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PRE-RADON MEASURES ON TOPOLOGICAL SPACES

BY ICHIRO AMEMIYA, SUSUMU OKADA AND YOSHIAKI OKAZAKI

§ 1. Introduction.

There are two directions in the study of the measure theory on arbitrary
topological spaces: the theory of Radon measures and the theory of Baire mea-
sures. The outline of the developments in these fields is referred to Bourbaki
[2], Hirschfeld [8], Schwartz [11] and Varadarajan [13].

The purpose of this paper is to study infinite Borel measures.
Originally, in 1970, the first author has proposed the notion of a pre-Radon

measure on a topological space, which is defined as a class of "measures deter-
mined by an open base with a smoothness condition" (Amemiya [1]). It seems
to be of use for the study of infinite measures, especially Borel measures on a
topological space. In this paper, we formulate a pre-Radon measure as a Borel
measure (see Definition 2.2) and develop the topics in a survey of Amemiya [1]
from a different viewpoint.

Finite pre-Radon measures are said to be τ-smooth Borel measures which
have been investigated by many mathematicians. For infinite Borel measures
with τ-smoothness, Fremlin [3] recently presented the class of quasi-Radon mea-
sures. Our pre-Radon measures are slightly different from quasi-Radon measures.

Main results of this paper are three constructions of pre-Radon measures
given in Section 3. The fundamental idea is suggested by Kirk [9]. In Theorem
3.1, we extend a finitely additive set function satisfying some smoothness condi-
tions defined on the ring generated by an open base to a pre-Radon measure.
Similarly, in Theorem 3.2 we consider a set function defined on the algebra
generated by an open base. In Theorem 3.4, an infinite Baire measure with τ-
smoothness on a normal space is extended to a pre-Radon measure. For finite
τ-smooth Baire measures, this extension is known (see for example Kirk [9]).

In Section 4, we give the decomposition theorem for σ-finite pre-Radon mea-
sures.

In Section 5, we deal with the restriction of pre-Radon measures. We pre-
sent the several conditions that the restriction is a pre-Radon measure.

In Section 6, we prove the decomposability of pre-Radon measures. For
Radon measures, the decomposability is given in [2, § 1, Proposition 9] and for
quasi-Radon measures, Fremlin [2, Theorem 72B].

In section 7, we give some topological spaces with the (/Γ)-ρroρerty (for the
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102 I. AMEMIYA, S. OKADA AND Y. OKAZAKI

definition, see ^Section 2). We prove if a topological space X is a Borel subset
of its Stone-Cech compactification, then X has the (iθ-ρroρerty (Theorem 7.4).
In particular, topologically complete spaces and (/-compact spaces have the (K)-
property.

In Section 8, we prove that there exists a one-to-one correspondence between
pre-Radon measures and smooth linear functionals.

In Section 9, we show the uncountable product of pre-Radon probability
measures is uniquely extended to a pre-Radon measure on the product space
(Theorem 9.9). In the countable product case, Tortrat [12] has proved the same
result, still we show using a Fubini type theorem (Theorem 9.6) for the sake of
completeness.

The authors would like to thank Professor T. Ohno for useful information.
And they are greatly indebted to Professor H. Sato and Professor Y. Yamasaki
for their valuable suggestions for improvements.

§ 2. Preliminaries.

Let Z be a set. A family HJ of subsets of X is said to be a paving if it
satisfies the following conditions:

1) φtΞHJ;

2) U U=X;

3) If Ulf U^V, then U1r\U^cU and U^UttEHJ.

We denote by R\JV] the ring generated by a paving CU.

LEMMA 2.1 (Kirk and Crenshaw [10, Proposition 1.2]). Let F be a subset of
X, then F belongs to R[_CW] if and only if there are sets Wτ, Vτ in °U (z=l, 2,
•••, n) such that the following conditions hold:

1) Vi(ZWι (1=1,2, - , n ) ;

2) (Wt-VJniWj-Vj)^ for iΦj

3) F=0(Wt-V%).
1 = 1

Let m be a non-negative, extended real valued set function on an algebra Jί
of subsets of X. We say m is σ-finite if there exists a countable subfamily

{Λn^cJ; m(An)<oof n=l, 2, •••} such that X= \J An, and m is semi-finite if m

satisfies

m(4)=sup {m(B); JIΞΪBCA, m(B)<oo}

for every A in J . A measure μ is a non-negative, extended real valued and
countably additive set function defined on a σ-algebra IB such that μ(φ)=Q.
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Let (X, <B, μ) be a measure space and A be an element in IB. We denote by
μA the measure on the measurable space (A, Ar\$) defined by

for every B in ®. We call μA the restriction of μ to A.
Let {(X, Bhμχ)\ λ^Λ} be a family of measure spaces such that μχ(Xλ)=l.

By ® &h we mean the product σ-algebra, that is, the smallest σ-algebra which
λ£zΛ

makes each projection of Π Xλ onto Xλ measurable. Then there exists a unique
λ&Λ

probabilty measure ® μλ on ® ^ such that

for every set ,4 of the form AλlX ••• xAλnx TίXλ in (g) ^ . This measure (g) μλ

λΦλι λ^Λ λ(=Λ

is called the product measure.
Let X be a topological space. By the B or el field &(X), we mean the minimal

σ-algebra generated by all open subsets of X. By C(X), we denote the algebra
of all real continuous functions on X. The Baire field £ta(X) is the minimal σ-
algebra generated by the family of zero sets

Z(X)={f-\0); ftΞC(X)} .

Now we define pre-Radon measures and Radon measures.

DEFINITION 2.2. Let I be a topological space. A pre-Radon measure μ is
a Borel measure on &(X) such that:

1) For every x in X, there exists an open neighborhood 0 of x such that

2) For every net {Oa} of open sets increasing to an open subset 0, lim μ{Oa)

=μ(O)
3) For every open subset 0 such that μ(0)<oof

μ(0)=sup ίμ(F) FdO and F is closed}

4) For every A in &(X),

μ(A)=inί ίμ(O) Oi)A and 0 is open} .

We say a Borel measure satisfying 3), 4) a regular Borel measure.
In the same manner as in the proof of Theorem (11.32) of Hewitt and Ross

[6], it follows that the above conditions 3), 4) imply the following 3/ :

3/ For every A in &(X) such that μ(A)<co,

μ(,4)=sup {μ{F) FC.A and F is closed} .
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Consequently, the conditions 3), 4) are equivalent to 3/, 4).

