K.-H. KWON AND J.-H. KIM
KODAI MATH. J.
24 (2001), 344-351

MAXIMUM MODULUS, CHARACTERISTIC, DEFICIENCY AND
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DIFFERENTIAL EQUATIONS
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1. Introduction and statements of results

We take for granted the usual notation of Nevanlinna theory (see [5]). For
a set F < RY, let m(F) and m;(F) := [, dt/t denote the linear and the logarithmic
measure of F respectively. The upper and the lower logarithmic density of F are
defined by

e — FNIl FNN
log dens F := limsup u, log dens F := liminf my(FO L, r]) .
r— 00 log r —_— F— 00 IOg r

Consider the second order linear differential equation
(%) "+ 4@+ B(2)f =0,
where A(z) and B(z) # 0 are entire functions. Let p(g) denote the order of an
entire function g. It is known that if either p(4) < p(B) or p(B) < p(A4) < 1/2,
then every solution f # 0 of (%) is of infinite order [3, 7, 12].

For the case that p(A4) > 1/2 and p(B) < p(A4), 1. Laine and P. Wu recently
proved

THEOREM A[11].  Suppose that p(B) < p(A) < oo and that T(r, A) ~log M(r, A)
as r — oo outside a set of finite logarithmic measure. Then every solution f # 0 of
(x) is of infinite order.

We extend Theorem A by allowing bigger exceptional sets on which re-
strictive condition about the growth of A4(z) is made.

THEOREM 1. Suppose that p(B) < p(A) < o and that T(r,A) ~log M(r,A)
as r — oo outside a set of upper logarithmic density less than {p(A) — p(B)}/p(A).
Then every solution f # 0 of (x) is of infinite order.
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It is shown [6] that A(z) has no finite deficient value under the hypothesis of
the theorems. Complementing these theorems, we prove

THEOREM 2. Suppose that A(z) and B(z) are transcendental entire functions
with p(B) < 1/2 and p(B) < p(A), and that A(z) has a finite deficient value. Then
every solution f # 0 of (x) is of infinite order.

CoROLLARY 3. Let B(z) be a transcendental entire function of order
p(B) < 1/2. Suppose that A(z) is an entire function of genus q > 1, and that all
the zeros of A(z) lie in the angular sector 0y < arg z < 0, satisfying

T
-0 < ——.
02 61_q+1

Then every solution f #£ 0 of (%) is of infinite order.

This corollary is an immediate consequence of Theorem 2 since A(z) sat-
isfying the hypothesis of the corollary has zero as a deficient value [9]. This
improves our previous work [10, Theorem 1] in which coefficient functions of (x)
have more restricted conditions.

2. Preliminary lemmas

We need the following known lemmas in the proofs of theorems.

LemMA A[4]. Let f(z) be a nontrivial entire function, and let o. > 1 and ¢ > 0
be given constants. Then there exist a constant ¢ >0 and a set E; = [0, 0) of
finite linear measure such that for all z satisfying |z| = r ¢ E|, we have

f9()

f(Z) SC[T(ocr,f)r lOg T( 7f)] ’ keN

LemmA B[2]. Let f(z) be a meromorphic function of finite order p. Given
(>0and [, 0 << 1/2, there exist a constant K(p,{) and a set E; = [0,0) of
lower logarithmic density greater than 1 — { such that for all v € E; and for every
interval J of length |

f'(re”)

VJJ f(rei)

Lemma C[8].  Suppose that f(z) is an entire function of order p < 1/2. Then
one of the following two statements is true:
(i) for every A < p, there exists r, — oo such that

log|f(z)| > r],

40 < K(p.0) (11087 ) 701, 1)

Sfor all z satisfying |z| = rp,.
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(ii) for every A <p, if
K, = {0¢€0,2x] : log|f (re")| < r*},
there exists a set E, < [0,00) of logarithmic density 1 such that for r e Es,
m(K,) — 0, r— oo.
Lemma D[8]. Suppose f(z) is a nonconstant entire function of finite order.

For a positive number w, there exists a set E, < [1,00) with finite linear measure
such that

m(E,N[r/e er]) <exp(—r*), r>ro(f),
and that, for |z| =r ¢ E,, we have

f'()
f(2)

Lemma E[8]. Suppose f(z) is entire of order p<1 and 0<e<
min(p/2,1 — p). Suppose there exists an unbounded set of r-values such that

log|j'(rei9)| > pPe

Jor all 0 €0,2n]. Suppose also that E; |1, 0) satisfies

’ <exp(r*®), r>ro(f).

m(E3N[r/e,er]) < exp(—r®), r> Ry.
Then there is an unbounded set of s-values with s ¢ Es such that
logl/ (se")| > 5%

Sfor all 6 €]0,2x].

