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1. Introduction

For a complex number o with || <1 let #(a) be the class of analytic
functions f in the unit disc D with f(0) = f'(0) — o = 0 satisfying |f'(z)] <1
in D. Similarly for Re « > 0 let #() be the class of analytic functions f in D
with f(0) = f'(0) — « = 0 satisfying Re f/(z) >0 in D. For each zy e D let

(1) Va(zo,0) = {f(z0) : f € B(x)} for aeD,
(2) Vp(zo, o) = {f(z0) : f € ()} for Rea > 0.

In this paper we shall determine the variability regions Vj(zp,o) and
Vp(zo,0) explicitly.

THEOREM 1. If zo=0 or |a| =1, then Vy(zo,0) = {azo}. If zo #0 and
lo] < 1, then Vz(zo,a) is the convex closed Jordan domain surrounded by the
simple closed curve 0D 3 ¢ — f.(zo), where

f(szcgﬂdé—f—l"“zlo<1+—) eD
(z) = Tt %3 =, g acz), z .

Furthermore if f(zo) = fc(z0) for some f € B(a) and c € ID, then f = f,.

As a simple application of Theorem 1 we have the sharp growth estimate as
follows.

COROLLARY 2. Let a,zop € D\{0}. Then for f € %(a),

lal (o)
o] o ?

1/ (20)] < [ ey (20)] log(1 + [o] |zol),

where ¢y = azo/(|o]|z0|) with equality if and only if f = f..
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THEOREM 3. Let zoeD and Rea > 0. If zo =0, then Vp(zo,a) = {0}. If
20 # 0, then Vyp(zo, ) is the convex closed Jordan domain surrounded by the simple
closed curve 0D 3 ¢ — f.(zy), where

f(,(z)J‘<a+MC>dC&z+2Rcealog L .ep
0

1—¢C 1—cz
Furthermore if f(z0) = f.(z0) for some f € P(a) and c € dD, then f = f..

CoRrROLLARY 4. For zyp e D\{0} and f € 2?(«) we have

Rea{ 2 toal + ) 1 < o)

with equality if and only if = f. Also we have

2o/

Re(f(zo)> <Reua { 2 log ——— ! 1}
20 ‘Zo‘ 1 — |Zo|

with equality if and only if [ = J;zz/\:o\-

Let S* be the class of analytic functions f in D with f(0) = f/(0)—1=0
which map D conformally onto a starlike domain with respect to the origin.
A function f € S* is said to be univalent starlike. For a positive integer p let
(S ={f =0 foeS*}. The proofs of Theorems 1 and 3 heavily rely on the
following.

LemMMA 5. Let f be an analytic function in D with f(z) =z +---. If
f”(Z))
Rel z >—1, zeD,
( 1'(2)

then f e (S*)".

Although we could not find any references for proofs of the above lemma, it
might be well known. See [3] and [1]. For completeness, by making use of
Libera’s lemma (see [4] and [2]), we shall give an analytic proof of Lemma 5 in
Section 3.

2. Regions of variability

In this section, assuming Lemma 5 for the moment, we prove the theorems
and corollaries.

Proof of Theorem 1. Clearly we have Vy(0,0) = {0} ={a-0}. Let fe
B(a). If |af =1, then from the maximum modulus theorem we have f(z) = az
and hence Vy(zo,o) = {azo}.
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Suppose that zp € D\{0} and |«| < 1. We shall show that dV(zo,o) is a
simple closed curve and Vjy(zo, ) is the closed domain surrounded by dVy(z, o).
To this end, since Vy(zo,o) is a compact and convex subset of C, it suffices to
show Vj(zp,o) contains an open set.

For |¢|] <1 and zeD put

Tel+a

®) fie) = [ o

Ifx\

d¢ = ; = log(1 + &cz).
Then it is easy to see that f. e %(x). Since for any fixed zo € D\{0}, the
function D 3 ¢ — f.(z0) is nonconstant analytic, it is an open mapping. Thus
Va(z0,0) contains the open set {f.(zo): |c| < 1}.