Remark 2.3. In general, the above conditions 3)7 and 4) are not necessarily-
equivalent. If a Borel measure μ is σ-finite and satisfies 4). then 3/ holds. For
infinite Borel measures, the conditions which deduce 4) from 1) and 3/ are not
known except that X is locally compact and σ-compact, as far as the authors
are concerned. We shall discuss this problem in Appendix.

Remark 2.4. There exists a non-regular Borel measure on a compact space
(see Halmos [5, 52, Exercise (10)]). This also gives an example of a Borel mea-
sure which is not a pre-Radon measure.

DEFINITION 2.5. Let I be a topological space. A Radon measure μ is a
Borel measure on &(X) such that

1) For every x in X, there exists an open neighborhood 0 of x such that
μ(0)<oo;

2) For every open set 0,

μ(O)=snp {μ{K) KdO and K is compact}

3) For every A in B{X),

μ(A)=inf {μ{0) OZ)A and 0 is open} .

Our definition of a Radon measure is different from Bourbaki [2] whose "Radon
measure" is a Borel measure satisfying 1) and 2) in Definition 2.5.

It follows that a Radon measure is a pre-Radon measure. Conversely it is
easily verified that a pre-Radon measure on a locally compact space is a Radon
measure. We say a topological space has the (K)-property if every pre-Radon
measure is a Radon measure.

The support of a Borel measure / i o n a topological space X is the set of all
points x in X with the property that, for every open set O containing x, μ(O)>0.
We denote by supp μ the support of μ. We have the following easy consequence.

THEOREM 2.6. Every non-zero pre-Radon measure, has the non-empty support.

§ 3. Construction of pre-Radon measure.

In this section, we give three methods of constructions of pre-Radon mea-
sures.

Firstly, we discuss a set function defined on a ring.

THEOREM 3.1. Let X be a topological space, °U be a paving generated by an
open base of X and m be a non-negative, real valued, finitely additive set function
on RZV] such that

1) For any net {Ua} of subsets in "U increasing to a set U in CΌ3



PRE-RADON MEASURES ON TOPOLOGICAL SPACES 105

2) For every U in HJ,

m(ί/)=sup {m(F); U'DFeίRl'V'] and F is dosed} .

m xs uniquely extensible to a pre-Radon measure.

Proof. If two nets {Ua} and {Fr} increase to an open set 0, then we have

lim m(Ua)=lim m(Vτ).
a r

For every open set 0, we put

)=$up {m(C7);

Then it follows that ^ is a non-negative, monotone and subadditive set function
on the family of open subsets of X. It can be easily shown that for any net
{OJ increasing to 0,

We define a set function μ* as follows:

μ*(A)=inf {λ(O) Oi)A and O is open}

for every subset A of X. It is evident that μ* is an outer measure defined on
all subsets of X. We shall prove that every open subset is μ*-measurable by
the way similar to Kirk [9, Lemma 1.12]. Let O be an open subset of X and
A be a subset. It is sufficient to show

We may assume that μ*(A) is finite. For arbitrary ε positive, there is an open
subset OJL containing A such that λiO^Kε+μ^A). Let {UJ be a net in <U in-
creasing to Oί and V be a set in °ί7 contained in 0. By the condition 2), there
exists a closed set F in ^ [ V ] with F D F such that m(F)+ε>m(V). Then it
holds

m(Ua-F)-m(Ua-V)^m(V-F)<ε,

so that it follows

e+limm(Ua-V)<limm(Ua-F)=λ(O1-F)^μ*(A-O).
a a

Thus we have

)-lim m{Ua)
a

=\\m{m(JJar\V)+m(LUa-V))>λ(Oιr\V)+μ*{A-O)-ε.
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Since V is arbitrary, we have

which shows every open subset is μ*-measurable. So the restriction μ of μ* to
the Borel field $(X) is a Borel measure. From the definition of μ, it is obvious
that μ is a pre-Radon measure.

We show μ is an extension of m. By Lemma 2.1, every A in RlfW] can be
n

represented as a disjoint union A= VJ (Wi — Vι). Thus we have
ι l

m(A)= Σ(m(Wι)-m(Vτ))== ±(μ(Wι)--μ(Vι))=μ(A).

Finally we shall prove the uniqueness of μ. Let v be another pre-Radon
measure extending m. For any open set 0, we can find a net {Ua} in ΊJ increas-
ing to 0. Then we have

μ(0)=lim μ(Ua)=lim
a a a

By the regularity of μ and v, we have

μC<4)=inf {μ(O) OZ)Λ and 0 is open}

=inf {v(O) OZDA and 0 is open}

This completes the proof.
Secondly we deal with a set function on an algebra.

THEOREM 3.2. Let X be a topological space, HJ be a paving generated by
an open base of X and m be a non-negative, extended real valued, countably addi-
tive set function on the algebra A[_ΊJ^\ generated by HJ. If m satisfies the follow-
ing conditions:

1) There exists an increasing sequence {Un} in "U such that m(Un) is finite,

and X=.\JUn;
n = l

2) For any net {Ua} of subsets in HJ increasing to a set U in HJ such that
m{U) is finite,

\im m(Ua)=m(U);
a

3) For every U in V such that m(U) is finite,

m(U)=sup {m(F); UZ)F^AICU'] and F is closed) ,

then m is uniquely extended to a pre-Radon measure.

Proof. For every open set 0, we set
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Λ(O)=sup {m(U); OZ)U^V and m(U) is finite} .

Furthermore we put

^*(i4)=inf {λ(O) OZ)A and 0 is open}

for any subset A of X. In the same manner as Theorem 3.1, every open set is
μ*-measurable. Moreover, the restriction μ of μ* to &{X) is a pre-Radon mea-
sure.

We shall prove that μ is an extension of m. For each U in V, the algebra
Ur\A[βJ~] is generated by UrΛ'U. In fact the family {A(ZX; UniA^Au[Ur\cU']}
is an algebra containing CU, where Au[Ur\cU'] denotes the algebra of subsets of
U generated by Uf^^J- So this family contains AlJUj. By Lemma 2.1, for every
A in AίcU']} we have

Ur\A= U (Ur\Wι-Ur\Vι) (disjoint union),
1 = 1

where Wτ and Y% are in CU. Particularly, if m{U)=μ{U) is finite, we have

For every /I in A[_CU'\, we have

= μ(A).

Consequently μ is an extension of m.
From the arguments in Theorem 3.1, the uniqueness of μ is clear. The

proof is complete.

