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NASH INEQUALITIES FOR COMPACT MANIFOLDS WITH

BOUNDARY

Hironori Kumura*

Abstract

In this paper, we shall prove the Nash inequality for a compact manifold with

boundary with respect to a weighted measure, using covering arguments of Jerison [10]

and Oden-Sung-Wang [13]. We shall also state some results which are easily obtained

from that inequality.

1. Introduction

The Nash inequality is equivalent not only to the Sobolev inequality but also
to the diagonal upper bound of the heat kernel. Therefore, it is an important
factor for the study of solutions of parabolic equations ([7]). In this paper, we
shall ®rst prove the Nash inequality for metric balls under the assumptions of the
volume doubling property and local PoincareÂ inequality, by using covering
arguments of Jerison [10]. We shall also point out that the Nash inequality,
conversely, implies a lower bound of the volume of balls, and hence, a family of
Nash inequalities is equivalent to the parabolic Harnack inequality. Using
covering arguments of K. Oden, C. J. Sung and J. Wang [13], we also derive the
Nash inequality for a compact manifold with boundary with respect to a
weighted measure wvM , where w is a positive function on Int M :�M ÿ qM.

We shall make the above statements mathematically precise. Let M be a
compact, connected Riemannian manifold with boundary qM. We denote by
vM the Riemannian measure of M. In order to emphasize that M contains the
boundary qM, we shall often write M in place of M. K. Oden, C. J. Sung and
J. Wang proved the PoincareÂ inequality of M with respect to a weighted measure;

Theorem 1.1 (K. Oden, C. J. Sung and J. Wang [13]). Let w be a given
function on M with w > 0 on Int M :�M ÿ qM. We assume

1. M satis®es the volume doubling property, i.e., bc1 > 0 s.t. for any ball
B�x; 2r� with x A M we have jB�x; 2r�j=jB�x; r�ja c1, where c1 is a constant in-
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dependent of x and r, and for AHM, jAj stands for the volume of A, i.e.,
jAj � �

A
dvM .

2. M satis®es the interior rolling R-ball condition, i.e., bR > 0 s.t. for all
x A qM, bB�p;R�HM s.t. B� p;R�V qM � fxg.

3. M satis®es the weak PoincareÂ inequality on balls, i.e., for any ball
B�x; 2r�HM, B�x; 2r�V qM � j, we have

inf
k AR

�
B�x; r�

j f ÿ kj2 dvM a c2r2

�
B�x;2r�

j`f j2 dvM

for all f A C1�M�, where c2 is a constant independent of x, r and f.
4. bc3 > 1 s.t. w�x�a c3w�y� for all x; y A M with 0< d�x; qM�a 2d�y; qM�.
Then we have the following PoincareÂ inequality on M:

inf
f AC 1�M�

�
M
j`f j2w dvM

infk AR

�
M
j f ÿ kj2w dvM

b c�c1; c2; c3;R; h;D�;

where h is the ®rst nonzero Neumann eigenvalue of MR=2 � fx A M j d�x; qM�b
R=2g and D � diam�M�, the diameter of M.

We shall consider
5. bc6 > 0 and bj > 0 s.t. c6d�x; qM�2j a w�x� for all x A M ÿMR, where

MR � fx A M j d�x; qM�b Rg.
In this paper, we shall add this assumption 5 to the ones of Theorem 1.1,

and prove the Nash inequality,�
M

j f ÿ f 0M j2w dvM

� �1��2=n�
a c �

�
M

j`f j2w dvM

� � �
M

j f ÿ f 0M jw dvM

� �4=n

;

En satisfying n > 4j and n b 2n0 :� 2�log c1�=log 2; Ef A Cy�M�;
where

f 0M �
�

M

fw dvM

��
M

w dvM ;

c � c�c1; c2; c3; c6; n; j;R;D; jMj� � c�c3; c6; n; j;R;D� �N;
jMj stands for the volume of M, i.e., jMj � �

M
dvM and N is the ``Nash

constant'' of MR=2 (see equation (7) in Theorem 4.1).
We should note that, actually, the assumption 4 implies the assumption

5 with c6 � Rÿ2j infd�x;qM��R=2 w�x� and 2j � �log c3�=log 2, and hence the as-

sumption 5 is not required for a Nash inequality to hold (cf. Remark 4.1).
Nevertheless we assume the property 5 because it is important to choose n as
small as possible.

Let u1 be the normalized ®rst Dirichlet eigenfunction for the Laplacian on
M. K. Oden, C. J. Chen and J. Wang set w � �u1�2 and estimated the constant
c�c1; c2; c3;R; h;D� in Theorem 1.1 from below by the geometric constants of M.
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Similarly, the above constant c can be estimated from above by the geometric
constants of M (see Proposition 5.1).

In section 3, we shall also point out that the Nash inequality conversely
means the lower bound of the measure in the following way: Let M be the
closure of a relatively compact domain in a complete Riemannian manifold N, w
be a function such that w A Cy�M� and 0 < w on Int M �M ÿ qM. (w may
possibly takes zero-value at a point of the boundary qM). We suppose that the
following Nash inequality holds:�

M

j f ÿ f 0M j2 dmw

� �1��2=n�

a ĉ � �diam M�2 � mw�M�ÿ2=n

�
M

j`f j2 dmw

� � �
M

j f ÿ f 0M j dmw

� �4=n

;

for all f A Cy�M�, where f 0M �
�

M
f dmw=mw�M�. Then, for each 0< r< diam M

and x0 A M, we have the lower bound of the measure

mw�B�x0; r�VM�
mw�M� b

c�n�
1� ĉn=2

r

diam M

� �n
:

From this lower bound estimate of the measure, we can easily see that the
parabolic Harnack inequality (i.e., Theorem 3.3, 2) is equivalent to a family of
Nash inequalities, i.e., there exist constants ĉ > 0, r0 > 0 and n > 0 such that�

B�x; r�
j f ÿ f 0B�x; r�j2 dmw

 !1��2=n�

a ĉ � r2 � mw�B�x; r��ÿ2=n

�
B�x; r�

j`f j2 dmw

 ! �
B�x; r�

j f ÿ f 0B�x; r�j dmw

 !4=n

;

Ef A Cy�B�x; r��; Ex A M; 0 < Er < r0:

The author would like to express his gratitude to Professor Atsushi Kasue
for his directing the author's attention to the paper [13] of K. Oden, C. J. Sung
and J. Wang.

2. Abstract results

In this section, we shall state the equivalence between the diagonal heat
kernel upper bound, Nash inequality, and Sobolev inequality. We shall also
point out that the diagonal heat kernel upper bound implies a lower bound of the
eigenvalue of the associated operator.

Let M be a compact, connected Riemannian manifold with boundary qM
and w A C0�M� be a function which is positive on Int M :�M ÿ qM. We de®ne a
weighted measure mw, by mw�E� � �

E
w dvM for E HM. We denote by H 1�M; mw�
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a Hilbert space obtained by the completion of the space C 0�M�VCy�Int M�
with respect to the norm

k f k2
H 1�M;mw� �

�
M

�j`f j2 � f 2� dmw:

On the Hilbert space L2�M; mw�, we shall consider a closed form

E� f ; h� �
�

M

h`f ;`hi dmw; f ; h A Dom�E� � H 1�M; mw�

and denote by A the nonpositive self-adjoint operator associated with this closed
form E. Let pt�x; y� be the heat kernel of the operator A. Slight modi®cations
of the arguments in [2] and [16] enable us to show the following

Theorem 2.1. Let M, w, A, and pt be as above. We assume
�

M
w dvM � 1

for simplicity. Let n > 0 be given. Then the following inequalities (1) and (3) are
equivalent, and when n > 2, they are also equivalent with (2) and (4):

(1) pt�x; x�a 1� atÿn=2 �Et > 0; Ex A M�.
(2) k f k2

2n=�nÿ2�a b �E� f ; f � Ef A C0�M�VCy�Int�M�� with
�

M
f w dvM � 0.