Next we shall show that f.(z) € 0Vy(z, ) for all ¢ € dD. For f € B(a) we
have from Schwarz’s lemma

f(2) —«
L <
i —ar) =
which is equivalent to
ol — [2P)| _ (1= [l
(4) f'() = 2| S 212"
1 — o] 7[z] 1 — o] 7[z]

Thus for any C'-curve y:z=z(f), 0 <t <1, with z(0) =0 and z(1) = zy we

have
IOC — |z
’M)_J & ‘

0ol — |ot| |z(¢)
:
-ﬂ{f@@) fﬁj%%%}zmd4
sﬂf%m»—%ﬁﬁg%%zonm
SJ%:gQ%%H%nm
This implies f(z0) € D(C(a, 7), R(%,7)) = {z € C : |z — C(x,7)| < R(27)}, where
(5) wa=ﬂ%%i%%%ﬂ0ﬁ

! — 062 zZ
(6) R(2,7) :J Mp'(z)\ dt.

0 1= o’lz(1)]
Thus we have Vjy(z,a) = D(C(a,7), R(2,y)).
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While we have for |¢| =1

) a(1 — |z|?
™) fe -2k
1 —of|2]
(1= o)zl +a2)
(1= o[z (1 + &ez)
(1= o) [zlgl)
1— oz l9(2)]’
where
z
8 Z)=——.
® 9(2) (1 +&cz)2
Since for zeD
() (i)
g(z) 1+ acz
by Lemma 5 we have G(z fo g(0) dl e ( )2. Thus there exists Gy e S*

such that G = GZ. Puty,:z= z(t) Gy (1 1/ZGO( 0)), 0 <t<1. Then we have
G(zglt)) = 1G(zo) and hence 2¢g(z(1))z'(¢t) = G'(z(¢))z'(t) = G(zp). Thus from (7)
we have

o) (f;,’(z(t)) - %) (0 =4 l_jl“z'zz)('f)ﬂ? | A2
:

and

R r

Specially we have fi(0) € ID(Co, 7o), R(%,30)). Since  fi(z0) € Vilz0,9) <
D(C(OC, yO)) R(OC7 yO)): we have fC(ZO) € aV%(Z(ﬁ O()'

We deal with uniqueness and show the injectivity of the mapping oD > ¢ —
fe(z0). Suppose that f(z9) = fo(z0) for some f € #(x) and ¢ € dD. Put

GG (1 2= EOP))
KO = 6o (f CORES WZW) (0.

Then k() is a continuous function of € [0,1]. And we have from (4) and (9)
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1— o))z
Re k(1) < |k(1)] < %wo

NG iy 2= 1201) Y
~ ¢G(z) (fc((t)) 1—oc|2|z(t)2> 0

Thus we have from (9) and (10)

Rl o) = Re{ 1 Z (7 an) = L)

= Re{LGG((ZzOo)) (f(z0) — C(%Vo))}

1
Re k(1) dt

0
GG (o 2= 0P
. oGe) (ﬁ (-(1) ) (1) d

= R(OC, VO)'

—

A
—

This implies

2
ko) = CGG<(zZoO>)| ( ey - 20— W) >>Z,(t)_

L —Jof?|2(0)?

for all 7€[0,1]. Hence we have f’/ = f/ on y,. From the identity theorem for
analytic functions we have f’ = f and hence f = f. by normalization.

Finally suppose that the mapping D 3¢ — f.(z9) is not injective. Then
there exist cj,c; € 0D with ¢ # ¢y such that f; (z9) = f.,(z0). Since f,, f., €
%#(a), we have f. = f,, from uniqueness. This contradicts ¢ # c;.

We have shown that the simple closed curve dVy(zp,a) contains the curve
0D 3 ¢ f.(zp). Since a simple closed curve can not contain any simple closed
curve other than itself, dV4(z¢, ) coincides with the curve dD 3 ¢ — f,(zp). O

Proof of Corollary 2. For w,f e D\{0} we have

w+f - [w| + |B]

1+ Bwl = T+ [plIw]

with equality if and only if fw is positive. Thus for |¢[ =1 we have

1
*Zol
ZOJ Md,’
o 1+ dczot

| fe(z0)| =

el [ L g1
T ot laffzole el af?

log(1 + [of |z0]) = [ /ey (20)]
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with equality if and only if ¢ = ¢ = aZ5/(|o||z0]). Combining this and Theorem
1 we have for any f € %(x)

1/ (z0)] < max | fe(z0)] = feo (20)]
with equality if and only if f = f,. O

Our proof of Theorem 3 is quite similar to that of Theorem 1. We only
outline the proof, details of which may be supplied by the interested reader.