Remark 3.3. In Theorem 3.2, if m is totally finite, finitely additive set func-
tion on A[fU~\ satisfying the conditions 2) and 3), then it is easy to verify that
m is uniquely extended to a pre-Radon measure.

Lastly we consider a set function defined on the Baire field SBa(X). We
recall that a cozero set is the complement of a zero set. We denote by U(X)
the family of all cozero sets of X.

THEOREM 3.4. Let X be a normal topological space and m be a non-negative
extended real valued, finitely additive set function on Ba{X) satisfying the follow-



108 I- AMEMIYA, S. OKADA AND Y. OKAZAKI

ing conditions:
1) For any x in X, there exists a cozero set U containing x such that m{U)

is finite
2) For any net {Ua} of cozero sets increasing to a cozero set U,

limm(ί/α)=m(U);
a

3) For every Baire set A in &a(X),

m(i4)=sup {m{Z)\

=inf {m(U); )}

Then m is uniquely extensible to a pre-Radon measure.

Proof. In the same manner as in the proofs of Theorem 3.1 and 3.2, we
obtain a pre-Radon measure μ which coincides with m on U(X). The uniqueness
is trivial if μ is an extension of m. We only prove that μ is an extension of
m. For every Z in Z(X), we have

μ(Z)=mf {μ(O) OZ)Z and O is open}

Conversely, since X is normal, for any open set 0 containing the zero set Z,
there exists a cozero set U such that OZ)UZ)Z. Consequently we have μ(Z)=
m(Z) for every Z in Z(X). Let A be any Baire set in Ba{X). Then we have

μ(A)=mf {μ{Q) Oi)A and 0 is open}

=inf {m

=m(A)

=$up{μ(Z);

Thus μ is identical to m on $a(X) This proves the theorem.

Remark 3.5. We can prove the same result as in Theorem 3.4 even if m is
defined on the algebra generated by Z{X).
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§ 4. Decomposition theorem.

LEMMA 4.1. Let μ be a pre-Radon measure on a regular space X. Then
there exists a unique Radon measure v such that v is absolutely continuous with
respect to μ and v{K)—μ{K) for every compact subset K.

Proof. For any open subset 0, put

ra(O)=sup {μ(K) KdO and K is compact} .

Then we can easily prove that lim m(0a)=m(0) for every net {Oa} of open sub-
a

sets increasing to an open subset 0. Let Ox and O2 be two open subsets, then
we have

since μ is a regular Borel measure. Since X is a regular space, we have

m(O)=s\xp {m(W); WaWaO and W is open}

for every open set 0, where W is the closure of W in X.

We define a set function on the family of all subsets of X as follows:

v*{A)=mi ίm(O) OZ)A and 0 is open} .

Then it follows that v* is an outer measure. In the same manner as in the
proof of Theorem (11.30) of Hewitt and Ross [6], we can show every Borel
subset of X is immeasurable. We denote by v the restriction of v* to Ή(X).

For any compact subset K, we have v(K)—μ(K). In fact, we have

v(K)=inf {m(O) 0Z)K and 0 is open}

ginf {μ(O) Oi)K and O is open}

= μ(K).

On the other hand, for any open subset 0 containing K, we have m{0)^μ{K).
Thus we have v(K)^μ(K).

It is obvious that v is Radon measure and absolutely continuous with respect
to μ. The uniqueness of v is obvious from the definition of Radon measure.
This completes the proof.

We shall prove the following decomposition theorem.

THEOREM 4.2. Let X be a regular space and μ be a pre-Radon measure on
X. Then there uniquely exist a Radon measure v and a pre-Radon measure p
such that

1) μ—v-^rp)
2) ρ(K)=0 for every compact subset K.
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Furthermore if μ is σ-finite, then p is singular with repect to v.

Proof. If we put

<U={U'; U is open and μ{U)<co) ,

then ΊJ is an open base of X. We define a set function m on RlfW] by

m(A)=μ(A)-v(A)
for every A in R\JU~], where v is a Radon measure obtained in Lemma 4.1. By
Theorem 3.1, m is uniquely extensible to a pre-Radon measure p. Then it is
clear that μ(O)=v(O)Jrp(O) for every open subset 0. If we remark that both μ
and v+p are pre-Radon measures, then we have μ=v+p. For every compact
subset K we have p(K)=μ(K)—v(K)=0. The uniqueness of the decomposition
is obvious.

Assume that μ is σ-finite, then v is also σ-finite, which implies for a σ-com-
pact subset L, v(X—L)=0. On the other hand we have p(L)=0. Hence p is
singular with respect to v. The theorem is proved.

Remark 4.3. In our original version, we assumed that μ is ^-finite. The
improvement of the theorem is based on a suggestion of Fremlin (personal com-
munication).

§ 5. Restriction of pre-Radon measure.

In this section we consider the restriction of pre-Radon meaures to subsets.
Let (X, &, μ) be a measure space. We denote by (X, W, β) the completion

of (X, ̂ , μ)

LEMMA 5.1. Let μ be a regular Borel measure on a topological space X and
A be a subset in *B(X). Then the restriction μA of μ to A is a regular Borel
measure on A.

Proof. It is obvious from the definition of the completion.

By Lemma 5.1, it is easy to verify the following theorem.

THEOREM 5.2. Let μ be a pre-Radon measure on a topological space X and
O be an open subset of X. Then the restriction μ0 of μ to 0 is a pre-Rondon
measure.

If μ is semi-finite, then the restriction of μ to any Borel subset is a pre-
Radon measure. In general we have the following theorem.

THEOREM 5.3. Let μ be a pre-Radon measure on a topological space X and A
be a subset in £B(X) such that μA is semi-finite on (A, Ar\B{X)). Then fiA is a
pre-Radon measure.