(3) k f k2��4=n�
2 ac �E� f; f �k f k4=n

1 Ef AC0�M�VCy�Int�M��with
�

M
fw dvM�0.

(4) infa ARk f ÿ ak2
2n=�nÿ2�a d � E� f ; f � Ef A C0�M�VCy�Int�M��.

Here, we write k f kp � �
�

M
j f jpw dvM�1=p. (3) implies (1) with a � c1nn=2cn=2,

(1) implies (3) with c � c2a2=n, (1) implies (2) with b � c3n2�nÿ 2�ÿ2a2=n, (2) implies
(3) with c � b, (2) implies (4) with d � b, and (4) implies (2) with b � 4d, where
c1; c2; c3 are some numerical constants.

Corollary 2.1. The Nash inequality (3) in Theorem 2.1 implies

aÿ2=nnÿ1cÿ1i2=n a li; jjij2y a ea�ncli�n=2 �i � 1; 2; . . .�;
where 0 � l0 < l1 a l2 a � � � are the eigenvalues of ÿA and fjig is a complete
orthonormal system of L2�M; mw� consisting of eigenfunctions with ji having eigen-
value li.

Proof. Theorem 2.1 implies pt�x; x�a 1� atÿn=2 for all t > 0 and x A M,
where a � a�nc�n=2 and a is a numerical constant. Therefore for each l > 0 and
for all x A M, X

0<lial

�ji�2�x�a e
X

0<lial

eÿli=l�ji�2�x�

a efp1=l�x; x� ÿ 1ga ealn=2:

Integrating the both sides of this inequality, we get

]fli j 0 < li a lga ealn=2 �l > 0�:
Thus, Corollary 2.1 follows. r
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3. Nash inequality and volume comparison

In this section, we shall prove the following three assertions:
1. The Nash inequality holds under the assumptions of the volume doubling

property and weak PoincareÂ inequality.
2. The Nash inequality implies a volume comparison.
3. The local parabolic Harnack inequality is equivalent to the family of

Nash inequalities.
Let M be a complete Riemannian manifold and m be a positive Borel

measure on M. In this section, we shall write V�x; r� � m�B�x; r��, jAj � m�A�
and fA � m�A�ÿ1�

A
f dm, for a bounded measurable subset AJM and a function

f A C0�A�.
Lemma 3.1. Let M and m be as above. We assume the following condition

�D� and �P�:
�D� V�x; 2r�a c1V�x; r� for all x A M and 0 < r a r0, where c1 is a constant

independent of x and r;
�P� �

B�x; r� j f ÿ fB�x; r�j2 dm a c2r2
�

B�x;2r� j`f j2 dm for all x A M, 0 < r a r0

and f A Cy�M�, where c2 is a constant independent of x, r and f.
Then, for each n b n0 :� �log c1�=log 2, we have

k f kL2�B�x; r�;m�a c4sk`f kL2�B�x;8r�;m� � c5V�x; r�ÿ1=2�r=s�n=2k f kL1�B�x; r�;m�;

for all r A �0; r0�, s > 0, and f A Cy�B�x; 8r�� with
�

B�x; r� f dm � 0, where c4 and c5

are constants depending only on c1 and c2.

Proof. From the proof of Theorem 2.1 in Salo¨-Coste [14], we see that
there exist constants c6 and c7 depending only on c1 and c2 such that�

B�x; r�
f 2 dm a c6s2

�
B�x;8r�

j`f j2 dm� c7V�x; r�ÿ1 r

s

� �n �
B�x; r�

j f j dm

 !2

�1�

for all f A Cy�B�x; 8r��, 0< r< r0, 0< sar=4, and nbn0. Since
�

B�x; r� f dm � 0,
the assumption �P� implies�

B�x; r�
f 2 dm a c2r2

�
B�x;2r�

j`f j2 dm a c6s2

�
B�x;8r�

j`f j2 dm

for s b
�����������
c2=c6

p
r. Hence, when we replace c6 with maxfc6; 16c2g if necessary, the

inequality (1) holds for all s > 0. This proves Lemma 3.1. r

We shall set E :� B�x1; r1�HM and consider the following conditions �VD�1
and �VD�2:

�VD�1 M satis®es the volume doubling condition, i.e.,
V�x; 2r�a c1V�x; r� for x A M; 0 < r a r0;

�VD�2 m�B�x; 2r�VE�a c1m�B�x; r�VE� for x A E; 0 < r a r0.
In order to show the ®rst assertion 1, we shall use the following covering

lemma due to Jerison [10]:
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Lemma 3.2 (Whitney decomposition [10]). We set E :� B�x1; r1�HM and
assume �VD�1 or �VD�2. Then there exist a pairwise disjoint family F �
fBi � B�xi; ri� j i A Ig of metric balls of E and a constant c�c1; r1=r0� such that the
following assertions hold:

(1) E �6
i A I

2Bi;

(2) 102r�Bi�a dist�Bi; qE�a 103r�Bi� �Ei A I�;
(3) ]fi A I j h A 32Biga c�c1; r1=r0� �Eh A E�,

where c�c1; r1=r0� is a constant depending only on the constants c1 and
maxf1; r1=r0g, for B � B�x; r� and a > 0, we write aB :� B�x; ar�, and r�B� stands
for the radius of B.

For B A F, let gB be a geodesic segment from the center of B to the center x1

of E. (This path may not be unique, but will be ®xed throughout our arguments).
Denote F�B� � fA AF j 2AV gB0jg and A�F� � fB AF jA AF�B�g for A A F.
Then the following holds:

(4)
P

B AA�F� ]F�B�
jBj
jAj a c�c1� � log

r1

r�A�
� �

.

Lemma 3.3. Let E � B�x1; r1� and M be as in Lemma 3.2. We assume one
of the two conditions �VD�1 and �VD�2. Moreover, we suppose that�

B�x; r�
j f ÿ fB�x; r�j2 dm�N�

a c4s2

�
B�x;8r�

j`f j2 dm� c5V�x; r�ÿ1 r

s

� �n �
B�x; r�

j f ÿ fB�x; r�j dm

 !2

;

for all B�x; 8r�HE, s > 0, f A Cy�B�x; 8r�� and n b n0 :� �log c1�=log 2. Then,
if 2r1 a r0, or if

jEj � V�x1; r1�a c3jAj 2r1

r�A�
� �n0

for all ball AHE;�2�

then we have the Nash inequality:

k f ÿ fEk2��4=n 0�
L2�E� a c�c1; c4; c5; r1=r0; n

0� � �r1�2�c3�2=n 0 jEjÿ2=n 0 k`f k2
L2�E�k f ÿ fEk4=n 0

L1�E�;

for all f A Cy�E�, where n 0 � 2n.