Proof of Theorem 3. Clearly V,(0,a) = {0}. Suppose zo € D\{0}. It is
easy to see that Vj(z,o) is compact and convex subset of C. For |¢|] <1 put
2(Re o) 1

.
log T~ € P(a).

dl = —az +

an o e-| e

Since the mapping D 5 ¢ — f,(z) is open, Vj(z, ) contains the nonempty open
set {f.(zo0) : |c|] < 1}. Thus Vp(zo,a) is a closed Jordan domain surrounded by
the simple closed curve dVy(zo, o).

Let f e 2(«). From the Schwarz’s lemma we have

iy
Sz~ _ 2,
J'(2) +a
which is equivalent to
—1.12
(12) 1) — o+ oc|z|2 < 2(Re oc)|22| .
1 —|z| 1 —|z]
This implies
(13) Vy(Z(),OC) < ﬁ(é(a7 y),R(OC,j))),

where y:z(¢), 0 <t <1, is any C'-curve with z(0) =0, z(1) = zy and

_ 1 3z 2
(14) Gy =] TR a
1 o)z
(15) mmsz%ﬁi%%Wmnw

While we have

Fry ot alz]”  2(Rea)clz| §(z)
16) ST =T e
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z

(17) g(2) RETIpEEE

Since Re(zg'(z)/g(z )) Re{(1 +cz)(1 —ch)fl} >0 for |z] <1, there exists
Go e §* satisfying G(z) = =2[,9) di= Gp(z)2 by Lemma 5. Putting y,: z(¢) =
G, ' (V1Gy(20)), we have 2g(z ())z’(l) = G(z0) and

= o+ alz(1)|* ,
(18) {ﬁ (=(0) - I_'(iﬁL} ()
_ G0) 2ARe D] Ly
G(z0)l (1= |=(1)]%)
By integrating the above equality we have
(19) o) = €0 = 2 R
Since £, (z9) € Vp(20,%) = D(C(x,3), R( 7)) and f(z0) € ID(C(,70), R(2 70)),

we have f,(z9) € 0Vp(z0,2).
Suppose that f(zo) = f.(zo) for some f e ?(x) and |c|=1. Put

e GG [ a3z
(20) Ho = o {f((t)) s } .
Then we have from (12) and (18)
. . Gzl [ 7 ot alz(0)*]
(21) Re k(o) < k(0] < Z20 {fc(Z(t)) —I_W)'z}z (1).

Thus we have from (18), (19) and f(z0) = f.(z0)

R(oc, 70) = Re R(oc, %)

= J] Re k(1) dr

0

G20l | a+ 3200 |,
< L G z0) { (z(1) — liz(z)f}z (1) dt
= R(O‘v?’o)-

Since k() is a continuous function of 7€ [0, 1], this implies f’ = £/ on 7, and
hence f = f. by normalization.

As in the proof of Theorem 2 it easily follows from uniqueness that the
closed curve dD 3 ¢ — f,(z9) is simple and coincides with 0¥V(z, ). O
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Proof of Corollary 4. From (11) we have

fi(z0) — i(Im )zp = Re oth L+ d¢
o 1—¢
1
1 + czot
= (R
( © OC)ZO J() — czpt
Thus we have
- . .y
Re (M) = (Re a) Re( + czot> dt
20 0 1 — czopt
- Z0 2l2
= (Re oc)J %
0|1 — czot]
M1 — |zo)t { 2
> (Re« dt = (Re o)< — log(1 + |z —1}
(Re ) | 1o di = (Re )y 7 los(1 + |20
with equality if and only if ¢ = —Zy/|z¢|. From this and Theorem 3 we have for
Je?()
Re <_f(zo)) > min Re Je(20)
Z0 le|=1 Z0
2
= (Re oc){— log(1 + |zo]) — 1}
|zo

with equality if and only if f =/ ..
Since the proof of the other half of the corollary is quite similar, we omit

it. O

3. Sufficient conditions for Multivalent starlikeness
Let p be a positive integer and .27, be the class of analytic functions f in D
with f(z) = 2° + ap12?* +- -
LemMMA 6. Let fe€.o/,. Then fe(S*)' if and only if
f ’(Z))
22 Re( z= >0, zeD.
- (75

In the case that p =1 the condition (22) implies that f is starlike univalent.
When p > 2, see [5] for a proof.