Proof. At first, we shall prove in the case that μ(A) is finite. Let {Oa} be
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a net of open subsets of A increasing to an open subset 0 of A. Since A be-
longs to SB(X), there exist a set Ao in B(X) and a set N such that

A=A<\JN and μ*(N)=Q,

where //* denotes the outer measure induced by μ. There exists an open subset
Oa of X such that Occr\AQ=Oar\AQ for every a. Since μ is a regular measure,
there exists an open subset O of finite measure such that Or\A0=OΓλA0 and
OdUOa. We put

then this net {Ua} of subsets of ^ increases to the open set O. Thus we have

lim μA(0-0α)=lim μ U

We consider the general case that //̂  is semi-finite. Let {Oa} be a net of
open subsets of A increasing to an open subset 0 of A. If βA(0) is finite, then
from the first step we have

=\im μA(Oa).
a

If βA{0) is infinite, for any natural number TV there exists a set B in
such that BaO and N<βA(B)<oo. Since the net {OaΓ\B} increases to B, we
have

=lim μB{OaΓ\B)

a

α

Thus we have lim jδ4(C)J=jM^(O). By Lemma 5.1, μA is a pre-Radon measure on
). This completes the proof.
Let (X, &, μ) be a measure space and F be a //-thick subset of X. Then

there exists a measure //r on (Y, <Br\Y) such that

for every set 5 in SB by Hylmos [5, § 17, Theorem A].

THEOREM 5.4. Let μ be a pre-Radon measure on a topological space X and Y
be a μ-thick subset of X. Then μγ is a pre-Radon measure on Y.
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Proof. Let {Oa} be a net of open subsets of Y increasing to an open sub-
set 0 of Y. There exists an open subset Oa of X such that Oar\Y=Oa. Putting
0a= \JOβ. {0a} is a net of open subsets of X increasing to U 0a such that

Uar\Y=Oa. Since μ is a pre-Radon measure, we have

= lim μ(0a)
a

= lim μγ(Oa).
a

Since μ is a regular Borel measure, it is easy to verify that μγ is a regular
Borel measure. Therefore μγ is a pre-Radon measure, which completes the proof.

Let (X, SB, μ) be a measure space and A be any subset of X. We say a set
5 in ^ is a minimal measurable cover of A if A is μ5-thick in B, that is,
(μB)*(B—A)=0, where (μB)* is the inner measure induced by μB. If μ is σ-flnite,
then there exists a minimal measurable cover of every subset. We define the
restriction of μ to A. Since A is μB-th\ok in B, (μB)A exists. It is clear that
(μB)A is identical to {μB>)A for another minimal measurable cover Br of A. Put-
ting μA=(μB)A, we call μA the restriction of μ to A.

Under the above preparations we have the following final result in this sec-
tion.

THEOREM 5.5. Let μ be a pre-Radon measure on a topological space X and
A be subset of X. If A has a minimal measurable cover B in B(X) such that
the restriction μB of μ is semi-finite on (B, Br\<B(X)), then the restriction μA of μ
to A is a pre-Radon measure.

Proof. It follows from Theorem 5.3 and 5.4.

COROLLARY 5.6. Let μ be a σ-finite pre-Radon measure on a topological space
X. Then for any subset A of X, μA is a pre-Radon measure.

Proof. Since μ is σ-finite, A has a minimal measurable cover.

Remark 5.7. Fremlin has pointed out the following^ :
1) Let μ be a pre-Radon measure on X. If A has a minimal measurable

cover, then it holds μA(B)=mί \μ{C) CSΞ£(X) and CZ)B} for every B in

2) If μ is a quasi-Radon measure, then every subset A has a minimal mea-
surable cover. Particularly μ can be restricted to A and the restriction ,"Λ is a
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quasi-Radon measure on A.

§ 6. Decomposability.

Let X be a topological space and μ be a pre-Radon measure on X. A sub-
set A of X is called locally negligible if μ*(O/°\i4)=0 for every open set 0 such
that μ(O) is finite, where μ* denotes the outer measure derived from μ.

For pre-Radon measures, we give the following decomposition theorem which
is similar to Bourbaki [2, § 1, Proposition 9].

THEOREM 6.1. Let μ be a pre-Radon measure on a topological space X. Then
there exists a family {Ba} of closed sets satisfying the following:

1) Each μ(Ba) is finite and supp μβa=Ba

2) The family {Ba} is pair wise disjoint;
3) X-\JBa is locally negligible)

a

4) If A is a Borel set of finite measure, the cardinal of {a BaΓ\AΦd} is at
most countable and it holds

μ(A)=J]μ(Ar\Ba).
a

Proof. Let Jl be the collection of all disjoint families {Cλ} of closed sets of
finite measure satisfying supp μCλ=Cλ.

Since the family {φ} satisfies these conditions, the collection Jl is non-void.
By Zorn's lemma, Jl has a maximal family {Ba}. We shall show the family
{BJ satisfies the conditions 1), 2), 3) and 4). Let 0 be any open subset of
finite measure. If Bar\O is non-void, then we have

for supp μBfx equals Ba. Consequently the cardinal of {a BaΓ\0φQ} is at most
countable. Hence Orλ(X—UBa) is a Borel set. Assume μ{Or\{X—yjBa)) is

a <x

positive. Since μ is regular, there exists a closed subset F of X contained in
Or\(X—\JBa) such that μ{F) is positive. Since μF is a pre-Radon measure on

a

F by Theorem 5.3, the set i?=suρρ μF is closed in X and we have

μF(B)=μ(B)>0.

For every x in B and any open neighborhood V of x in B, there is an open
subset V of F such that Vr\B=V. Thus we have

for supp μF is equal to B. Hence we obtain
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SUpp μB~B .

Consequently the family {5α}W{5} belongs to Jl, which contradicts to the
maximality of {BJ. Therefore we have

This shows that X—KJB is locally negligible.
a

Let A be a Borel set in &(X) of finite measure. Then it follows that the
cardinal of {a ArλBaΦ9} is at most countable. In fact, there exists an open
subset 0 containing A such that μ{0) is finite. Hence the set Ar^(X—KJBa)

a

belongs to £{X) and it holds that

μ(An(X-UBa))=0.
a

Thus we have

This completes the proof.

For a set {aλ; λ^Λ) of non-negative numbers, we define the sum of {aλ;
λ^A) by

Σ α^=sup { Σ &λ', Λo is a finite subset of Λ) .

In the semi-finite case the following corollary holds.

COROLLARY 6.2. Let μ be a semi-finite pre-Radon measure on a topological
space X. Then for the family {Ba} obtained in Theorem 6.1 we have

4/ For every A in B(X)

5) μ*(X-\JBβ)=0,
a

where μ* denotes the inner measure defined from μ.

Proof. Since μ is semi-finite, we have

)=suρ lμ(B) BC.A and μ{B) is finite}

=sup {Έμ(Br\Ba) BdA and μ{B) is finite}
a

which shows 4/.
Let C be any Borel set in B(X) contained in X—{JBa. For any Borel set
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B of finite measure contained in X— KJBa we have μ(B)=0 by Theorem 6.1.
a

Thus we have

μ(C)=sup{μ(B); BdC and μ(B) is finite}

^sup{μ(5); B(ZX-\JBa and μ(B) is finite}
a

= 0 .