Remark 3.1. We note that the inequality (2) follows from the fact that
2r1 a r0. Indeed, we ®rst observe that the property �VD�1 or �VD�2 implies that
V�x; r�a c1V�x; s��r=s�n0 for 0 < s < r a r0. We denote by oA the center of a
ball A. Since AHE implies E � B�x1; r1�HB�oA; 2r1�, we have

V�x1; r1�a V�oA; 2r1�a c1V�oA; r�A���2r1=r�A��n0 ;

and hence, the inequality (2) with c3 � c1 holds.
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Proof. Let F be a Whitney decomposition as in Lemma 3.2 and
f A Cy�E�. We choose B0 A F such that 2B0 C x1. For B A F, there exist
A1; . . . ;Al A F�B� such that

A1 � B; Al � B0; 2Ai V 2Ai�1 0j �i � 1; 2; . . . ; l ÿ 1�:
By virture of �VD�, �N�, and Lemma 3.2 (2), we have�

4Ak

j f ÿ f4Ak
j2 dm a IAk

�s� �Es > 0�;

where we set

IAk
�s� :� c4s2

�
32Ak

j`f j2 dm� c6jAkjÿ1 r�Ak�
s

� �n �
4Ak

j f ÿ f4Ak
j dm

� �2

;

and c6 � c�c1; c5�. Hence

j f4Ak
ÿ f4Ak�1

j2j4Ak V 4Ak�1j

�
�

4Ak V4Ak�1

j f4Ak
ÿ f4Ak�1

j2 dm

a 2

�
4Ak V 4Ak�1

j f ÿ f4Ak
j2 � j f ÿ f4Ak�1

j2 dm a 2Ik�sk� � 2Ik�1�sk�1�

for all sk > 0 and sk�1 > 0, where Ik :� IAk
.

Since 2Ak V 2Ak�1 0j, from Lemma 3.2 (2), we see that

99

103 � 3
r�Ak�1�a 99r�Ak�a �103 � 3�r�Ak�1�;

and

B�y; 2 minfr�Ak�; r�Ak�1�g�H 4Ak V 4Ak�1;

where y A 2Ak V 2Ak�1. (In this proof of Lemma 3.3, integration is always with
respect to the measure m, and hence, in the following, we shall often omit `dm' for
simplicity.) Therefore, it is easy to see that�

4AkU4Ak�1

j f ÿ f4Ak
j2

a

�
4Ak

j f ÿ f4Ak
j2 � 2

�
4Ak�1

�j f ÿ f4Ak�1
j2 � j f4Ak�1

ÿ f4Ak
j2�

a Ik�sk� � 2Ik�1�sk�1� � 4j4Ak�1j Ik�sk� � Ik�1�sk�1�
j4Ak V 4Ak�1j

a c�c1�fIk�sk� � Ik�1�sk�1�g:
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Therefore, we get�
4AkU4Ak�1

j f4Ak
ÿ f4Ak�1

j2 a c�c1�fIk�sk� � Ik�1�sk�1�g:

Hence, by �VD�,

j f4Ak
ÿ f4Ak�1

j2 a
c�c1�

j4Ak U 4Ak�1j fIk�sk� � Ik�1�sk�1�ga c�c1� Ik�sk�
jAkj �

Ik�sk�1�
jAk�1j

� �
:

Therefore,

�
2B

j f ÿ f4B0
j2 �

�
2B

f ÿ f4B �
Xlÿ1

k�1

� f4Ak
ÿ f4Ak�1

�
�����

�����
2

a l

�
2B

j f ÿ f4Bj2 �
Xlÿ1

k�1

j f4Ak
ÿ f4Ak�1

j2
 !

a l I1�s1� � c�c1�
Xlÿ1

k�1

jBj
jAkj Ik�sk� � jBj

jAk�1j Ik�1�sk�1�
� �( )

a c�c1� � l
Xlÿ1

k�1

jBj
jAkj Ik�sk�

a c�c1� � ]F�B�
X

A AF�B�

jBj
jAj IA�sA�;

for all sA > 0. Summing up all B A F, we get, by Lemma 3.2 (1),�
E

j f ÿ f4B0
j2 a

X
B AF

�
2B

j f ÿ f4B0
j2

a c�c1�
X
B AF

]F�B�
X

A AF�B�

jBj
jAj IA�sA�

� c�c1�
X

A AF

X
B AA�F�

]F�B� jBjjAj

0@ 1AIA�sA�

a c�c1�
X

A AF

log
r1

r�A�
� �

IA�sA�

for all sA > 0, where we have used Lemma 3.2 (4). In this inequality, we shall

set sA � r�A�1ÿyjAjÿds for s > 0, y A R, and d A R. Then, we have
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�
E

j f ÿ f4B0
j2 a c�c1; c4�

X
A AF

log
r1

r�A�
� �

r�A�2ÿ2y

jAj2d
s2

�
32A

j`f j2

� c�c1; c5�
X

A AF

log
r1

r�A�
� �

jAjÿ1�r�A�yjAjdsÿ1�n
�

4A

j f ÿ f4Aj
� �2

a c�c1; c4� � s2eÿ1
1 �r1�e1

X
A AF

r�A�2ÿ2yÿe1

jAj2d

�
32A

j`f j2

� c�c1; c5� � sÿn�e2�ÿ1�r1�e2
X

A AF

jAjdnÿ1

r�A�e2ÿyn

�
4A

j f ÿ f4Aj
� �2

for all e1; e2 > 0, where we have used the fact that �log x�=xe a �ee�ÿ1 for all x,
e > 0. Since�

4A

j fE ÿ f4Aj � j4Aj j fE ÿ f4Aj � j4Aj j4Ajÿ1

�
4A

� f ÿ fE�
���� ����a �

4A

j f ÿ fE j;

we have �
4A

j f ÿ f4Aja
�

4A

�j f ÿ fE j � j fE ÿ f4Aj�a 2

�
4A

j f ÿ fE j:

Hence, noting Lemma 3.2 (3), we getX
A AF

jAjÿ1=2

�
4A

j f ÿ f4Aj
� �2

a
X

A AF

4jAjÿ1=2

�
4A

j f ÿ fE j
� �2

a c�c1�
X

A AF

�
4A

j f ÿ fE j2
� �1=2 �

4A

j f ÿ fE j
� �

a c�c1�
�

E

j f ÿ fE j2
� �1=2X

A AF

�
4A

j f ÿ fE j

a c�c1; r1=r0�
�

E

j f ÿ fE j2
� �1=2�

E

j f ÿ fE j

a c�c1; r1=r0� u

�
E

j f ÿ fE j2 � uÿ1

�
E

j f ÿ fE j
� �2

( )
for all u > 0. Now, we set

d � 1=�2n�; y � 1=4; e1 � 1=2; e2 � n=4:�3�
Then,

jAjdnÿ1

re2ÿyn
� jAjÿ1=2;
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and from the assumption (2) and n b n0,

r�A�2ÿ2yÿe1

jAj2d
� r�A�2ÿ2yÿe1

jAj1=n
a �c3�1=njEjÿ1=n2r1r�A�1ÿ2yÿe1 � �c3�1=njEjÿ1=n2r1:

Therefore, we obtain, from Lemma 3.2 (3),�
E

j f ÿ fE j2 a

�
E

j f ÿ f4B0
j2

a c�c1; c4; r1=r0� � s2�e1�ÿ1�r1�e1�c3�1=njEjÿ1=nr1

�
E

j`f j2

� c�c1; c5; r1=r0� � sÿn�e2�ÿ1�r1�e2 u

�
E

j f ÿ fE j2 � uÿ1

�
E

j f ÿ fE j
� �2

( )
for all s; u > 0, and hence

�1ÿ c8sÿn�e2�ÿ1�r1�e2 u�
�

E

j f ÿ fE j2 a c7s2�e1�ÿ1�r1�e1�1�c3�1=njEjÿ1=n

�
E

j`f j2

� c8sÿn�e2�ÿ1�r1�e2 uÿ1

�
E

j f ÿ fE j
� �2

;

for all s; u > 0, where c7 � c�c1; c4; r1=r0�, c8 � c�c1; c5; r1=r0�. Hence, setting
u � 2ÿ1cÿ1

8 sne2�r1�ÿe2 , we have, for all s > 0,

1

2

�
E

j f ÿ fE j2 a c7s2�e1�ÿ1�r1�e1�1�c3�1=njEjÿ1=n

�
E

j`f j2

� 2�c8�2sÿ2n�e2�ÿ2�r1�2e2

�
E

j f ÿ fE j
� �2

:

