MAXIMUM MODULUS, CHARACTERISTIC, DEFICIENCY AND GROWTH OF SOLUTIONS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

Ki-Ho Kwon ${ }^{1)}$ and Jeong-Heon Kim

1. Introduction and statements of results

We take for granted the usual notation of Nevanlinna theory (see [5]). For a set $F \subset \boldsymbol{R}^{+}$, let $m(F)$ and $m_{l}(F):=\int_{F} d t / t$ denote the linear and the logarithmic measure of F respectively. The upper and the lower logarithmic density of F are defined by

$$
\overline{\log \operatorname{dens}} F:=\limsup _{r \rightarrow \infty} \frac{m_{l}(F \cap[1, r])}{\log r}, \quad \underline{\log \operatorname{dens}} F:=\liminf _{r \rightarrow \infty} \frac{m_{l}(F \cap[1, r])}{\log r} .
$$

Consider the second order linear differential equation

$$
\begin{equation*}
f^{\prime \prime}+A(z) f^{\prime}+B(z) f=0 \tag{*}
\end{equation*}
$$

where $A(z)$ and $B(z) \not \equiv 0$ are entire functions. Let $\rho(g)$ denote the order of an entire function g. It is known that if either $\rho(A)<\rho(B)$ or $\rho(B)<\rho(A) \leq 1 / 2$, then every solution $f \not \equiv 0$ of $(*)$ is of infinite order [3, 7, 12].

For the case that $\rho(A)>1 / 2$ and $\rho(B)<\rho(A)$, I. Laine and P. Wu recently proved

Theorem A[11]. Suppose that $\rho(B)<\rho(A)<\infty$ and that $T(r, A) \sim \log M(r, A)$ as $r \rightarrow \infty$ outside a set of finite logarithmic measure. Then every solution $f \not \equiv 0$ of $(*)$ is of infinite order.

We extend Theorem A by allowing bigger exceptional sets on which restrictive condition about the growth of $A(z)$ is made.

Theorem 1. Suppose that $\rho(B)<\rho(A)<\infty$ and that $T(r, A) \sim \log M(r, A)$ as $r \rightarrow \infty$ outside a set of upper logarithmic density less than $\{\rho(A)-\rho(B)\} / \rho(A)$. Then every solution $f \not \equiv 0$ of $(*)$ is of infinite order.

[^0]It is shown [6] that $A(z)$ has no finite deficient value under the hypothesis of the theorems. Complementing these theorems, we prove

Theorem 2. Suppose that $A(z)$ and $B(z)$ are transcendental entire functions with $\rho(B) \leq 1 / 2$ and $\rho(B)<\rho(A)$, and that $A(z)$ has a finite deficient value. Then every solution $f \not \equiv 0$ of $(*)$ is of infinite order.

Corollary 3. Let $B(z)$ be a transcendental entire function of order $\rho(B) \leq 1 / 2$. Suppose that $A(z)$ is an entire function of genus $q \geq 1$, and that all the zeros of $A(z)$ lie in the angular sector $\theta_{1} \leq \arg z \leq \theta_{2}$ satisfying

$$
\theta_{2}-\theta_{1} \leq \frac{\pi}{q+1}
$$

Then every solution $f \not \equiv 0$ of $(*)$ is of infinite order.
This corollary is an immediate consequence of Theorem 2 since $A(z)$ satisfying the hypothesis of the corollary has zero as a deficient value [9]. This improves our previous work [10, Theorem 1] in which coefficient functions of $(*)$ have more restricted conditions.

2. Preliminary lemmas

We need the following known lemmas in the proofs of theorems.
Lemma $\mathrm{A}[4]$. Let $f(z)$ be a nontrivial entire function, and let $\alpha>1$ and $\varepsilon>0$ be given constants. Then there exist a constant $c>0$ and a set $E_{1} \subset[0, \infty)$ of finite linear measure such that for all z satisfying $|z|=r \notin E_{1}$, we have

$$
\left|\frac{f^{(k)}(z)}{f(z)}\right| \leq c\left[T(\alpha r, f) r^{\varepsilon} \log T(\alpha r, f)\right]^{k}, \quad k \in N
$$

Lemma $\mathrm{B}[2]$. Let $f(z)$ be a meromorphic function of finite order ρ. Given $\zeta>0$ and $l, 0<l<1 / 2$, there exist a constant $K(\rho, \zeta)$ and a set $E_{\zeta} \subset[0, \infty)$ of lower logarithmic density greater than $1-\zeta$ such that for all $r \in E_{\zeta}$ and for every interval J of length l

$$
r \int_{J}\left|\frac{f^{\prime}\left(r e^{i \theta}\right)}{f\left(r e^{i \theta}\right)}\right| d \theta<K(\rho, \zeta)\left(l \log \frac{1}{l}\right) T(r, f)
$$