3. Proofs of the theorems

Proof of Theorem 1. Suppose that T(r, A) ~log M(r,A) as r — oo outside
a set of upper logarithmic density less than {p(4) — p(B)}/p(A4). For given c,
0<c<1/4, let

I.(r) = {0 €[0,2n) : log|A(re™)| < (1 — ¢) log M(r, A)}.
Then there are ¢ >0 and a set F| < [1,00) with
log dens Fy > 1 —{p(A4) — p(B)}/p(4) + ¢
such that m(I.(r)) — 0, as r — oo in Fj.

Apply Lemma B with { =¢/3 on A(z), and choose / > 0 so small that

K(p,0) (l log%> <ec.
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Then for every interval J of length / and for all re E;, we have

g

where E; is a set of lower logarithmic density greater than 1 —{ by Lemma
B. If ¢ € [0,27), then for all sufficiently large r € F) N E;, there is a ¥ ¢ I.(r) such
that |¢ —y| <!/ and

A'(re™)
A(re®?)

d0 < cT(r,A),

. . ¢ d .
(2) log|A(re’¢)| = log|A(re“/’)| +J 70 log\A(re’0)| do
¥

¢ /reiO
Z(lfc)logM(r,A)frJ ‘A( )|d0|

v A(Vei(})

> (1—2c)log M(r, A).
Now let ¢ and b be chosen to satisfy p(B) < b < a < p(A4), and
(@a—=b)/a={p(4) = p(B)}/p(4) —&/3.
Then there is a sequence r, — oo of real numbers for which

log M(ry, A) > r]

Hence for all re [r,,,r,‘f/b],

log M(r,A) = log M(ry, A) = (r,’f/b)b > b,
Here we put F, =, [r,,,r,f/ b]. Then the upper logarithmic density of F, is at
least (a — b)/a, and it follows that for all re F,

(3) log M(r,A) > r°.

Note that the set Fy = F) N E:NF, has positive upper logarithmic density
(=¢/3). We conclude from (2) and (3) that for all z satistying |z| = r € Fo,

(4) log|A(z)| = (1 —2c)r® = r"/2.
Let f #£ 0 be a solution of (). Then we get

1) /()

1'(2) 1@

We note from the fundamental theorem of calculus and the maximum modulus
theorem that, for all large r > 0, there exist z, with |z;] =r on which

f(z)
Sf'(z)

(5) > |A(z)] - [B(2)]

(6)

<r+0(1).
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By Lemma A, there is a set E; of finite linear measure such that for all z
satisfying |z| = r ¢ E;, we have

(7 ’ Z)‘ <rTCr, 1)

‘f '(2)
Calculating on the unbounded points z,, |z,| € Fy — Ej, we conclude from (4), (5),

(6) and (7) that f'(z) has infinite order. Since f and f’ have the same order, the
conclusion of the theorem follows.

Proof of Theorem 2. Suppose that A(z) has deficiency d(a, f) =25 > 0 at
ae C as stated in the hypothesis. Then it follows from the definition of de-
ficiency that for all sufficiently large r, we have

1
m(r,A — a) > 0T (r,A).

Hence, for any sufficiently large r, there exists a point z, such that |z,| = r and

(8) log|A(z,) —a| < —0T(r, A).

Assume first that 4(z) has zero as a deficient value, that is, a =0. Now
set z, = re'” and let { >0 be a sufficiently small number. Then, by virtue of
Lemma B and the inequalities (1) and (8), we can choose a number ¢ > 0,
|6, — @] <1 and a set Er = [0, 0) of lower logarithmic density greater than 1 —
such that for given r e E,

log|A(re™)| <0

for all 6€ [0, — 4,0, + ¢]. In fact, if we determine ¢ sufficiently small in (1), we
have

d
log|A(re®)| = log|A(re™)| +J 7 log|A(re™)| dt
A'(re")
A(ret)
<(=0+¢)T(r,A4) <0.

In general, if A(z) has a finite deficient value @ € C, then we can apply the
same reasoning as above to the function A4(z) — a since it has zero as a deficient
value. Hence there exist real numbers ¢ > 0, 6, and a set E; < [0, c0) of lower
logarithmic density greater than 1 —{ such that for given r e E,

< —OT(r,A) +r J

|dt]

log|A(re) —a| <0
for all O € [0, — ¢,0,+ ¢]. Thus for these r and 0, we get
9) |A(re”)| < |a| + 1.
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Suppose p(B) =p, 0 < p <1/2. The proof is divided into two cases de-
pending on the growth property of B(z) by Lemma C. First, we assume that
there exists r,, — oo such that given & 0<e < p/2,

(10) log|B(z)| > r}*

for all z satisfying |z| = ry,.
Let f # 0 be a solution of (x). Then we get

1"(2) 1'(2)
(1) BO)I <)

f(2) /()
In order to prove the theorem by contradiction, assume that f % 0 is of finite
order. Then, by Lemma D, if o is a positive number, there exists a set
E, < [1,00) with finite linear measure such that