Here, we note that, in general, when A and B are positive constants, a function

As2 � Bsÿ2n

of s > 0 takes the minimum value An=�n�1�B1=�n�1��n1=�n�1� � nÿn=�n�1�� when
s � �Bn=A�1=�2n�2�. Hence, if we set

A � 2c7�e1�ÿ1�r1�e1�1�c3�1=njEjÿ1=n

�
E

j`f j2

and

B � 4�c8�2�e2�ÿ2�r1�2e2

�
E

j f ÿ fE j
� �2

;

then we have �
E

j f ÿ fE j2 a c�n�An=�n�1�B1=�n�1�:
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Thus, recalling (3), we obtain

k f ÿ fEk2��2=n�
L2�E� a c�n�AB1=n

� c�n� � c7�c8�2=n�c3�1=njEjÿ1=n�r1�2k`f k2
L2�E�k f ÿ fEk2=n

L1�E�

� c�n; c1; c4; c5; r1=r0��c3�1=n�r1�2jEjÿ1=nk`f k2
L2�E�k f ÿ fEk2=n

L1�E�:

Hence, when we set n 0 � 2n, we get

k f ÿ fEk2��4=n 0�
L2�E� a c�n 0; c1; c4; c5; r1=r0��c3�2=n 0 �r1�2jEjÿ2=n 0 k`f k2

L2�E�k f ÿ fEk4=n 0

L1�E�:

This completes the proof of Lemma 3.3. r

Putting Lemma 3.1 and 3.2 together, we have the following

Theorem 3.1. Let M be a complete Riemannian manifold, m be a positive
measure on M, and E � B�x1; r1�HM. We assume the following three con-
ditions:

(1) (volume doubling condition)

�VD�1 V�x; 2r�a c1V�x; r� for Ex A M; 0 < Er a r0

or

�VD�2 m�B�x; 2r�VE�a c1m�B�x; r�VE� for Ex A E; 0 < Er a r0;

(2) (weak PoincareÂ inequality)�
B�x; r�

j f ÿ fB�x; r�j2 dm a c2r2

�
B�x;2r�

j`f j2 dm

for EB�x; 2r�HE, 0 < Er a r0, Ef A Cy�E�;
(3) 2r1 a r0 or

jEj � V�x1; r1�a c3jAj 2r1

r�A�
� �n0

for all ball AHE:

Then we have the Nash inequality

k f ÿ fEk2��4=n�
L2�E� a c�c1; c2; n; r0=r1��r1�2�c3�2=njEjÿ2=nk`f k2

L2�E�k f ÿ fEk4=n

L1�E�
for all f A Cy�E� and all n b 2n0 � 2�log c1�=log 2. In this inequality, when
2r1 a r0, c�c1; c2; n; r0=r1� does not depend on r0=r1 and we can take c3 � c1.

Remark 3.2. Theorem 2.1 implies that under the assumptions of Theorem
3.1, we also have the Sobolev inequality

inf
a AR
k f ÿ ak2

L2n=�nÿ2��E�a c�c1; c2; n; r0=r1��r1�2�c3�2=njEjÿ2=nk`f k2
L2�E� �Ef A Cy�E��:

A Neumann eigenvalue estimate is also obtained by means of Corollary 2.1.
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Remark 3.3. After writing this paper, the author found that P. Hajøasz and
P. Koskela [9] proved the Sobolev inequality in a more general situation than
Theorem 3.1 by a di¨erent method. For this fact and other related results, see
their paper.

The Nash inequality on M implies a lower bound of the measure of the
intersection of a ball and M. Thus, it restricts the boundary behavior of the
measure from below;

Theorem 3.2. Let M be the closure of a relatively compact domain in a
complete Riemannian manifold N, w be a function such that w A Cy�M� and 0 < w
on Int M �M ÿ qM (w may possibly takes zero at a point of the boundary
qM). We suppose that there exists a constant ĉ > 0 such that the following Nash
inequality holds:�

M

j f ÿ fM j2 dmw

� �1��2=n 0�

a ĉ � �diam M�2 � mw�M�ÿ2=n 0
�

M

j`f j2 dmw

� � �
M

j f ÿ fM j dmw

� �4=n 0

;

for all f A Cy�M�, where fM �
�

M
f dmw=mw�M�. Then, for each 0< r< diam M

and x0 A M, we have

mw�BM�x0; r�0�
mw�M� b

c�n 0�
1� ĉn 0=2

r

diam M

� �n 0
;

where c�n 0� is a constant depending only on n 0 and BM�x0; r�0 stands for the
connected component (containing x0) of the intersection B�x0; r�V Int M of the
metric ball B�x0; r� of N and Int M.

Proof. Let pt�x; y� be the heat kernel of the operator on L2�M; mw=mw�M��
associated with the closed form

E� f ; h� �
�

M

h`f ;`hi dmw � f ; h A Dom�E� � H 1�M; mw��:

Then, from Theorem 2.1, we have

pt�x; x�a 1� atÿn 0=2 �Et > 0; Ex A M�;
where a � a�n 0ĉ�n 0=2�diam M�n 0 and a is some numerical constant. Take a point
x0 A M and r > 0, and consider the form

ED� f ; h� �
�

BM �x0;r�0
h`f ;`hi dmw
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for f ; h A Dom�ED� :� f f A Cy�BM�x0; r�0�; f jInt M V qBM �x0;r�0 � 0g. Let ht�x; y�
be the heat kernel on L2�BM�x0; r�0; mw=mw�BM�x0; r�0�� associated with the
closure of ED. Then maximum principle implies that

ht�x; y�a mw�BM�x0; r�0�
mw�M� pt�x; y�

a
mw�BM�x0; r�0�

mw�M� f1� atÿn 0=2g

for t > 0 and x; y A BM�x0; r�0. Hence, when we set t0 � �diam M�2 and
c4 � �mw�BM�x0; r�0�=�mw�M����a� t

n 0=2
0 �, we have, for 0 < t a t0 and

x; y A BM�x0; r�0,

ht�x; y�a c4tÿn 0=2:

Therefore, Theorem 2.2 in [14] implies that

�
BM �x0; r�0

j f j2 dmw

mw�BM�x0; r�0�

 !1��2=n 0�

a c6

�
BM �x0; r�0

j`f j2 dmw

mw�BM�x0; r�0�
� tÿ1

0

�
BM �x0; r�0

j f j2 dmw

mw�BM�x0; r�0�

 !

�
�

BM �x0; r�0
j f j dmw

mw�BM�x0; r�0�

 !4=n 0

for all f A Cy�BM�x0; r�0� with f jInt MVqBM �x0; r�0� 0, where c6 � ac
2=n 0
4 and a is some

numerical constant. Hence, by the same arguments as in the proof of Lemma
2.5 in [11] (see also Akutagawa [1]), we can see that, for 0< saminf �����

t0
p

; rg,
mw�BM�x0; s�0�
mw�BM�x0; r�0�

b c�n 0�cÿn 0=2
6 sn 0 � c�n 0�cÿ1

4 sn 0

� c�n 0� sn 0

a� t
n 0=2
0

mw�M�
mw�BM�x0; r�0�

:

Thus, setting s � r a
�����
t0
p � diam M, we get

mw�BM�x0; r�0�
mw�M� b c�n 0� rn 0

c�n 0�ĉn 0=2�diam M�n 0 � c�n 0��diam M�n 0

� c�n 0�
1� ĉn 0=2

r

diam M

� �n 0
for 0 < r < diam M and x0 A M. r
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Now, let M be a complete Riemannian manifold and w be a positive smooth
function on M. Let positive constants ĉ and r0 be given, and let us assume that
M and w satisfy a family of local Nash inequalities

k f ÿ fB�x1; r1�k2��4=n�
L2�B�x1; r1�;m w�

a ĉ � �r1�2 � mw�B�x1; r1��ÿ2=nk`f k2
L2�B�x1; r1�;m w�k f ÿ fB�x1; r1�k4=n

L1�B�x1; r1�;m w�;

