MAXIMUM MODULUS, CHARACTERISTIC, DEFICIENCY AND GROWTH OF SOLUTIONS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

KI-HO KWON¹⁾ AND JEONG-HEON KIM

1. Introduction and statements of results

We take for granted the usual notation of Nevanlinna theory (see [5]). For a set $F \subset \mathbf{R}^+$, let m(F) and $m_l(F) := \int_F dt/t$ denote the linear and the logarithmic measure of F respectively. The upper and the lower logarithmic density of F are defined by

$$\overline{\log \, dens} \, F := \limsup_{r \to \infty} \, \frac{m_l(F \cap [1, r])}{\log r}, \quad \underline{\log \, dens} \, F := \liminf_{r \to \infty} \, \frac{m_l(F \cap [1, r])}{\log r}.$$

Consider the second order linear differential equation

(*)
$$f'' + A(z)f' + B(z)f = 0,$$

where A(z) and $B(z) \neq 0$ are entire functions. Let $\rho(g)$ denote the order of an entire function g. It is known that if either $\rho(A) < \rho(B)$ or $\rho(B) < \rho(A) \le 1/2$, then every solution $f \neq 0$ of (*) is of infinite order [3, 7, 12].

For the case that $\rho(A) > 1/2$ and $\rho(B) < \rho(A)$, I. Laine and P. Wu recently proved

THEOREM A[11]. Suppose that $\rho(B) < \rho(A) < \infty$ and that $T(r, A) \sim \log M(r, A)$ as $r \to \infty$ outside a set of finite logarithmic measure. Then every solution $f \neq 0$ of (*) is of infinite order.

We extend Theorem A by allowing bigger exceptional sets on which restrictive condition about the growth of A(z) is made.

THEOREM 1. Suppose that $\rho(B) < \rho(A) < \infty$ and that $T(r, A) \sim \log M(r, A)$ as $r \to \infty$ outside a set of upper logarithmic density less than $\{\rho(A) - \rho(B)\}/\rho(A)$. Then every solution $f \neq 0$ of (*) is of infinite order.

¹⁹⁹¹ Mathematics Subject Classification: 34A20, 30D20, 30D35.

Key words and phrases: Linear differential equation, growth of entire function.

¹⁾The first author was supported by KOSEF, 1998.

Received September 1, 2000; revised June 27, 2001.

It is shown [6] that A(z) has no finite deficient value under the hypothesis of the theorems. Complementing these theorems, we prove

THEOREM 2. Suppose that A(z) and B(z) are transcendental entire functions with $\rho(B) \le 1/2$ and $\rho(B) < \rho(A)$, and that A(z) has a finite deficient value. Then every solution $f \ne 0$ of (*) is of infinite order.

COROLLARY 3. Let B(z) be a transcendental entire function of order $\rho(B) \le 1/2$. Suppose that A(z) is an entire function of genus $q \ge 1$, and that all the zeros of A(z) lie in the angular sector $\theta_1 \le \arg z \le \theta_2$ satisfying

$$\theta_2 - \theta_1 \le \frac{\pi}{q+1}.$$

Then every solution $f \neq 0$ of (*) is of infinite order.

This corollary is an immediate consequence of Theorem 2 since A(z) satisfying the hypothesis of the corollary has zero as a deficient value [9]. This improves our previous work [10, Theorem 1] in which coefficient functions of (*)have more restricted conditions.

2. Preliminary lemmas

We need the following known lemmas in the proofs of theorems.