Proof of Lemma 5. Let p=1,2,... and f €./, with 1+ Re(zf"(z)/
f'(z)) >0 in D. From Lemma 6 it suffices to prove Re(zf’(z)/f(z)) > 0 in D.
First we show that p~'zf’(z) e ($*)”. Since f’(z) #0 for all ze D\{0},
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there exists an analytic function fj € /) such that zf’(z) = pfi(z)” in D. The
fact that f; € S* easily follows from

el a0 o

For any z;eD\{0} put z(¢) = f7'(¢'7fi(z1)), 0<t<1. Then we have
z(0) f'(2(2)) = pfi(z(1))” = ptfi(z1)" = tz1f'(z1) and hence

{f'(=(0) + 20" ()} (1) = %{Z(l)f’(Z(t))} =z2/"(21).
Thus we have for any z; € D\{0}

() el )

o £10)
= Jo Re{f’(Z(t)) T Z(t)f”(Z(t))} a

! 1
-J,Re NECTUEG)
J'(=(1)
2(0)/"(=(1))
1| 1+Re ;
| ( I4ED) 2) o
2 IAREOYAIED)
J'(z(1)
Combining this and lim._ zf'(z)/f(z) = p we have Re(zf'(z)/f(z)) >0 in D.

O

Following Goodman [1] let (p) be the class of analytic functions f in D
such that there exists r € (0,1) with the following properties:

Re(z]}lll((zz)) + 1) >0 for r<|z| <1,

T " i0
J Re<pem§'((£§f0)) + 1) d0=2mp for r<p<l.

THEOREM 7. Let f € €(2). Then there exists zo € D such that f'(zo) =0,
f"(z0) #0 and f'(z) #0 in D\{z0}, and that

rna () e e
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Proof. Put

70 +1, zeD.

Since for r<p <1

A — E Re{h(pe”)} df = Re{le,, <Z§((ZZ)) ! 1> %}

. e
=2 JrIm{Jz/) f(z) . }’

there exists zop € D such that f'(z0) =0, f"(z0) #0 and f’(z) #0 for all z €
D\{zp}. Thus the function

mn:f(

satisfies g(0) = ¢’(0) =0, g”(0) = (1 — |z0|*)*f"(z0) # 0 and ¢'(z) # 0 for all z e
D\{0}. Hence the function 1+ (z¢g”(z)/g’(z)) is analytic in D and its real part
is harmonic in D.

We claim that the inequality

Re(zgg/:((zz)) + 1> >0

z+2zp
1+ Zpz

)—f(zo), zeD

holds in D.
From an elementary calculation we have

1 Z+2p
g”(z)Jr 1—1_ 27z (1 —|z0]%)z 1 + %z
g9'(2) I+ 2z (1+z5:2)° PR
1+ Zoz
z0 — Zoz? (1 —|z0%)z (z—i— ZO>
—+ — I — ).
(z+z0)(1 +20z)  (z+z0)(1 +Z0z) \1+ Zpz

(23) z

Without loss of generality we may assume / is continuous on D. Since for
|z| =1 we have from the identities

zo — Zgz2 y Im(Z5z)
Cra 159 tal
(1-lz2)z 1-]zf

(z+z20)(1 +202) |24z
it follows that
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"
timinf Re(z2 & 4 1) 20
D>z g'(2)
for all { € dD. From this and lim._ zg'(z)/g(z) = 1 we have Re(zg”(z)/g'(z)) +
1>0 in D.
Now the fact that 2(1 — |zo|*) /" (z0) 'g € (S*)* easily follows from Lemma
5. O
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