Ef A Cy�B�x1; r1��; Ex1 A M; 0 < Er1 < r0:

Then, by Theorem 3.2, we have the volume comparison

mw�B�x1; s��
mw�B�x1; r1�� b

c�n�
1� ĉn=2

s

r1

� �n

for 0 < Es < Er1 a r0; Ex1 A M:�4�

Moreover, we have local PoincareÂ inequalities

k f ÿ fB�x1; r1�k2
L2�B�x1; r1�;m w�a ĉ � �r1�2k`f k2

L2�B�x1; r1�;m w�;�5�
Ef A Cy�B�x1; r1��; 0 < Er1 a r0; Ex1 A M;

because the Schwarz inequality implies that

mw�B�x1; r1��ÿ2=nk f ÿ fB�x1; r1�k4=n

L1�B�x1; r1�;m w�a k f ÿ fB�x1; r1�k4=n

L2�B�x1; r1�;m w�:

Now, we recall the following theorem due to Sallo¨-Coste (see also A. A.
Grigor'yan [8]):

Theorem 3.3 (Sallo¨-Coste [14]). The following two properties 1 and 2 are
equivalent.

1. The following properties (a) and (b) hold for some constants r0 > 0, c1 > 0
and c2 > 0:

(a) mw�B�x; 2r��a c1mw�B�x; r��, 0 < Er < r0, Ex A M

(b)
�

B�x; r� j f ÿ fB�x; r�j2 dmw a c2r2
�

B�x;2r� j`f j2 dmw, 0 < Er < r0, Ex A M,

Ef A Cy�M�.
2. There exists r1 > 0, and there exists a constant c depending only on the

parameters 0 < e < h < d < 1, such that, for any x A M, any real s, and any
0 < r < r1, any nonnegative solution u of �qt �L�u � 0 in Q � �sÿ r2; s� � B�x; r�
satis®es

sup
Qÿ
fuga c inf

Q�
fug;

where Qÿ � �sÿ �dr�2; sÿ �hr�2� � B�x; dr�, Q� � �sÿ �er�2; s� � B�x; dr� and Lu �
ÿDuÿ h` log w;`ui.

As is shown above, a family of local Nash inequalities implies the properties
(a) and (b) in Theorem 3.3, and hence, from Theorem 3.1 and 3.3 we see that a
family of local Nash inequalities is also equivalent to local parabolic Harnack
inequalities;
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Corollary 3.1. The properties 1 and 2 in Theorem 3.3 are also equivalent
to the following property 3:

3. There exist constants ĉ > 0, r0 > 0 and n > 0 such that

k f ÿ fB�x; r�k2��4=n�
L2�B�x; r�;m w�

a ĉ � r2 � mw�B�x; r��ÿ2=nk`f k2
L2�B�x; r�;m w�k f ÿ fB�x; r�k4=n

L1�B�x; r�;m w�;

Ef A Cy�B�x; r��; Ex A M; 0 < Er < r0:

4. Nash inequality with respect to weighted measure

This section is devoted to proving the following theorem:

Theorem 4.1. Let M be a compact Riemannian manifold with Cy boundary
qM and w be a positive Cy function on Int M :�M ÿ qM. w possibly takes zero
value at a point of qM. We assume the following properties �D�, �R�, �P�, �w1�
and �w2�:

�D� (volume doubling property) jB�x; 2r�ja c1jB�x; r�j for all x A M and
r > 0, where jB�x; r�j � �

B�x; r� dvM .

�R� M satis®es the ``interior rolling R-ball condition'', that is, bR > 0 Ex A
qM bB� p;R�HM s.t. B�p;R�V qM � fxg.

�P� (weak PoincareÂ inequality)
For all B�x; 2r�HM with B�x; 2r�V qM � j, and all f A Cy�M�,

inf
a AR

�
B�x; r�

j f ÿ aj2 dvM a c2r2

�
B�x;2r�

j`f j2 dvM ;

where c2 is a positive constant independent of x, r and f.
�w1� bc3 > 1 s.t. w�x�a c3w�y� for all x; y A M with 0 < d�x; qM�a

2d�y; qM�.
�w2� bc6 > 0 bj > 0 s.t. c6d�x; qM�2j a w�x� for all x A M ÿMR, where

MR � fx A M j d�x; qM�b Rg.
Then we have the Nash inequality on M:�

M

j f ÿ f 0M j2w dvM

� �1��2=n�
�6�

a c �
�

M

j`f j2w dvM

� � �
M

j f ÿ f 0M jw dvM

� �4=n

for all n satisfying n > 4j and n b 2n0, and all f A Cy�M�, where f 0M ��
M

f dmw=mw�M�,
c � c�c1; c2; c3; c6; n; j�R�nÿ4j�=njMjÿ2=nD

� c�c3;D=R; n�cÿ2=n
6 Rÿ4j=ncN�MR=2�jMR=2jÿ2=n diam�MR=2�2;
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cN�MR=2� is a constant satisfying�
MR=2

j f ÿ fMR=2
j2 dvM

 !1��2=n�
a N

�
MR=2

j`f j2 dvM �
�

MR=2

j f ÿ fMR=2
j dvM

 !4=n

;�7�

N :� cN�MR=2� � jMR=2jÿ2=n � diam�MR=2�2; Ef A Cy�MR=2�;
fMR=2

� �
MR=2

f dvM=jMR=2j, and D stands for the diameter of M.

Remark 4.1. We should note that actually, the condition �w2� is not re-
quired for a Nash inequality to hold.

In fact, the condition �w1� implies, for example, the following inequality:

w�x�b inffw�x� j d�x; qM� � R=2g
R2j1

d�x; qM�2j1 ;

where 2j1 � �log c3�=log 2. This can be seen as follows: Let us set f �t� �
inffw�x� j t a d�x; qM�a Rg for 0 < t a R. Then the function f is nonde-
creasing and the condition �w1� implies that f �2t�= f �t�a c3 for 0 < t a R=2.
For 0 < s < R, if we take the integer k such that 2kÿ1 < R=s a 2k, we see that

f �R=2�a f �2kÿ1s�a �c3�kÿ1
f �s� < �R=s��log c3�=log 2

f �s�:
Hence, if we set 2j1 � �log c3�=log 2, then j1 > 0 and f �s�b f �R=2�Rÿ2j1 s2j1 .

Therefore, if d�x; qM� � s, then w�x�b f �s�b f �R=2�Rÿ2j1 d�x; qM�2j1 .
Thus, when we set c6 :� inffw�x� j d�x; qM� � R=2g=R2j1 and j :� j1,

the property �w2� above holds. In spite of this fact, we assume the condition
�w2� because it is important to choose n > 0 as small as possible. Indeed, in
Proposition 5.1, we shall consider the weight function w � �u1�2, where u1 is the
normalized ®rst Dirichlet eigenfunction of M, and set j � 1.

Remark 4.2. As is seen from the following proof of Theorem 4.1, in order
to get the Nash inequality (6), it su½ce to assume that the doubling property �D�
and weak PoincareÂ inequality �P� hold only on the neighborhood M ÿMR of the
boundary qM.

Corollary 4.1. Let M be a metric ball of radius R in a complete Rie-
mannian manifold and assume �D�, �P�, �w1�, and �w2�. Then the Nash inequality
(6) with R � D and cN�MR=2� � 0, holds.