Lemma C[8]. Suppose that $f(z)$ is an entire function of order $\rho \leq 1 / 2$. Then one of the following two statements is true:
(i) for every $\lambda<\rho$, there exists $r_{m} \rightarrow \infty$ such that

$$
\log |f(z)|>r_{m}^{\lambda}
$$

for all z satisfying $|z|=r_{m}$.
(ii) for every $\lambda<\rho$, if

$$
K_{r}=\left\{\theta \in[0,2 \pi]: \log \left|f\left(r e^{i \theta}\right)\right|<r^{\lambda}\right\}
$$

there exists a set $E_{2} \subset[0, \infty)$ of logarithmic density 1 such that for $r \in E_{2}$,

$$
m\left(K_{r}\right) \rightarrow 0, \quad r \rightarrow \infty
$$

Lemma $\mathrm{D}[8]$. Suppose $f(z)$ is a nonconstant entire function of finite order. For a positive number α, there exists a set $E_{\alpha} \subset[1, \infty)$ with finite linear measure such that

$$
m\left(E_{\alpha} \cap[r / e, e r]\right)<\exp \left(-r^{\alpha}\right), \quad r>r_{0}(f)
$$

and that, for $|z|=r \notin E_{\alpha}$, we have

$$
\left|\frac{f^{\prime}(z)}{f(z)}\right|<\exp \left(r^{2 \alpha}\right), \quad r>r_{0}(f)
$$

Lemma E[8]. Suppose $f(z)$ is entire of order $\rho<1$ and $0<\varepsilon<$ $\min (\rho / 2,1-\rho)$. Suppose there exists an unbounded set of r-values such that

$$
\log \left|f\left(r e^{i \theta}\right)\right|>r^{\rho-\varepsilon}
$$

for all $\theta \in[0,2 \pi]$. Suppose also that $E_{3} \subset[1, \infty)$ satisfies

$$
m\left(E_{3} \cap[r / e, e r]\right)<\exp \left(-r^{6 \varepsilon}\right), \quad r>R_{0}
$$

Then there is an unbounded set of s-values with $s \notin E_{3}$ such that

$$
\log \left|f\left(s e^{i \theta}\right)\right|>s^{\rho-2 \varepsilon}
$$

for all $\theta \in[0,2 \pi]$.

3. Proofs of the theorems

Proof of Theorem 1. Suppose that $T(r, A) \sim \log M(r, A)$ as $r \rightarrow \infty$ outside a set of upper logarithmic density less than $\{\rho(A)-\rho(B)\} / \rho(A)$. For given c, $0<c<1 / 4$, let

$$
I_{c}(r)=\left\{\theta \in[0,2 \pi): \log \left|A\left(r e^{i \theta}\right)\right|<(1-c) \log M(r, A)\right\} .
$$

Then there are $\varepsilon>0$ and a set $F_{1} \subset[1, \infty)$ with

$$
\underline{\log \operatorname{dens}} F_{1} \geq 1-\{\rho(A)-\rho(B)\} / \rho(A)+\varepsilon
$$

such that $m\left(I_{c}(r)\right) \rightarrow 0$, as $r \rightarrow \infty$ in F_{1}.
Apply Lemma B with $\zeta=\varepsilon / 3$ on $A(z)$, and choose $l>0$ so small that

$$
K(\rho, \zeta)\left(l \log \frac{1}{l}\right)<c
$$

Then for every interval J of length l and for all $r \in E_{\zeta}$, we have

$$
\begin{equation*}
r \int_{J}\left|\frac{A^{\prime}\left(r e^{i \theta}\right)}{A\left(r e^{i \theta}\right)}\right| d \theta<c T(r, A), \tag{1}
\end{equation*}
$$

where E_{ζ} is a set of lower logarithmic density greater than $1-\zeta$ by Lemma B. If $\phi \in[0,2 \pi)$, then for all sufficiently large $r \in F_{1} \cap E_{\zeta}$, there is a $\psi \notin I_{c}(r)$ such that $|\phi-\psi| \leq l$ and

$$
\begin{align*}
\log \left|A\left(r e^{i \phi}\right)\right| & =\log \left|A\left(r e^{i \psi}\right)\right|+\int_{\psi}^{\phi} \frac{d}{d \theta} \log \left|A\left(r e^{i \theta}\right)\right| d \theta \tag{2}\\
& \geq(1-c) \log M(r, A)-r \int_{\psi}^{\phi}\left|\frac{A^{\prime}\left(r e^{i \theta}\right)}{A\left(r e^{i \theta}\right)}\right||d \theta| \\
& \geq(1-2 c) \log M(r, A) .
\end{align*}
$$