4G

(12) m(E,N[r/e er]) < 2exp(—r*), r>ro(f),

and that, for |z| =r¢ E,,

(13) L8 <o) O <opet. ronin

Furthermore, choosing o small enough to apply Lemma E to B(z) with (10)
and (12), we get a sequence s, — oo with s, ¢ E, such that for all €€ [0,27],

(14) log|B(sme'™)| > s272.

m

Hence the combination of (8), (11), (13) and (14) yield that as s,, — oo,
exp(sh, %) < (la| +2) exp(s,)

on the points z, (r =s,). This inequality leads to a desired contradiction if we
make ¢ and o sufficiently small. Therefore f # 0 has infinite order.
Now let us prove the second case with respect to Lemma C. Suppose that if

K. = {0 €0,2x] : log|B(re")| < r*}

for given 4, 0 < A < p(B), there exists a set E; = [0, c0) of logarithmic density 1
such that m(K,) — 0, as r — o0 in E,.

It follows from Lemma A that there exists a set £ — [0, 00) having a finite
linear measure such that for all z with |z| =r ¢ E;, we have

(15) <rTQrf); k=12

Note that F3 = E; N E, — E; has a positive lower logarithmic density, and
that for all sufficiently large r in F3, we have [0, — $,0, + ¢] — K, # 0. Hence
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there are unbounded points, z= r® on which inequalities (9), (15) and
log|B(re™)| = r* hold simultaneously. On these points, these inequlities and (11)
yield

exp(r’) < (la| +2)rT(2r, /)

for some unbounded r-set. Therefore f # 0 has infinite order.
Finally, we suppose that B(z) is a transcendental entire function of order
zero. Then there is a sequence r, — oo of real numbers for which

log M(r,, B) = n* log r,.
Hence for all r e [r,, ],
log M(r, B) > log M (r,, B) > n’logr, >nlogr.

Now, set Fy = Un[rn,r,’j]. Then it follows that the upper logarithmic density of
F, is 1, and that as r — oo in Fy,

log M(r, B)
— 7

(16) log r

We note [1] that there exists a set F5 = [0, 00) of logarithmic density 1 such
that, given r € Fs,

(17) log|B(re")| > % log M (r, B)

for all 0 € [0,2n).
Furthermore, from (8), (11) and (15), there is a set Fs < [0, c0) of finite linear
measure such that for all z, satisfying |z,| = r ¢ Fp

(18) [B(z)| < (lal +2)rT(2r, 1),
Therefore we conclude from (16), (17) and (18) that f # 0 is of infinite order.

REFERENCES

[1] P.D. BArrY, On a theorem of Besicovitch, Quart. J. Math. Oxford Ser., 14 (1963), 293-302.
[2] W. Fucns, Proof of a conjecture of G. Pdlya concerning gap series, Illinois J. Math., 7
(1963), 661-667.
[3] G. GunDERSEN, Finite order solutions of second order linear differential equations, Trans.
Amer. Math. Soc., 305 (1988), 415-429.
[4] G. GunperseN, Estimates for the logarithmic derivative of a meromorphic function, plus
similar estimates, J. London Math. Soc., 37 (1988), 88—104.
| W. HaymaN, Meromorphic Functions, Clarendon Press, Oxford, 1964.
| W. HaymaN AND J. Rossi, Characteristic, maximum modulus, and value distribution, Trans.
Amer. Math. Soc., 284 (1984), 651-664.
[7] S. HELLERSTEIN, J. MiLEs AND J. Rossi, On the growth of solutions of f” + gf’ 4 hf =0,
Trans. Amer. Math. Soc., 323 (1991), 693-706.
[8] S. HELLERSTEIN, J. MILES AND J. Rossi, On the growth of solutions of certain linear differential
equations, Ann. Acad. Sci. Fenn. Ser. A I Math., 17 (1992), 343-365.

[5
[6



MAXIMUM MODULUS, CHARACTERISTIC, DEFICIENCY 351

[9] T. KoBayasHi, On the deficiency of an entire function of finite genus, Kodai Math. Sem.
Rep., 27 (1976), 320-328.

[10] K. KwoNn, Nonexistence of finite order solutions of certain second order linear differential
equations, Kodai Math. J., 19 (1996), 378-387.

[11] I. LaINe AND P. Wu, Growth of solutions of second order linear differential equations, Proc.
Amer. Math. Soc., 128 (2000), 2693-2703.

[12] M. Ozawa, On a solution of w” +e“w’ + (az+b)w =0, Kodai Math. J., 3 (1980), 295-
309.

DEPARTMENT OF MATHEMATICS

KOREA MILITARY ACADEMY

P. O. Box 77-2, GONGNEUNG, NOWON
SeouL, 139-799 KOREA