Remark 4.3. As is seen from Theorem 2.1, the Nash inequality (6) is
equivalent to the following Sobolev inequality:

inf
a AR

�
M

j f ÿ aj2n=�nÿ2� dmw

� ��nÿ2�=n

a cmw�M�ÿ2=n

�
M

j`f j2 dmw;

En satisfying n > 4j and n b 2n0; Ef A Cy�M�:
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The inequality (7) is also equivalent to the following:

inf
a AR

�
MR=2

j f ÿ aj2n=�nÿ2� dvM

 !�nÿ2�=n

a cN�MR=2� � jMR=2jÿ2=n � diam�MR=2�2
�

MR=2

j`f j2 dvM ; Ef A Cy�MR=2�:

In order to prove Theorem 4.1, we shall use the following covering lemma
due to Oden, Sung and Wang:

Lemma 4.1 (Whitney decomposition [13]). Let M be a compact Riemannian
manifold with boundary which satis®es the doubling property �D�. Then, there
exists a pairwise disjoint family F � fBi � B�xi; ri� j i A Ig of geodesic balls in
Int M satisfying the following:

(1) 6
i A I

2Bi � Int M;

(2) dist�B�xi; ri�; qM� � 103ri;
(3) There exists a constant c�c1� depending only on c1 such that, for all

h A Int M, ]fBi A F j h A 32Biga c�c1�.
Denote MR :� fx A M j d�x; qM�b Rg and L :� fBi A F j xi B MRg. For

Bi � B�xi; ri� A L, the interior rolling R-ball condition implies that there exist
yi A qM and B�qi;R�H Int�M� such that d�xi; yi� � d�xi; qM� and B�qi;R�V qM �
f yig. Let qiyi be the minimal geodesic segment from qi A qMR to yi. Then
xi A qiyi. Denote by li the segment qixi of qiyi. For Bi A L, we then de®ne
F�Bi� � fA A F j 2AV li 0jg. Let H � fA A F jA A F�Bi� for some Bi A Lg.

(4) A A F�B� implies r�A�b �103=�103 � 3��r�B�.
(5) For A A H, let A�L� � fB A L jA A F�B�g. Then

jAjÿ1
X

B AA�L�
]F�B�jBja c�c1� log

R

r�A�
� �

:

In the following, for AHM, we denote fA � jAjÿ1 �
A

f dvM , f 0A �
��

A
w dvM�ÿ1 �

A
fw dvM , and jAj � �

A
dvM .

Lemma 4.2. Let M be a compact manifold with Cy boundary qM. We
assume that M satis®es the following family of inequalities:�

B�x; r�
j f ÿ fB�x; r�j2 dvM a c5t2r2

�
B�x;8r�

j`f j2 dvM�8�

� c5tÿnjB�x; r�jÿ1

�
B�x; r�

j f ÿ fB�x; r�j dvM

 !2

;

EB�x; 8r�H Int M; Ef A Cy�B�x; 8r��; Et > 0; En b n0:

Moreover, we suppose that the pair �M;w� satis®es properties �D�, �w1�, and �w2�.
Then, the Nash inequality (6) holds.
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Proof. Let F be a Whitney decomposition as in Lemma 4.1 and let
f A Cy�M�. By Lemma 4.1 (1), for B A L, we can take A1; . . . ;Al A F�B�
satisfying

A1 � B; q A 2Al ; 2Ai V 2Ai�1 0j �i � 1; 2; . . . ; l ÿ 1�:
Let l 0 be the integer such that

1 a l 0a l; 4Aj PMR=2 � j � 1; 2; . . . ; l 0 ÿ 1�; 4Al 0 HMR=2:

Denote f 00 � f 0MR=2
� �

MR=2
fw dvM=

�
MR=2

w dvM .

Since
�

4Ai
j f ÿ f4Ai

ja 2
�

4Ai
j f ÿ f 04Ai

j, we have�
4Ai

j f ÿ f4Ai
jw a c�c3�

�
4Ai

j f ÿ f 04Ai
jw:�9�

We note that for each Ai,

x; y A 32Ai ) w�x�a c3w�y�:�10�
By (8), (9) and (10), we can see that�

4Ai

j f ÿ f 04Ai
j2w a c�c3; c5�t2r�Ai�2

�
32Ai

j`f j2w

� c�c3; c5�tÿn

�
4Ai

w

� �ÿ1 �
4Ai

j f ÿ f 04Ai
jw

� �2

; Et > 0; En b n0:

For simplicity, we denote by JAi
�t� � Ji�t� the right hand side of the above

inequality;

JAi
�t� � Ji�t�

� c�c3; c5�t2r�Ai�2
�

32Ai

j`f j2w

� c�c3; c5�tÿn

�
4Ai

w

� �ÿ1 �
4Ai

j f ÿ f 04Ai
jw

� �2

:

Then,

j f 04Ai
ÿ f 04Ai�1

j2
�

4AiV4Ai�1

w

� �
a 2

�
4Ai

j f ÿ f 04Ai
j2w� 2

�
4Ai�1

j f ÿ f 04Ai�1
j2w

a 2Ji�ti� � 2Ji�1�ti�1�; �ti > 0; i � 1; 2; . . . ; l ÿ 1�:
Since

d�Ai; qM� � 103r�Ai�b 103 103

103 � 3
r�B� � 103

103 � 3
d�B; qM�;�11�

we see, by the assumption �w1�,�
4B

w�
4Ai

w
a c�c1; c3� jBjjAij :
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Therefore, since 4Al 0 HMR=2,�
4B

w

� �
j f 04Al 0

ÿ f 00 j2 �
�

4B
w�

4Al 0
w

�
4Al 0
j f 04Al 0

ÿ f 00 j2w

 !

a 2

�
4B

w�
4Al 0

w

�
4Al 0
j f ÿ f 04Al 0

j2w�
�

MR=2

j f ÿ f 00 j2w

 !

a c�c1; c3� jBjjAl 0 j Jl 0 �tl 0 � �
�

MR=2

j f ÿ f 00 j2w

 !
�Etl 0 > 0�:

Hence,�
4B

j f ÿ f 00 j2w a 2

�
4B

j f ÿ f 04B �
Xl 0ÿ1

i�1

� f 04Ai
ÿ f 04Ai�1

�j2w� 2

�
4B

w

� �
j f 04Al 0

ÿ f 00 j2�12�

a 2l

�
4B

j f ÿ f 04Bj2w� 2l

�
4B

w

� �Xl 0ÿ1

i�1

j f 04Ai
ÿ f 04Ai�1

j2

� 2

�
4B

w

� �
j f 04Al 0

ÿ f 00 j2

a 2lJ1�t1� � 4l
Xl 0ÿ1

i�1

�
4B

w�
4AiV4Ai�1

w
fJi�ti� � Ji�1�ti�1�g

� c�c1; c3� jBjjAl 0 j Jl 0 �tl 0 � �
�

MR=2

j f ÿ f 00 j2w

( )
:

We note here that�
4B

w�
4AiV4Ai�1

w
a c�c3� j4Bj

j4Ai V 4Ai�1j a c�c1; c3� min
jBj
jAij ;

jBj
jAi�1j

� �
�13�

and

jAl 0 jb c�c1;R=D�jMj:�14�
Indeed, the ®rst inequality of (13) is due to (11).
When we take a point y A 2Ai V 2Ai�1, we have

B�y; 2 minfr�Ai�; r�Ai�1�g�H 4Ai V 4Ai�1:�15�
Since 103r�Ai� ÿ 103r�Ai�1� � d�Ai; qM� ÿ d�Ai�1; qM�a r�Ai� � r�Ai�1�, we
have also