§ 7. (K)-property.

Let a be a pre-Radon measure on a topological space X and / be a con-
tinuous mapping of X into another topological space Y. We denote by f(μ) the
image measure of μ defined by

for every Borel set A in &(Y). In general, it is not true that the image mea-
sure f(μ) is a pre-Radon measure. But the following theorem holds.

THEOREM 7.1. Let μ be a pre-Radon measure on a topological space X and
f be a continuous mapping of X into a regular space Y. If we put

Y0—{y(=Y; there exists an open neighborhood U of y

such that μ(f-\U))<oό\ ,

then there uniquely exists a pre-Radon measure v on Yo such that

for every open subset 0 of Yo.

Proof. We remark that Yo is an open subset of Y. If we put

HJ={UC1YO; U is open in Yo and μ(fΛU)) is finite} ,

then Û is an open base of Yo. If we define a set function m on R\JU~] by

m(A)=μ(Γί(A))

for every A in /?[ΊΓ], then for any net {UJ of subsets in <U increasing to U
in HJ it follows that

lira m(Uβ)=lim μif'KUa))
a a

= / £(/-i(t/))=m(C7).

Since Y is regular, we have

m(£/)=sup {m(V); VdVdU and V is open}
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for every U in ΊJ, where V is the closure of V in Y. By Theorem 3.1, there
exists a pre-Radon measure v on Yo extending m. For each open subset 0 of
Y there exists a net {Ua} in HJ increasing to 0. Thus we have

The uniqueness of v is clear, which completes the proof.

COROLLARY 7.2. In the above theorem, if μ is finite, then Yo equals Y and
f(μ) is a pre-Radon measure. Therefore v is identical with f(μ).

If X is a Borel subset of Y, then the restriction of v to &(X) is identical
to μ on &(X).

LEMMA 7.3. Let X be a Borel subset of a regular space Y, μ be a pre-Radon
measure on X and v be the pre-Radon measure obtained in Theorem 7.1. Then
the restriction of v to B(X) is equal to μ on <B(X).

Proof. Let A be any Borel set in &{X) and W be an open subset of X
containing A. Then there exists an open subset W of Yo such that W=Wr\X.
Hence we have

μ(W)=v(W)^mί M<5); Oz)A and O is open in Yo}

by Theorem 7.1. Since μ is regular, we have

μ(A)='mί {v(W); W^)A and W is open in X}

Conversely, we have

v(A)=mί {v(0) Oi)A and O is open in Yo}

=inf {μ(Pr\X) toi and O is open in r 0}

^inf {μ(O) OZ)Λ and 0 is open in Z}

This proves the lemma.

We present a sufficient condition under which a topological space has the
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(K)-property.

THEOREM 7.4. Let X be a completely regular Hausdorff space such that X is

a Borel subset of its Stone-Cech compactification βX. Then every pre-Radon mea-

sure μ on X is a Radon measure, that is, X has the (K)-property.

Proof. Let c be the natural embedding of X into βX, (βX)Q be the open
subset of βX obtained in Theorem 7.1 and v be the pre-Radon measure on (βX)0

in Theorem 7.1. Since (βX)0 is locally compact, v is a Radon measure. If we
remark that the restriction of the Radon measure v to the Borel set I is a
Radon measure on X, μ is a Radon measure by Lemma 7.3. The proof is com-
plete.

We recall that a completely jegular Hausdorff space is topologically complete
if it is a G^-subset of its Stone-Cech compactification.

COROLLARY 7.5. Every topologically complete space has the (K)-property.
Particularly, a complete metric space has the (K)-property.

COROLLARY 7.6. Every completely regular Haussdorff, σ-compact space has
the (K)-property.

§ 8. Smooth linear functional.

In this section, we show that there is a one-to-one correspondence between
pre-Radon measures and smooth linear functionals.

Let C(X) be the Riesz space of all real continuous functions on a completely
regular Hausdorff space X. A Riesz subspace / of C{X) is said to be order-
dense if for every x in X, there exists / i n / such that f(x)Φθ. A positive linear
functional Φ on a Riesz subspace / of C{X) is called smooth if for every net
{/«} in / decreasing to 0,

lim

THEOREM 8.1. Let μ be a pre-Radon measure on a completely regular Haus-
dorff space X and Jμ be the Riesz subspace of all μ-integrable continuous func-
tions. Then Jμ is an order-dense ideal and the functional Φμ on Jμ defined by

Φμ(β=j/dμ

is a smooth linear functional.

Proof. For every x in X, there exists an open neighborhood U of x such
that μ(U) is finite. There exists / in C(X) such that

1) Org/^1;

2) / W - l ;

3) / = 0 on Uc,
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where Uc means the complement of U. Since it holds

f belongs to Jμ, which shows Jμ is an order-dense ideal.
Let {fa} be a net of non-negative functions in Jμ increasing to / in Jμ.

Since / is non-negative, we have

For any positive ε, there exists n such that

Since the sequence {/Am} converges to /, there exists m such that

/ W > x } / Λ m dμ+ε .

If we remark that μ({x; f(x)>l/n}) is finite and f f\m is bounded, in the same
manner as in the proof of Theorem 24 of Varadrajan [13, Part I] we obtain

= lim f fadμ .
a J X

Thus we have

Φμ(f)=limΦμ(fa).
a

Let {fa} be a net in Jμ decreasing to 0. If we fix α0, the net {fao— fa) increases
to faQ. Then we have

lim Φ/t(fao-fa)=Φμ(fao).
a

Hence we have

lim Φμ(fa)=0.
a

This completes the proof.

The idea of the proof of the following theorem is essentially due to Fremlin
[3], Hewitt and Ross [6] and Kirk [9].

PROPOSITION 8.2. Let J be an order-dense ideal of C(X) and Φ be a non-
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negative smooth linear functional on J. Then there exists a unique pre-Radon
measure μ such that J is contained in Jμ and

Φ(f)=jjdμ

for every f in J.