LEMMA A[4]. Let f(z) be a nontrivial entire function, and let $\alpha > 1$ and $\varepsilon > 0$ be given constants. Then there exist a constant c > 0 and a set $E_1 \subset [0, \infty)$ of finite linear measure such that for all z satisfying $|z| = r \notin E_1$, we have

$$\left|\frac{f^{(k)}(z)}{f(z)}\right| \le c[T(\alpha r, f)r^{\varepsilon}\log T(\alpha r, f)]^{k}, \quad k \in \mathbb{N}.$$

LEMMA B[2]. Let f(z) be a meromorphic function of finite order ρ . Given $\zeta > 0$ and l, 0 < l < 1/2, there exist a constant $K(\rho, \zeta)$ and a set $E_{\zeta} \subset [0, \infty)$ of lower logarithmic density greater than $1 - \zeta$ such that for all $r \in E_{\zeta}$ and for every interval J of length l

$$r \int_{J} \left| \frac{f'(re^{i\theta})}{f(re^{i\theta})} \right| \, d\theta < K(\rho,\zeta) \left(l \log \frac{1}{l} \right) T(r,f).$$

LEMMA C[8]. Suppose that f(z) is an entire function of order $\rho \le 1/2$. Then one of the following two statements is true:

(i) for every $\lambda < \rho$, there exists $r_m \to \infty$ such that

$$\log|f(z)| > r_m^{\lambda}$$

for all z satisfying $|z| = r_m$.

(ii) for every $\lambda < \rho$, if

$$K_r = \{\theta \in [0, 2\pi] : \log|f(re^{i\theta})| < r^{\lambda}\},\$$

there exists a set $E_2 \subset [0, \infty)$ of logarithmic density 1 such that for $r \in E_2$,

 $m(K_r) \to 0, \quad r \to \infty.$

LEMMA D[8]. Suppose f(z) is a nonconstant entire function of finite order. For a positive number α , there exists a set $E_{\alpha} \subset [1, \infty)$ with finite linear measure such that

$$m(E_{\alpha}\cap [r/e,er]) < \exp(-r^{\alpha}), \quad r > r_0(f),$$

and that, for $|z| = r \notin E_{\alpha}$, we have

$$\left|\frac{f'(z)}{f(z)}\right| < \exp(r^{2\alpha}), \quad r > r_0(f).$$

LEMMA E[8]. Suppose f(z) is entire of order $\rho < 1$ and $0 < \varepsilon < \min(\rho/2, 1 - \rho)$. Suppose there exists an unbounded set of r-values such that

 $\log|f(re^{i\theta})| > r^{\rho-\varepsilon}$

for all $\theta \in [0, 2\pi]$. Suppose also that $E_3 \subset [1, \infty)$ satisfies

 $m(E_3 \cap [r/e, er]) < \exp(-r^{6\varepsilon}), \quad r > R_0.$

Then there is an unbounded set of s-values with $s \notin E_3$ such that

$$\log|f(se^{i\theta})| > s^{\rho-2}$$

for all $\theta \in [0, 2\pi]$.

3. Proofs of the theorems

Proof of Theorem 1. Suppose that $T(r, A) \sim \log M(r, A)$ as $r \to \infty$ outside a set of upper logarithmic density less than $\{\rho(A) - \rho(B)\}/\rho(A)$. For given c, 0 < c < 1/4, let

$$I_{c}(r) = \{\theta \in [0, 2\pi) : \log |A(re^{i\theta})| < (1-c) \log M(r, A)\}.$$

Then there are $\varepsilon > 0$ and a set $F_1 \subset [1, \infty)$ with

$$\log dens \ F_1 \ge 1 - \{\rho(A) - \rho(B)\} / \rho(A) + \varepsilon$$

such that $m(I_c(r)) \to 0$, as $r \to \infty$ in F_1 .

