradiction. Hence we obtain p(W)=1. If follows that
llfxn /z(Wa)=1=ﬂ(ng X5
We shall prove the general case. By v; we denote the restriction of x; to

Y ;=supp p,. Since the net {Wa)ﬂAYl} increases to 11'5 Y, from the first step
= (=

we have
lim (® u)(Wa)=lim (Q v) (W11 Y2
a A€A a  AEA =y

=(Qv)(II Y5
FEy MV Y|

:(zg% ,Ux)(zgi X/z) .
By Lemma 8.1 and Theorem 3.2, the restriction g, of g to R[U]=A[VU] is uni-
quely extensible to a pre-Radon measure Z on ZIJAXZ. By Halmos [5, §13,
Theorem AJ, g is identical with #Z on the product o-algebra 1®A B(X,). This

(S

proves Theorem 9.9.

We denote by 1(221 ¢, the pre-Radon extension of 1@3‘ ¢, obtained in Theorem
€ <

9.9.
Lastly we consider the product measure of Radon measures. The following

lemma is well-known (for example see Bourbaki [2, § 4, Théoréme 2]).

LemMA 9.10. Let p, be a Radon probability measure on a regular space X,

(n=1,2, ). Tnen the pre-Radon extension é),un of é),un 15 a Radon measure
n=1 n=1

on 1T X,.
n=1
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THEOREM 9.11.

Let p; be a Radon probability measure on a regular space
X; (A€ A). Then the pre-Radon extension @1#1 1s @ Radon measure if and only
AE

of supp pz s a compact subset of X; except countably many 2 n A.
Proof. Let ZQZ/)1 ¢z be a Radon measure. Suppose that there exists some
(=]
uncountable subset 4, of 4 such that supp y; is not compact for every 2 in 4,.

Without loss of generality we may assume /, is equal to 4. For each compact
subset K of _I"EIXZ, we shall show (% 1(K)=0. Putting
AE A=

An:{zeA; 2 pA(K)<1—
we have A=O

n=1

1)
n+1J’
A,, where p, is the projection of zl:IAXZ onto X; Since 4 is
uncountable, there exists n such that /4, is infinite.
countable subset {4,; 1=1,2, --:}

Thus we have

IA

oo

Aﬂz( 11

Bl T pa(E)x T X0

dl

k
=lim (@ p)(TI p2,(K)X II X))
kA4 1=1 AF2,

»——li}fn (02, (K) -+ p2,(p2,(K))

1 k
<1i =Y —
_llkm (l 1) =
l'herefore we have

This is a contradiction.

=y
The converse follows by

Lemma 9.10. Thus we have proved Theorem 9.11.
Appendix

We shall examine the relation between inner regularity (*) and outer regularity
()

(*) For every A in 8(X) such that p(A)<oo,

n(A)=supp {¢(F); FCA and F is closed} ;
(**) For every A in 8(X),

Hence A, has an infinitely
< ;
2@1# X(K)_z(e%# Z(AI;IAP LK)
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p(A)=inf {(0); ODA and O is open} .
THEOREM A. Let p be a Borel measure on a topological space X such that
X:nkz U, and p(U,) 1s finite for countable open subsets {U,}. Then (*) umplies

Proof. Let A be a Borel subset. Then for every positive ¢, there exists a
closed subset F, contained in A°‘"\U, such that p(A°NU,—F,)<e/2". If we put
V.=U,NF¢, then we have

H O V== U V,— U (U A)

é glﬂ(vn— UnmA)
<e.
This completes the proof.

COROLLARY. Let be a g-compact locally compact space and p be a Borel mea-
sure on X such that p(K) is finite for every compact set K. Then (*) umplies (¥*).

THEOREM B. Let p be a Borel measure on a topological space X. If p s o-
finite and satisfies (**), then (*) holds.

Proof. Let E, be a Borel subset of finite measure such that X= CJIE,,. For

every A in 8(X) and every positive ¢, there exists and open subset U, contain-
ing A°NE, such that pu(U,—A°‘NE;)<e/2". Then we have

A= O\ UD=p(AN(T Up)

I

#(J Un= U (ANE)

8

IA

U= AN E)

n

A

€,

which proves the theorem.

Lastly according to the comments of Fremlin we note the relation between
pre-Radon measures and quasi-Radon measures.

1) Let ¢ be a pre-Radon measure on a topological space X. Then there
exists a unique quasi-Radon measure v on (X, 3, such that for any B in ¥,
with p*(B)<co, v(B)=p*(B), where u* is the outer measure derived from g and

Y, is the family of all p*-measurable sets. Moreover it holds that v(0)=u(0)
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for every open set O.

2) Let v be a locally finite quasi-Radon measure on (X,2). Then there
uniquely exists a pre-Radon measure ¢ on X such that p(0)=»(0) for every
open set O.
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