Now let a and b be chosen to satisfy $\rho(B)<b<a<\rho(A)$, and

$$
(a-b) / a \geq\{\rho(A)-\rho(B)\} / \rho(A)-\varepsilon / 3 .
$$

Then there is a sequence $r_{n} \rightarrow \infty$ of real numbers for which

$$
\log M\left(r_{n}, A\right) \geq r_{n}^{a}
$$

Hence for all $r \in\left[r_{n}, r_{n}^{a / b}\right]$,

$$
\log M(r, A) \geq \log M\left(r_{n}, A\right) \geq\left(r_{n}^{a / b}\right)^{b} \geq r^{b} .
$$

Here we put $F_{2}=\bigcup_{n}\left[r_{n}, r_{n}^{a / b}\right]$. Then the upper logarithmic density of F_{2} is at least $(a-b) / a$, and it follows that for all $r \in F_{2}$,

$$
\begin{equation*}
\log M(r, A) \geq r^{b} . \tag{3}
\end{equation*}
$$

Note that the set $F_{0}=F_{1} \cap E_{\zeta} \cap F_{2}$ has positive upper logarithmic density $(\geq \varepsilon / 3)$. We conclude from (2) and (3) that for all z satisfying $|z|=r \in F_{0}$,

$$
\begin{equation*}
\log |A(z)| \geq(1-2 c) r^{b} \geq r^{b} / 2 \tag{4}
\end{equation*}
$$

Let $f \not \equiv 0$ be a solution of (*). Then we get

$$
\begin{equation*}
\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \geq|A(z)|-|B(z)|\left|\frac{f(z)}{f^{\prime}(z)}\right| . \tag{5}
\end{equation*}
$$

We note from the fundamental theorem of calculus and the maximum modulus theorem that, for all large $r>0$, there exist z_{r} with $\left|z_{r}\right|=r$ on which

$$
\begin{equation*}
\left|\frac{f\left(z_{r}\right)}{f^{\prime}\left(z_{r}\right)}\right| \leq r+O(1) . \tag{6}
\end{equation*}
$$

By Lemma A , there is a set E_{1} of finite linear measure such that for all z satisfying $|z|=r \notin E_{1}$, we have

$$
\begin{equation*}
\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq r T\left(2 r, f^{\prime}\right)^{2} \tag{7}
\end{equation*}
$$

Calculating on the unbounded points $z_{r},\left|z_{r}\right| \in F_{0}-E_{1}$, we conclude from (4), (5), (6) and (7) that $f^{\prime}(z)$ has infinite order. Since f and f^{\prime} have the same order, the conclusion of the theorem follows.

Proof of Theorem 2. Suppose that $A(z)$ has deficiency $\delta(a, f)=2 \delta>0$ at $a \in C$ as stated in the hypothesis. Then it follows from the definition of deficiency that for all sufficiently large r, we have

$$
m\left(r, \frac{1}{A-a}\right) \geq \delta T(r, A)
$$

Hence, for any sufficiently large r, there exists a point z_{r} such that $\left|z_{r}\right|=r$ and

$$
\begin{equation*}
\log \left|A\left(z_{r}\right)-a\right| \leq-\delta T(r, A) \tag{8}
\end{equation*}
$$

Assume first that $A(z)$ has zero as a deficient value, that is, $a=0$. Now set $z_{r}=r e^{i \theta_{r}}$ and let $\zeta>0$ be a sufficiently small number. Then, by virtue of Lemma B and the inequalities (1) and (8), we can choose a number $\phi>0$, $\left|\theta_{r}-\phi\right| \leq l$ and a set $E_{\zeta} \subset[0, \infty)$ of lower logarithmic density greater than $1-\zeta$ such that for given $r \in E_{\zeta}$,

$$
\log \left|A\left(r e^{i \theta}\right)\right| \leq 0
$$

for all $\theta \in\left[\theta_{r}-\phi, \theta_{r}+\phi\right]$. In fact, if we determine c sufficiently small in (1), we have

$$
\begin{aligned}
\log \left|A\left(r e^{i \theta}\right)\right| & =\log \left|A\left(r e^{i \theta_{r}}\right)\right|+\int_{\theta_{r}}^{\theta} \frac{d}{d t} \log \left|A\left(r e^{i t}\right)\right| d t \\
& \leq-\delta T(r, A)+r \int_{\theta_{r}}^{\theta}\left|\frac{A^{\prime}\left(r e^{i t}\right)}{A\left(r e^{i t}\right)}\right||d t| \\
& \leq(-\delta+c) T(r, A) \leq 0
\end{aligned}
$$