Apply Lemma B with $\zeta = \varepsilon/3$ on A(z), and choose l > 0 so small that

$$K(\rho,\zeta)\left(l\log\frac{1}{l}\right) < c.$$

346

Then for every interval J of length l and for all $r \in E_{\zeta}$, we have

(1)
$$r \int_{J} \left| \frac{A'(re^{i\theta})}{A(re^{i\theta})} \right| \, d\theta < cT(r,A),$$

where E_{ζ} is a set of lower logarithmic density greater than $1 - \zeta$ by Lemma B. If $\phi \in [0, 2\pi)$, then for all sufficiently large $r \in F_1 \cap E_{\zeta}$, there is a $\psi \notin I_c(r)$ such that $|\phi - \psi| \leq l$ and

(2)
$$\log|A(re^{i\phi})| = \log|A(re^{i\psi})| + \int_{\psi}^{\phi} \frac{d}{d\theta} \log|A(re^{i\theta})| d\theta$$
$$\geq (1-c) \log M(r,A) - r \int_{\psi}^{\phi} \left| \frac{A'(re^{i\theta})}{A(re^{i\theta})} \right| |d\theta$$
$$\geq (1-2c) \log M(r,A).$$

Now let a and b be chosen to satisfy $\rho(B) < b < a < \rho(A)$, and

$$(a-b)/a \ge \{\rho(A) - \rho(B)\}/\rho(A) - \varepsilon/3.$$

Then there is a sequence $r_n \rightarrow \infty$ of real numbers for which

 $\log M(r_n, A) \ge r_n^a.$

Hence for all $r \in [r_n, r_n^{a/b}]$,

$$\log M(r, A) \ge \log M(r_n, A) \ge (r_n^{a/b})^b \ge r^b.$$

Here we put $F_2 = \bigcup_n [r_n, r_n^{a/b}]$. Then the upper logarithmic density of F_2 is at least (a-b)/a, and it follows that for all $r \in F_2$,

$$\log M(r,A) \ge r^b.$$

Note that the set $F_0 = F_1 \cap E_{\zeta} \cap F_2$ has positive upper logarithmic density $(\geq \varepsilon/3)$. We conclude from (2) and (3) that for all z satisfying $|z| = r \in F_0$,

(4)
$$\log|A(z)| \ge (1-2c)r^b \ge r^b/2.$$

Let $f \neq 0$ be a solution of (*). Then we get

(5)
$$\left|\frac{f''(z)}{f'(z)}\right| \ge |A(z)| - |B(z)| \left|\frac{f(z)}{f'(z)}\right|.$$

We note from the fundamental theorem of calculus and the maximum modulus theorem that, for all large r > 0, there exist z_r with $|z_r| = r$ on which

(6)
$$\left|\frac{f(z_r)}{f'(z_r)}\right| \le r + O(1).$$

By Lemma A, there is a set E_1 of finite linear measure such that for all z satisfying $|z| = r \notin E_1$, we have

(7)
$$\left|\frac{f''(z)}{f'(z)}\right| \le rT(2r, f')^2.$$

Calculating on the unbounded points z_r , $|z_r| \in F_0 - E_1$, we conclude from (4), (5), (6) and (7) that f'(z) has infinite order. Since f and f' have the same order, the conclusion of the theorem follows.

Proof of Theorem 2. Suppose that A(z) has deficiency $\delta(a, f) = 2\delta > 0$ at $a \in C$ as stated in the hypothesis. Then it follows from the definition of deficiency that for all sufficiently large r, we have

$$m\left(r,\frac{1}{A-a}\right) \ge \delta T(r,A).$$

Hence, for any sufficiently large r, there exists a point z_r such that $|z_r| = r$ and (8) $\log |A(z_r) - a| \le -\delta T(r, A).$

Assume first that A(z) has zero as a deficient value, that is, a = 0. Now set $z_r = re^{i\theta_r}$ and let $\zeta > 0$ be a sufficiently small number. Then, by virtue of Lemma B and the inequalities (1) and (8), we can choose a number $\phi > 0$, $|\theta_r - \phi| \le l$ and a set $E_{\zeta} \subset [0, \infty)$ of lower logarithmic density greater than $1 - \zeta$ such that for given $r \in E_{\zeta}$,

$$\log|A(re^{i\theta})| \le 0$$

for all $\theta \in [\theta_r - \phi, \theta_r + \phi]$. In fact, if we determine *c* sufficiently small in (1), we have

$$\begin{split} \log |A(re^{i\theta})| &= \log |A(re^{i\theta_r})| + \int_{\theta_r}^{\theta} \frac{d}{dt} \log |A(re^{it})| \ dt \\ &\leq -\delta T(r,A) + r \int_{\theta_r}^{\theta} \left| \frac{A'(re^{it})}{A(re^{it})} \right| |dt| \\ &\leq (-\delta + c)T(r,A) \leq 0. \end{split}$$