Proof. Let M+ be the set of functions {lim/α; {fa} is an increasing net,
a

each fa belongs to / + }, where / + is the subspace of all non-negative functions
in /. We define a functional Φ on M+, by

Φ(ftmfa)=\imΦ(fa).
a a

This definition of Φ is well-defined, in fact, if l im/ α =lim/J in M+ it follows
a λ

that

From the definition, we have

Φ(cg)=cΦ(g)

for every g in M+ and any positive number c.
For every net {ga} in M+ increasing to g in M+, we obtain

lim Φ(ga)=Φ(g)
a

in the same manner as in the proof of Theorem 11.13 of Hewitt and Ross [6].
Therefore we have

for gu g2 in M+ .
Since / is an order-dense ideal and X is completely regular, the characteristic

function χ0 of an open subset 0 of X belongs to M+. We put

m(O)=Φ(χo)

for every open subset 0. Then for any net {Oa} of open subsets increasing to
an open subset 0, we have

lim m(0a)=m(0).
a

Moreover for open subsets Oλ and 02, we obtain

in the same manner as in the proof of Lemma 1.10 of Kirk [9].
If we set

//*G4)=inf {m{0) 0Z)Λ and 0 is open}



120 I. AMEMIYA, S. OKADA AND Y. OKAZAKI

for every subset A of X, then μ* is an outer measure. Since I is a regular
space, it holds

ra(O)=sup {m(W); WdWdO and W is open}

for every open subset O. Hence it follows that every Borel subset is /^-mea-
surable (see for example, Hewitt and Ross [6, Theorem (11.30)]). If we denote
by μ the restriction of μ* to the Borel field SB(X), μ is a pre-Radon measure.

We show it holds that

<P(/)=J fdμ

for each / in / + . In the same manner as in the proof (a) of Lemma 71 F of
Fremlin [3], we have

for every / in / + .
In order to prove the converse, we slightly modify the proof (b) of Lemma

71 F of Fremlin [3]. For any / in / + , we put

Λ=/Λ2*-/Λ2- n ,

then the sequence {f—fn\
 n = r 1> 2, '"} i n / + decreases to 0. Therefore for an/

positive number ε, there exists n such that

If we set

μ(H) is finite. There exists a positive number c such that

μ(U)-fίH)<ε/2",

where U={x; f(x)>2~n-c}. By Varadarajan [13, Part I, Theorem 10], there
exists g in / + such that

1) O ^ ^ l ;

2) g=ί on H;

3) g=0 on Uc.

Then we have

0<Φ(g)-μ(H)<ε/2».
Thus we obtain

=Φ(fn)+Φ(2ng)-Φ(2ng)+ε

=2nΦ{g)-Φ(2"g-fn)+ε
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-yχ{2ng-fn)dμ+ε

:gf fdμ+2ε.

Hence we have

Φ(f)=jjdμ

for every / in /+.
Lastly we prove the uniqueness. Let 0 be any open subset of X and {fj

be any net in / + increasing to χ0, we have

/i(O)=limf fadμ.
a J X

In fact, for 0<<5<l, putting

{Ua} increases to 0. Since it follows

lim ^(17^=
a

we have

f fadμ^[ fadμ^
J x Jua

Thus we have

4-limf fadμ^
Since δ is arbitrary, we have a x

f
Let v be another pre-Radon measure satisfying

Φ(/)=f fdμ=[ fdu
J X J X

for every / in /+. By the preceeding argument, we have

μ{0)=v{0)

for each open subset 0. Since μ and v are regular measures, v is identical with
μ. The theorem is proved.
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§ 9. Product measure.

The purpose of this section is to study the product of pre-Radon measures.
The proof of the following lemma is easy.

LEMMA 9.1. Let X be a topological space, V be a paving generated by an
open base containing X and m be a non-negative, totally finite real valued finitely
additive set function on R\JU'] such that

1) For any net {Ua} of subsets in HJ increasing to X,

\im m(Ua)=m(X);
a

2) For every U in CU,

m(U)=sup {m(F); Ui)F^RlV] and F is closed} .

Then we have for any net {Ua} of subsets in °U increasing to a set U in CU,

\im m(Ua)=m(U).
a

To begin with, we investigate the finite product case.

THEOREM 9.2. Let μ, v be totally finite pre-Radon measures on topological
spaces X, Y respectively. Then the product measure p=μ(g)v on (XX Y, B(X)ξ2)
&(Y)) is uniquely extensible to a pre-Radon measure on the product space XxY.

Proof. Let HJ be the paving generated by

{UxV; £/(resp. V) is open in Z(resp. Y)}

and {WJ be a net of subsets in RJ increasing to XxY. If {UrxVr} is the
collection of open subsets of XxY such that each Urx Vr is contained in Wa

for some a, we have \J(UrXVr)=XxY. For every x in X, the family {Vr; x
ΐ

belongs to Uγ] covers Y. Since v is a pre-Radon measure, for any positive
number e, there exists {γf, y%, •••, γ%{x)) such that

v(\JVγX)>v(Y)-ε.

W e se t U(x)— Γ\ Urx. Since μ is a p r e - R a d o n m e a s u r e , t h e r e e x i s t s {xlf •••, xk}

s u c h t h a t

From the definition of product measures, it follows
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p( U n((j\ϋ(xj)x VrXj))=P{ W LMx,)- Uu(xp))x\J Vr*,])
J=l 1 = 1 ι J=l p = l t = l 1

= Σ pWU(χ,)- Ό t/Ocpttx'ϊf ί W
j=i p=i 1 = 1 *

> Σί<(ί/W-U[/(K

U ) ( (

Since {W }̂ is directed, there exists α0 such that

,7 = 1 1 = 1 *

Therefore we have

lim p(Wa)=p(XxY).
a

By Lemma 9.1 and Theorem 3.2, the restriction ρ0 of /? to i?[ ίU]=i4[ ίU] is uni-
quely extended to a pre-Radon measure p0 on Xx Y. By Halmos [5, § 13, Theo-
rem A], p coincides with p0 on the product σ-algebra B{X)®$(Y). This com-
pletes the proof.

Now we argue o -finite product measures on finite product spaces in the fol-
lowing theorem.

THEOREM 9.3. Let μ, v be σ-finite pre-Radon measures on topological spaces
X, Y respectively. Then the product measure ρ=μ®v on (XX Y, $(X)®$(Y)) is
uniquely extensible to a pre-Radon measure on XX Y.