In general, if $A(z)$ has a finite deficient value $a \in \boldsymbol{C}$, then we can apply the same reasoning as above to the function $A(z)-a$ since it has zero as a deficient value. Hence there exist real numbers $\phi>0, \theta_{r}$ and a set $E_{\zeta} \subset[0, \infty)$ of lower logarithmic density greater than $1-\zeta$ such that for given $r \in E_{\zeta}$,

$$
\log \left|A\left(r e^{i \theta}\right)-a\right| \leq 0
$$

for all $\theta \in\left[\theta_{r}-\phi, \theta_{r}+\phi\right]$. Thus for these r and θ, we get

$$
\begin{equation*}
\left|A\left(r e^{i \theta}\right)\right| \leq|a|+1 \tag{9}
\end{equation*}
$$

Suppose $\rho(B)=\rho, 0<\rho \leq 1 / 2$. The proof is divided into two cases depending on the growth property of $B(z)$ by Lemma C. First, we assume that there exists $r_{m} \rightarrow \infty$ such that given $\varepsilon, 0<\varepsilon<\rho / 2$,

$$
\begin{equation*}
\log |B(z)|>r_{m}^{\rho-\varepsilon} \tag{10}
\end{equation*}
$$

for all z satisfying $|z|=r_{m}$.
Let $f \not \equiv 0$ be a solution of $(*)$. Then we get

$$
\begin{equation*}
|B(z)| \leq\left|\frac{f^{\prime \prime}(z)}{f(z)}\right|+|A(z)|\left|\frac{f^{\prime}(z)}{f(z)}\right| . \tag{11}
\end{equation*}
$$

In order to prove the theorem by contradiction, assume that $f \not \equiv 0$ is of finite order. Then, by Lemma D , if α is a positive number, there exists a set $E_{\alpha} \subset[1, \infty)$ with finite linear measure such that

$$
\begin{equation*}
m\left(E_{\alpha} \cap[r / e, e r]\right)<2 \exp \left(-r^{\alpha}\right), \quad r>r_{0}(f), \tag{12}
\end{equation*}
$$

and that, for $|z|=r \notin E_{\alpha}$,

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)}{f(z)}\right|<\exp \left(r^{2 \alpha}\right), \quad\left|\frac{f^{\prime \prime}(z)}{f(z)}\right|<\exp \left(r^{4 \alpha}\right), \quad r>r_{0}(f) . \tag{13}
\end{equation*}
$$

Furthermore, choosing α small enough to apply Lemma E to $B(z)$ with (10) and (12), we get a sequence $s_{m} \rightarrow \infty$ with $s_{m} \notin E_{\alpha}$ such that for all $\theta \in[0,2 \pi]$,

$$
\begin{equation*}
\log \left|B\left(s_{m} e^{i \theta}\right)\right|>s_{m}^{\rho-2 \varepsilon} . \tag{14}
\end{equation*}
$$

Hence the combination of (8), (11), (13) and (14) yield that as $s_{m} \rightarrow \infty$,

$$
\exp \left(s_{m}^{\rho-2 \varepsilon}\right) \leq(|a|+2) \exp \left(s_{m}^{4 \alpha}\right)
$$

on the points $z_{r}\left(r=s_{m}\right)$. This inequality leads to a desired contradiction if we make ε and α sufficiently small. Therefore $f \not \equiv 0$ has infinite order.

Now let us prove the second case with respect to Lemma C. Suppose that if

$$
K_{r}=\left\{\theta \in[0,2 \pi]: \log \left|B\left(r e^{i \theta}\right)\right|<r^{\lambda}\right\}
$$

for given $\lambda, 0<\lambda<\rho(B)$, there exists a set $E_{2} \subset[0, \infty)$ of logarithmic density 1 such that $m\left(K_{r}\right) \rightarrow 0$, as $r \rightarrow \infty$ in E_{2}.