�103 ÿ 1�r�Ai�a �103 � 1�r�Ai�1�:�16�
The second inequality of (13) follows from (15), (16) and the doubling property
�D�.
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The inequality (14) is due to �D� and the fact that 4Al 0 HMR=2. Indeed, by
�D�, we have

jAijb cÿ1
1

r�Ai�
D

� �n0

jMj; n0 � �log c1�=log 2:�17�

And, since the fact that 4Al 0 HMR=2 implies r�Al 0 �b R=2�103 ÿ 3�, we have

jAl 0 jb cÿ1
1

R

2�103 ÿ 3�D
� �n0

jMj � c�c1� R

D

� �n0

jMj;

and (14) follows.
By (12), (13) and (14), we obtain�

4B

j f ÿ f 00 j2w a c�c1; c3�]F�B�
Xl 0

i�1

jBj
jAij Ji�ti� � c�c1; c3� D

R

� �n0 jBj
jMj

�
MR=2

j f ÿ f 00 j2w:

It is not hard to see that Lemma 4.1 (2) implies A1;A2; . . . ;Al 0 A L. Summing
over all B A L, we get, by Lemma 4.1 (1), (3) and (5),�

6
B AL 4B

j f ÿ f 00 j2w

a c�c1; c3�
X
B AL

]F�B�
X

A AF�B�VL

jBj
jAj JA�tA� � c�c1; c3� D

R

� �n0
�

MR=2

j f ÿ f 00 j2w

a c�c1; c3�
X

A AHVL

jAjÿ1
X

B AA�L�
]F�B�jBj

0@ 1AJA�tA�

� c�c1; c3� D

R

� �n0
�

MR=2

j f ÿ f 00 j2w

a c�c1; c3�
X

A AHVL

log
R

r�A�
� �� �

JA�tA� � c�c1; c3� D

R

� �n0
�

MR=2

j f ÿ f 00 j2w

a c�c1; c3; c5�
X

A AHVL

�
R

r�A�
� �e1

eÿ1
1 r�A�2�tA�2

�
32A

j`f j2w

� R

r�A�
� �e2

eÿ1
2 �tA�ÿn

�
4A

w

� �ÿ1 �
4A

j f ÿ f 04Ajw
� �2�

� c�c1; c3� D

R

� �n0
�

MR=2

j f ÿ f 00 j2w �EtA > 0; Eei > 0 �i � 1; 2��:

For simplicity, we shall set

IA � R

r�A�
� �e1

eÿ1
1 r�A�2�tA�2; IIA � R

r�A�
� �e2

eÿ1
2 �tA�ÿn

�
4A

w

� �ÿ1=2
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and put tA � r�A�ÿyjAjÿd
s, where s; y and d > 0 are positive constants. Then, we

have

IA � eÿ1
1 Re1 r�A�2ÿe1ÿ2yjAjÿ2d

s2

a eÿ1
1 Re1 r�A�2ÿe1ÿ2yÿ2dn

c2d
1 jMjÿ2d

D2dns2;

where we have used the inequality (17) and the assumption n b n0. We also have

IIA a c�c1; c3�eÿ1
2 Re2 r�A�ynÿe2 jAjdnÿ�1=2�w�oA�ÿ1=2sÿn

a c�c1; c3; c6�eÿ1
2 Re2 r�A�ynÿe2ÿjjAjdnÿ�1=2�sÿn;

where we have used Lemma 4.1 (2) and the assumption �w2�. For n b n0 with
n > 2j, we set

d � 1

2n
; y � 1ÿ e1

2
; e1 � nÿ 2j

2n
; e2 � nÿ 2j

4
:

Then we obtain�
6

B AL 4B

j f ÿ f 00 j2w

a c�c1; c3; c5; n��nÿ 2j�ÿ1R�nÿ2j�=�2n�jMjÿ1=nDs2

�
6

A AHVL 32A

j`f j2w

� c�c1; c3; c5; c6; n��nÿ 2j�ÿ1R�nÿ2j�=4sÿn
X

A AHVL

�
4A

w

� �ÿ1=2 �
4A

j f ÿ f 04Ajw
� �2

� c�c1; c3� D

R

� �n0
�

MR=2

j f ÿ f 00 j2w:

Since
�

4A
j f ÿ f 04Ajw a 2

�
4A
j f ÿ ajw for all a A R, and since

�
4A
j f ÿ f 00 jw a

��4A
j f ÿ f 00 j2w�1=2��4A

w�1=2, we haveX
A AHVL

�
4A

w

� �ÿ1=2 �
4A

j f ÿ f 04Ajw
� �2

a 4
X

A AHVL

�
4A

w

� �ÿ1=2 �
4A

j f ÿ f 00 jw
� � �

4A

j f ÿ f 0M jw
� �

a 4
X

A AHVL

�
4A

j f ÿ f 00 j2w

� �1=2 �
4A

j f ÿ f 0M jw
� �

a c�c1�
�
6A AHVL 4A

j f ÿ f 00 j2w

 !1=2�
6A AHVL 4A

j f ÿ f 0M jw

a c�c1� e

�
6

A AHVL 4A

j f ÿ f 00 j2w� eÿ1

�
6

A AHVL 4A

j f ÿ f 0M jw
 !2

8<:
9=;
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for all e > 0. Hence�
6B AL 4B

j f ÿ f 00 j2w

a c�c1; c3; c5; n��nÿ 2j�ÿ1R�nÿ2j�=�2n�jMjÿ1=nDs2

�
6

A AHVL 32A

j`f j2w

� c�c1; c3; c5; c6; n��nÿ 2j�ÿ1R�nÿ2j�=4sÿn

� e

�
6

A AL 4A

j f ÿ f 00 j2w� eÿ1

�
6

A AL 4A

j f ÿ f 0M jw
 !2

8<:
9=;

� c�c1; c3� D

R

� �n0
�

MR=2

j f ÿ f 00 j2w:

Therefore,

f1ÿ c�c1; c3; c5; c6; n; j�R�nÿ2j�=4sÿneg
�
6

A AL 4A

j f ÿ f 00 j2w

a c�c1; c3; c5; n; j�R�nÿ2j�=�2n�jMjÿ1=nDs2

�
6

A AHVL 32A

j`f j2w

� c�c1; c3; c5; c6; n; j�R�nÿ2j�=4sÿneÿ1

�
6

A AL 4A

j f ÿ f 0M jw
 !2

� c�c1; c3� D

R

� �n0
�

MR=2

j f ÿ f 00 j2w:

In the above inequality, we shall choose e > 0 so that

1=2 � c�c1; c3; c5; c6; n; j�R�nÿ2j�=4sÿne:

Then, we have�
M

j f ÿ f 00 j2w a

�
6

B AL 4B

j f ÿ f 00 j2w�
�

MR=2

j f ÿ f 00 j2w�18�

a c�c1; c3; c5; n; j�R�nÿ2j�=�2n�jMjÿ1=nDs2

�
6

A AHVL 32A

j`f j2w

� c�c1; c3; c5; c6; n; j�R�nÿ2j�=2sÿ2n

�
6

A AL 4A

j f ÿ f 0M jw
 !2

� c�c1; c3� D

R

� �n0

�1

� ��
MR=2

j f ÿ f 00 j2w;

for all n satisfying n b n0 and n > 2j, and all f A Cy�M�.
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In the following, we shall set s � 2n in the inequality (18), and prove the
Nash inequality (6) with n replaced by s. Now, we shall consider the following
Nash inequality on MR=2:

�
MR=2

j f ÿ fMR=2
j2

 !1��2=s�
a N

�
MR=2

j`f j2 �
�

MR=2

j f ÿ fMR=2
j

 !4=s

;

N :� cN�MR=2� � jMR=2jÿ2=s � diam�MR=2�2; Ef A Cy�MR=2�:

Since the assumption �w1� implies

w�x�a c�c3;D=R�w�y� Ex; Ey A MR=2;

it is not hard to see that

�
MR=2

j f ÿ f 0MR=2
j2w a c�c3;D=R; s�N s=�s�2�

�
MR=2

j`f j2w

 !s=�s�2�
�19�

�
�

MR=2

j f ÿ f 0MR=2
jw

 !4=�s�2�
sup
MR=2

w

 !ÿ2=�s�2�
:

For x0 A qMR=2, �w1� and �w2� imply

c6�R=2�2j a w�x0�a c�c3;D=R�w�y� �Ey A MR=2�:

Hence, we have

sup
MR=2

w

 !ÿ2=�s�2�
a c

ÿ2=�s�2�
6 c�c3;D=R; s�Rÿ4j=�s�2�:�20�

We also have �
MR=2

j f ÿ f 0MR=2
jw a 2

�
MR=2

j f ÿ f 0M jw:�21�

From (19), (20) and (21), we obtain

�
MR=2

j f ÿ f 0MR=2
j2w a c 0

�
MR=2

j`f j2w

 !s=�s�2� �
MR=2

j f ÿ f 0M jw
 !4=�s�2�

;�22�

c 0 � c�c3;D=R; s�cÿ2=�s�2�
6 Rÿ4j=�s�2�N s=�s�2�:
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Optimizing over s > 0 in the inequality (18) with n � s=2, and using (22), we
obtain�

M

j f ÿ f 0MR=2
j2w a c�c1; c3; c5; c6; s; j�R�sÿ4j�=�s�2�jMjÿ2=�s�2�

Ds=�s�2�

�
�
6

A AHVL 32A

j`f j2w

 !s=�s�2� �
6

A AL 4A

j f ÿ f 0M jw
 !4=�s�2�

� c�c3;D=R; s�cÿ2=�s�2�
6 Rÿ4j=�s�2�N s=�s�2�

�
MR=2

j`f j2w

 !s=�s�2�

�
�

MR=2

j f ÿ f 0M jw
 !4=�s�2�

aC

�
M

j`f j2w

� �s=�s�2� �
M

j f ÿ f 0M jw
� �4=�s�2�

;

where we set

C � c�c1; c3; c5; c6; s; j�R�sÿ4j�=�s�2�jMjÿ2=�s�2�Ds=�s�2�

� c�c3;D=R; s�cÿ2=�s�2�
6 Rÿ4j=�s�2�Ns=�s�2�:

Therefore, for all s > 4j with s b 2n0 and all f A Cy�M�, we have�
M

j f ÿ f 0M j2w

� �1��2=s�
a

�
M

j f ÿ f 0MR=2
j2w

� �1��2=s�

aC1��2=s�
�

M

j`f j2w

� � �
M

j f ÿ f 0M jw
� �4=s

:

Here, in general, since �A� B�x a 2x�Ax � Bx� for positive constants x, A and B,
we have

C1��2=s�a c�c1; c3; c5; c6; s; j�R�sÿ4j�=sjMjÿ2=sD

� c�c3;D=R; s�cÿ2=s
6 Rÿ4j=scN�MR=2�jMR=2jÿ2=s diam�MR=2�2

Thus, we have the Nash inequality (6) with n replaced by s. r

Theorem 4.1 follows from Lemma 3.1 and 4.2.

Remark 4.4. We note that the dumbbell-like example in R. Chen [4] shows
that the interior rolling R-ball condition is necessary for the `Nash constant' to be
bounded from above.
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5. An application

In this section, as an application of Theorem 4.1, we shall derive the Sobolev
inequality with respect to the measure �u1�2 dvM , where u1 is the normalized ®rst
Dirichlet eigenfunction.

Let M be a compact, connected Riemannian manifold with Cy boundary
qM. Denote by vM the Riemannian measure of M. We shall consider the
following Dirichlet eigenvalue problem:

Du � ÿlu

ujqM 1 0:

�
Let fuigyi�1 be a complete orthonormal system of L2�M; vM� consisting of
Dirichlet eigenfunctions with ui having eigenvalue ÿli. We shall take the sign of
u1 to be positive: u1 > 0 on Int M. When we set fi � ui=u1, a direct computa-
tion shows that fi satis®es the following equation:

Dfi � 2` log u1 � `fi � �li ÿ l1�fi � 0:

Moreover, it is known that

fi A Cy�M�; qfi

q~n
� 0;

where ~n stands for the outward unit normal vector ®eld on qM (for this result,
see [I. Singer-B. Wong-S. T. Yau-S. S. T. Yau [15]]). We shall de®ne the closed
form Eu1

on the Hilbert space L2�M; �u1�2vM� in the following way:

Eu1
� f ; g� �

�
M

h`f ;`gi�u1�2 dvM ;

f ; g A Dom�Eu1
� � H 1�M; �u1�2vM�;

where H 1�M; �u1�2vM� is the Hilbert space constructed by the completion of the
space Cy�M� with respect to the norm k f k2 :� Eu1

� f ; f � � �
M

f 2�u1�2 dvM . Let

Au1
be the nonpositive self-adjoint operator on L2�M; �u1�2vM� associated with Eu1

.
Then, we see that ffigyi�1 is a complete orthonormal system of L2�M; �u1�2vM�
consisting of eigenfunctions of Au1

with fi having eigenvalue ÿ�li ÿ l1�. Setting
w � �u1�2 and applying Theorem 1.3 in [13] and Theorem 3.7 in [J. Wang [17]],
we have the following

Proposition 5.1. We assume that Int M �M ÿ qM is a relatively compact
domain in a complete Riemannian manifold L with its Ricci curvature RicL

bounded from below by ÿK for some constant K b 0. Moreover, we suppose that
M satis®es the interior rolling R-ball condition �R� and that the second fundamental
form PqM of qM with respect to the outward unit normal ~n is bounded from above
by H for some constant H b a 0 > 0, that is, PqM�X ;X� :� ÿh`X �q=q~n�;Xia
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HjX j2, where ÿ�a 0�2 is a lower bound of the sectional curvature on M ÿMR=2.
Then, we have, for any n satisfying n b 2n0 and n > 4, there exists a constant
c�n;K ;H;R;D; dim M;Vol�M�� such that the following Sobolev inequality holds:

inf
a AR

�
M

j f ÿ aj2n=�nÿ2��u1�2 dvM

� ��nÿ2�=n

a c 0
�

M

j`f j2�u1�2 dvM ; f A Cy�M�;�23�

where D stands for the intrinsic diameter of M, n0 � n0�K ;R� � �log c1�=log 2 and
c1 is a volume doubling constant on M ÿMR as before.

Proof. The property �P� is satis®ed by the fact RicM bÿK (see ex-
ample 1 in [14]). In the similar way to the one in [13], we can prove that

for w � �u1�2, M satis®es the conditions �w1� and �w2� with j � 1, c3 �
c�K ;H;R;D; dim M;Vol �M�� and c6 � c�K ;H;R;D; dim M;Vol �M��. We
note that, by the comparison theorem and by the argument about the interval of
the existance of solution, we can see that the second fundamental form of MR=2

satis®es ÿc�R;H; dim M�a PqMR=2
a maxfH; a 0g � H. Therefore, we also have

cN�MR=2�jMR=2jÿ2=n diam�MR=2�a c�n; dim M;H;R;K ; jMR=2j; diam�MR=2��;
by Theorem 3.7 in [17] and by [4], where diam�MR=2� is the intrinsic diameter of
MR=2. Hence, Proposition 5.1 easily follows from Theorem 4.1. r

Corollary 2.1 immediately implies the following

Corollary 5.1. The inequality (23) implies the following estimate:

a2=n�cn�ÿ1 a l2 ÿ l1:

Moreover, (23) implies the decay of eigenfunctions:

ui�x�a a�nc�li ÿ l1��n=4u1�x� �i � 2; 3; . . .�;
where a is some numerical constant.

Remark 5.1. Actually, the optimal value of the constant n in Proposition
5.1 is dim M � 2. This fact and other results will be proved in H. Kumura [12].
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