In general, if A(z) has a finite deficient value $a \in C$, then we can apply the same reasoning as above to the function A(z) - a since it has zero as a deficient value. Hence there exist real numbers $\phi > 0$, θ_r and a set $E_{\zeta} \subset [0, \infty)$ of lower logarithmic density greater than $1 - \zeta$ such that for given $r \in E_{\zeta}$,

$$\log|A(re^{i\theta}) - a| \le 0$$

for all $\theta \in [\theta_r - \phi, \theta_r + \phi]$. Thus for these r and θ , we get

 $(9) \qquad |A(re^{i\theta})| \le |a| + 1.$

Suppose $\rho(B) = \rho$, $0 < \rho \le 1/2$. The proof is divided into two cases depending on the growth property of B(z) by Lemma C. First, we assume that there exists $r_m \to \infty$ such that given ε , $0 < \varepsilon < \rho/2$,

(10)
$$\log|B(z)| > r_m^{\rho-\varepsilon}$$

for all *z* satisfying $|z| = r_m$.

Let $f \neq 0$ be a solution of (*). Then we get

(11)
$$|B(z)| \le \left|\frac{f''(z)}{f(z)}\right| + |A(z)| \left|\frac{f'(z)}{f(z)}\right|.$$

In order to prove the theorem by contradiction, assume that $f \neq 0$ is of finite order. Then, by Lemma D, if α is a positive number, there exists a set $E_{\alpha} \subset [1, \infty)$ with finite linear measure such that

(12)
$$m(E_{\alpha} \cap [r/e, er]) < 2 \exp(-r^{\alpha}), \quad r > r_0(f),$$

and that, for $|z| = r \notin E_{\alpha}$,

(13)
$$\left|\frac{f'(z)}{f(z)}\right| < \exp(r^{2\alpha}), \quad \left|\frac{f''(z)}{f(z)}\right| < \exp(r^{4\alpha}), \quad r > r_0(f).$$

Furthermore, choosing α small enough to apply Lemma E to B(z) with (10) and (12), we get a sequence $s_m \to \infty$ with $s_m \notin E_{\alpha}$ such that for all $\theta \in [0, 2\pi]$,

(14)
$$\log|B(s_m e^{i\theta})| > s_m^{\rho-2\varepsilon}.$$

Hence the combination of (8), (11), (13) and (14) yield that as $s_m \to \infty$,

$$\exp(s_m^{\rho-2\varepsilon}) \le (|a|+2) \exp(s_m^{4\alpha})$$

on the points z_r $(r = s_m)$. This inequality leads to a desired contradiction if we make ε and α sufficiently small. Therefore $f \neq 0$ has infinite order.

Now let us prove the second case with respect to Lemma C. Suppose that if

$$K_r = \{\theta \in [0, 2\pi] : \log|B(re^{i\theta})| < r^{\lambda}\}$$

for given λ , $0 < \lambda < \rho(B)$, there exists a set $E_2 \subset [0, \infty)$ of logarithmic density 1 such that $m(K_r) \to 0$, as $r \to \infty$ in E_2 .