Proof. Let "U be the paving generated by

{UxV; £/(resp. V) is open in Z(resρ. Y) and

μ(U)<oo, v(7)<oo}
n

and {Wa\ be a net in <U increasing to W in CU. If we write W=\J (UιxVι),

we have WdU0X VQ, where Uo= U U% and Vo= U V%. By Theorem 9.2 μ
1=1 t = l Γ

is extensible to a pre-Radon measure on UoxVo. Thus we have

lim (μ®v)(Wa)=\im (μUo(g)vVo)(Wa)
a a
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By Theorem 3.2 the restriction p0 of p to A[HJ~\ is uniquely extensible to a pre-
Radon measure p0. Since p is σ-finite, p0 is an extension of p, which proves
the theorem.

Next we investigate a Fubini type theorem.

LEMMA 9.4. Let μ be a semi-finite pre-Radon measure on a topological space
X and M+(X) be the set of all non-negative, extended real valued lower semi-
continuous functions on X. If a net {fa} in M+(X) increases to f in M+(X),
then we have

lim f fadμ={ fdμ.
a J X J X

Proof. Firstly we prove the case that / is a simple function Σ a>y*E<> where
1=1

{Ei) is disjoint. Since μEχ is a pre-Radon measure (Theorem 5.3), by the way
similar to the proof of Theorem 8.2 we have

lim f fa\EidμEi—CLiμ{Eι).
a J Eτ

Thus we obtain

lim f fadμ=\\m Σ f fJ-Eidμ
a JX a x=lJ X

= Σ limj fa\EidμEι

= t Σ aiμ(Et)

Next we prove the general case. If we put

k
= ~

then we have

lim f gndμ=[ fdμ.
n ^ X J X

If we remark that gn is lower semi-continuous, we have

f fdμ—\\m \ 5 nύί//=lim lim Γ faΛgndμ
J X n J X n a. * X

—X\m lim f fa/\gndμ
a 7i J X
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=lim ί UmfaAgndμ
a J X n

=lim f faAfdμ
a J X

=lim f fadμ.
a J X

The lemma is proved.

LEMMA 9.5. Let μ, v be σ-finite pre-Radon measures on topological spaces X,

Y respectively and μ(&v be the pre-Radon extension of μ®v. Then for every
open subset W of XX Y, we have

μ®v{W)=μxvy(lw(x,y)).

Proof. Let HJ be the paving generated by

{UxV; £/(resρ. V) is open in Z(resp. Y)}

and {Wa} be a net in ΊJ increasing to W. By the way similar to Bourbaki [2,
§ 2, n°6, Prop. 11] the function

zi—>vy(XWa(x,y))

is lower semi-continuous on X. By Lemma 9.4 it follows that

lim Vy{XWa(x, y))=Vy(Xw(x, y)),

which shows that the function

is lower semi-continuous. Hence we have

μ(g)v(W)=lim
a

=lim μxvy(XWa(x, y))

= μzvy(Xw(x, y)).
The proof is complete.

Under the above preparations, we present a Fubini type theorem.

THEOREM 9.6. Let μ, v be σ-finite pre-Radon measures on topological spaces

X, Y respectively and μ®v be the pre-Radon extension of μ®v. Then for every
Borel subset B of Xx Y, we have

x, y)).

Proof. We recall that for every Borel set B, XB(x, y) is separately Borel
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measurable function on Xx Y. Let 3ix be the class { £ C J ( I X Y) vy{χE{x, y))
is ^(Z)-measurable}. Since v is σ-finite, JAX is a monotone class. Furthermore
we can easily prove that 3iλ contains the algebra generated by all open subsets
of I X Y. Thus 3ix equals ${XX Y).

Let <3ί2 be the class

v{E)=μxvy{lE{x,y))} .

Since μ and v are σ-finite, <3ί2 is a monotone class. By Lemma 9.5, <3ί2 includes
the algebra generated by all open subsets of Xx Y. Thus 3ί2 is equal to

Y). This completes the proof.

COROLLARY 9.7. Let f be a non-negative, extended real valued Borel measur-
able function on Xx Y, then we have

1) x i—> \ f(x, y)dv(y) is ^(Z)-measurable

2) y\ • f f{x,y)dμ{x) is ^(F)-measurable
J Y

3) jχdμ(x)jγf(x, y)dv(y)=jy dv(y)\J{x, y)dμ(x)

Next we consider the countable product of pre-Radon measures.

THEOREM 9.8. Let μn be a pre-Radon probability measure on a regular space
oo oo oo

Xn (n=l, 2, •••). Then the product measure μ= ® μn on (ΊJXn, ® &(Xn)) ι s

n-l τ ι-1 n = l

uniquely extensible to a pre-Radon measure on the product space Π Xn-
71=1

Proof. Let HJ be the paving generated by

cU0={flUn; Un is open in Xn, Un=Xn except finitely many n}
71=1

and {Wa} be a net in "U increasing to Π Xn. If {Π Ur

n} is the collection of
7 1 = 1 7 1 = 1

oo

open subsets in "UQ such that each Π Ur

n is contained in Wa for some a, we
71=1

have UΠt/ί=ΠI». We put
γ n-l n-l

Γ(k)={γ; Ul=Xn for all n>k}

and put

ί/(fe)= U

71

We define a finitely additive set function v on the algebra cJl— \J (<B( Π Xt)
7? = 1 1 = 1
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X Π Xp) as follows :

p>n ι--

n ~v. n

for every Bn in &( Π Xt), where ® μ t denotes the pre-Rodon extension of ® μ%
1=1 1=1 t = l

From Corollary 7.2 v is well-defined. We shall show v is countably additive by
the way similar to Halmos [5, § 38, Theorem B]. Let {Ek} be a decreasing
sequence in Jί. Suppose there exists ε>0 such that v(Ek)^e for every k. We
put for every E=BNCEyX Π _ Z P in Jί

and

μin\E(xu - , xn))=

If we put

then it follows by Theorem 9.6

= f μ^

/

Thus we have

which implies there exists xx in Xx such that

CO

for every k. Similarly there exists (xn) in Π Xn such that
l
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oo

for every k. If we remark that (xn) is in Π Ek, v is countably additive.
* = 1

Since v is countably additive, for arbitrary ε>0 there exists k0 such that

By Theorem 9.2 there exists {γlf ••• ,γp} in Γ(k0) such that

® ^ ( U Π t / ϊ β ) > l - e .

P ko

Since {PF*} is directed, there exists a0 such that Wao contains U Π UfiX Π ZTO,
g=l ι=i m>k0

\imμ(Wa)=l.
a

By Lemma 9.1 and Theorem 3.2, the restriction μ0 of /̂  to i?[cU]=^4[ίU] is uni-

quely extended to a pre-Radon measure /ion Π Xn. By Halmos [5, § 13, Theo-
7 1 = 1

oo

rem A], a is identical to β on the product σ-algebra ® &(Xn)- Thus the theo-
n= 1

rem is proved.
Now we discuss the uncountable product of pre-Radon measures.