It follows from Lemma A that there exists a set $E_{1} \subset[0, \infty)$ having a finite linear measure such that for all z with $|z|=r \notin E_{1}$, we have

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f(z)}\right| \leq r T(2 r, f)^{3} ; \quad k=1,2 . \tag{15}
\end{equation*}
$$

Note that $F_{3}=E_{\zeta} \cap E_{2}-E_{1}$ has a positive lower logarithmic density, and that for all sufficiently large r in F_{3}, we have $\left[\theta_{r}-\phi, \theta_{r}+\phi\right]-K_{r} \neq \emptyset$. Hence
there are unbounded points, $z=r^{i \theta}$ on which inequalities (9), (15) and $\log \left|B\left(r e^{i \theta}\right)\right| \geq r^{\lambda}$ hold simultaneously. On these points, these inequlities and (11) yield

$$
\exp \left(r^{\lambda}\right) \leq(|a|+2) r T(2 r, f)^{3}
$$

for some unbounded r-set. Therefore $f \not \equiv 0$ has infinite order.
Finally, we suppose that $B(z)$ is a transcendental entire function of order zero. Then there is a sequence $r_{n} \rightarrow \infty$ of real numbers for which

$$
\log M\left(r_{n}, B\right) \geq n^{2} \log r_{n}
$$

Hence for all $r \in\left[r_{n}, r_{n}^{n}\right]$,

$$
\log M(r, B) \geq \log M\left(r_{n}, B\right) \geq n^{2} \log r_{n} \geq n \log r
$$

Now, set $F_{4}=\bigcup_{n}\left[r_{n}, r_{n}^{n}\right]$. Then it follows that the upper logarithmic density of F_{4} is 1 , and that as $r \rightarrow \infty$ in F_{4},

$$
\begin{equation*}
\frac{\log M(r, B)}{\log r} \rightarrow \infty \tag{16}
\end{equation*}
$$

We note [1] that there exists a set $F_{5} \subset[0, \infty)$ of logarithmic density 1 such that, given $r \in F_{5}$,

$$
\begin{equation*}
\log \left|B\left(r e^{i \theta}\right)\right| \geq \frac{1}{2} \log M(r, B) \tag{17}
\end{equation*}
$$

for all $\theta \in[0,2 \pi)$.
Furthermore, from (8), (11) and (15), there is a set $F_{6} \subset[0, \infty)$ of finite linear measure such that for all z_{r} satisfying $\left|z_{r}\right|=r \notin F_{6}$

$$
\begin{equation*}
\left|B\left(z_{r}\right)\right| \leq(|a|+2) r T(2 r, f)^{3} \tag{18}
\end{equation*}
$$

Therefore we conclude from (16), (17) and (18) that $f \not \equiv 0$ is of infinite order.

References

[1] P. D. Barry, On a theorem of Besicovitch, Quart. J. Math. Oxford Ser., 14 (1963), 293-302.
[2] W. Fuchs, Proof of a conjecture of G. Pólya concerning gap series, Illinois J. Math., 7 (1963), 661-667.
[3] G. Gundersen, Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc., 305 (1988), 415-429.
[4] G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc., 37 (1988), 88-104.
[5] W. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[6] W. Hayman and J. Rossi, Characteristic, maximum modulus, and value distribution, Trans. Amer. Math. Soc., 284 (1984), 651-664.
[7] S. Hellerstein, J. Miles and J. Rossi, On the growth of solutions of $f^{\prime \prime}+g f^{\prime}+h f=0$, Trans. Amer. Math. Soc., 323 (1991), 693-706.
[8] S. Hellerstein, J. Miles and J. Rossi, On the growth of solutions of certain linear differential equations, Ann. Acad. Sci. Fenn. Ser. A I Math., 17 (1992), 343-365.
[9] T. Kobayashi, On the deficiency of an entire function of finite genus, Kōdai Math. Sem. Rep., 27 (1976), 320-328.
[10] K. Kwon, Nonexistence of finite order solutions of certain second order linear differential equations, Kodai Math. J., 19 (1996), 378-387.
[11] I. Laine and P. Wu, Growth of solutions of second order linear differential equations, Proc. Amer. Math. Soc., 128 (2000), 2693-2703.
[12] M. Ozawa, On a solution of $w^{\prime \prime}+e^{-z} w^{\prime}+(a z+b) w=0$, Kodai Math. J., 3 (1980), 295309.

Department of Mathematics
Korea Military Academy
P. O. Box 77-2, Gongneung, Nowon

Seoul, 139-799 Korea

[^0]: 1991 Mathematics Subject Classification: 34A20, 30D20, 30D35.
 Key words and phrases: Linear differential equation, growth of entire function.
 ${ }^{1)}$ The first author was supported by KOSEF, 1998.
 Received September 1, 2000; revised June 27, 2001.