It follows from Lemma A that there exists a set $E_1 \subset [0, \infty)$ having a finite linear measure such that for all z with $|z| = r \notin E_1$, we have

(15)
$$\left|\frac{f^{(k)}(z)}{f(z)}\right| \le rT(2r, f)^3; \quad k = 1, 2.$$

Note that $F_3 = E_{\zeta} \cap E_2 - E_1$ has a positive lower logarithmic density, and that for all sufficiently large r in F_3 , we have $[\theta_r - \phi, \theta_r + \phi] - K_r \neq \emptyset$. Hence

there are unbounded points, $z = r^{i\theta}$ on which inequalities (9), (15) and $\log|B(re^{i\theta})| \ge r^{\lambda}$ hold simultaneously. On these points, these inequilities and (11) yield

$$\exp(r^{\lambda}) \le (|a|+2)rT(2r,f)^3$$

for some unbounded r-set. Therefore $f \neq 0$ has infinite order.

Finally, we suppose that B(z) is a transcendental entire function of order zero. Then there is a sequence $r_n \to \infty$ of real numbers for which

$$\log M(r_n, B) \ge n^2 \log r_n.$$

Hence for all $r \in [r_n, r_n^n]$,

$$\log M(r, B) \ge \log M(r_n, B) \ge n^2 \log r_n \ge n \log r$$

Now, set $F_4 = \bigcup_n [r_n, r_n^n]$. Then it follows that the upper logarithmic density of F_4 is 1, and that as $r \to \infty$ in F_4 ,

(16)
$$\frac{\log M(r,B)}{\log r} \to \infty$$

We note [1] that there exists a set $F_5 \subset [0, \infty)$ of logarithmic density 1 such that, given $r \in F_5$,

(17)
$$\log|B(re^{i\theta})| \ge \frac{1}{2} \log M(r, B)$$

for all $\theta \in [0, 2\pi)$.

Furthermore, from (8), (11) and (15), there is a set $F_6 \subset [0, \infty)$ of finite linear measure such that for all z_r satisfying $|z_r| = r \notin F_6$

(18)
$$|B(z_r)| \le (|a|+2)rT(2r,f)^3.$$

Therefore we conclude from (16), (17) and (18) that $f \neq 0$ is of infinite order.

REFERENCES

- [1] P. D. BARRY, On a theorem of Besicovitch, Quart. J. Math. Oxford Ser., 14 (1963), 293-302.
- W. FUCHS, Proof of a conjecture of G. Pólya concerning gap series, Illinois J. Math., 7 (1963), 661–667.
- [3] G. GUNDERSEN, Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc., 305 (1988), 415–429.
- [4] G. GUNDERSEN, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc., 37 (1988), 88–104.
- [5] W. HAYMAN, Meromorphic Functions, Clarendon Press, Oxford, 1964.
- [6] W. HAYMAN AND J. ROSSI, Characteristic, maximum modulus, and value distribution, Trans. Amer. Math. Soc., 284 (1984), 651–664.
- [7] S. HELLERSTEIN, J. MILES AND J. ROSSI, On the growth of solutions of f'' + gf' + hf = 0, Trans. Amer. Math. Soc., **323** (1991), 693–706.
- [8] S. HELLERSTEIN, J. MILES AND J. ROSSI, On the growth of solutions of certain linear differential equations, Ann. Acad. Sci. Fenn. Ser. A I Math., 17 (1992), 343–365.

- [9] T. KOBAYASHI, On the deficiency of an entire function of finite genus, Kōdai Math. Sem. Rep., 27 (1976), 320–328.
- [10] K. KWON, Nonexistence of finite order solutions of certain second order linear differential equations, Kodai Math. J., 19 (1996), 378–387.
- [11] I. LAINE AND P. WU, Growth of solutions of second order linear differential equations, Proc. Amer. Math. Soc., 128 (2000), 2693–2703.
- [12] M. OZAWA, On a solution of $w'' + e^{-z}w' + (az + b)w = 0$, Kodai Math. J., 3 (1980), 295–309.

Department of Mathematics Korea Military Academy P. O. Box 77-2, Gongneung, Nowon Seoul, 139-799 Korea