THEOREM 9.9. Let μλ be a pre-Radon probability measure on a regular space

Xλ (λ&A). Then the product measure μ=®ξλ on {HXλf ® $(Xχj) is extended

to a unique pre-Radon measure on Π Xχ,
λϊΞΛ

Proof. Let ΊJ be the paving generated by

{ΐlUλ) Uλ is open in Xλ, Uλ—Xλ except finitely many λ]

and {WJ be a net in °ϋ increasing to TίXλ- We put c=sup μ(Wa). Then there

exists {an} such that c=lim μ(Wan) = μ(\J Wan). For simplicity we set W
n 7i=l

2V(α)

= U Wan- We can write Wa= U Π Uf\ If we set
n = l n=l λ^A

Λ0={λ(ΞΛ Uΐn>ι=Xλ for every n and ι = l , 2, •••, 7V(αJ} ,

then Λ1=Λ—Λ0 is a countable set. Since TF equals qx{W)x Π ^ , we have
λCΞΛQ

μ{W)~{ ® μλ)(qi(W)), where q1 is the projection of Π ^ onto Π Xχ-
λ<EΛ\ l-A λ&Ai

In the first step, we assume supp μλ is equal to Xχ for every λ in A. Sup-
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pose c < l . Then there exists a0 such that ( ® μλ)(qi(WaQ)—q1(W))>0, for by

Theorem 9.8 it holds sup ( (g) μχ){q1{Wa))=l. Therefore, for some i, l^ι^N(a0)

it follows ( (g) μλ){ Π U^t-q1(W))>0. If we remark that ( <g) ^ ) ( Π ί/J°'ί)>0,

we have

= μ{W)+μd Π i/if -ϊ^W^X Π tfj '*)

Π ί/f»'t-?1(^))( ® μx){ Π

which is a contradiction. Hence we obtain μ(W) = l. If follows that

We shall prove the general case. By vλ we denote the restriction of μχ to

7 j i=supp^. Since the net {WaC\Yx} increases to HYλ, from the first step

we have

lim (<g> μλ){Wa)=\\m ( ® vλ)(WaΓλ Π Yλ)
a λ^Λ a λ<ΞΛ λ^Λ

By Lemma 8.1 and Theorem 3.2, the restriction μ0 of // to R[CU^=A[CU'] is uni-
quely extensible to a pre-Radon measure /i on Π Xx By Halmos [5, § 13,

Theorem A], μ is identical with β on the product σ-algebra (g) SB(Xχ). This

proves Theorem 9.9.

We denote by ® //̂  the pre-Radon extension of ® /̂ ^ obtained in Theorem

9.9.
Lastly we consider the product measure of Radon measures. The following

lemma is well-known (for example see Bourbaki [2, § 4, Theoreme 2]).

LEMMA 9.10. Let μn be a Radon probability measure on a regular space Xn

(n=l , 2, •••). Tnen the pre-Radon extension ® μn of ® μn is a Radon measure
7 1 - 1 7 1 = 1

on flXn.
7 1 = 1
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THEOREM 9.11. Let μχ be a Radon probability measure on a regular space

Xχ (λ^Λ). Then the pre-Radon extension 0 μχ is a Radon measure if and only

if supp μχ is a compact subset of Xχ except countably many λ in A.

Proof. Let ® μχ be a Radon measure. Suppose that there exists some

uncountable subset Λo of A such that supp/^ is not compact for every λ in Λo.
Without loss of generality we may assume Λo is equal to A. For each compact

subset K of Π ^ , we shall show ® μλ(K)=0. Putting
Λ<=Λ λ^ΛΛ<=Λ

Λn={λt=Λ

we have A= \J An, where pλ is the projection of Π Xχ onto Xχ. Since A is

uncountable, there exists n such that An is infinite. Hence An has an infinitely
countable subset {λt ι=l,2, •••}. Thus we have

λE Λ 1=1

Π Xd

• μiMK))

M+l

Therefore we have

This is a contradiction.
The converse follows by Lemma 9.10. Thus we have proved Theorem 9.11.

Appendix

We shall examine the relation between inner regularity (*) and outer regularity
(**):

(*) For every A in B(X) such that μ(A)<<*>,

/ί(A)=supp {μ(F) FcA and F is closed}

(**) For every A in
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μ(A)=mf {μ(O) OZDA and 0 is open} .

THEOREM A. Let μ be a Borel measure on a topological space X such that

X= \J Un and μ(Un) is finite for countable open subsets {Un}. Then (*) implies

(**).

Proof. Let A be a Borel subset. Then for every positive ε, there exists a
closed subset F n contained in Acr\Un such that ^ ( Λ c n ^ n - ^ n ) < ε / 2 n . If we put
Vn=UnΓ\Fc

n, then we have

μ{ U Vn-,4)^( 0 Vn- 0 (ί/n
n = l n = l n=l

This completes the proof.

COROLLARY. Let be a σ-compact locally compact space and μ be a Borel mea-
sure on X such that μ{K) is finite for every compact set K. Then (*) implies (**).

THEOREM B. Let μ be a Borel measure on a topological space X. If μ is σ-
fimte and satisfies (**), then (*) holds.

Proof. Let En be a Borel subset of finite measure such that X= U En. For
π = l

every 4̂ in «©(X) and every positive ε, there exists and open subset Un contain-
ing AcΓ\En such that μ(Un-AcΓ\En)<ε/2n. Then we have

μ(A)-μ( Γ\ Uc

n) = μ(AΓΛ( 0 Un))
n=l n=l

= μ( 0 Un- 0 (
n=l n=l

which proves the theorem.

Lastly according to the comments of Fremlin we note the relation between
pre-Radon measures and quasi-Radon measures.

1) Let μ be a pre-Radon measure on a topological space X. Then there
exists a unique quasi-Radon measure v on (X, Σμ*) such that for any B in Σμ*
with μ*(B)<oo, v(B)=μ*(B), where μ* is the outer measure derived from μ and
Σμ* is the family of all μ*-measurable sets. Moreover it holds that v{O)—μ{O)
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for every open set O.
2) Let y be a locally finite quasi-Radon measure on (X, Σ). Then there

uniquely exists a pre-Radon measure μ on X such that μ(O)=v{O) for every
open set 0.
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