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PARABOLICITY, PROJECTIVE VOLUME AND FINITENESS OF

TOTAL CURVATURE OF MINIMAL SURFACES

Atsushi Atsuji

Abstract

We show that finiteness of a projective volume implies finiteness of total curvature

for stochastic complete minimal surfaces with finite number of ends and finite genus

which may not be geodesically complete. The tools we use include simple stochastic

calculus and Nevanlinna theoretic method.

Let x : M ! Rn be a minimal surface. Q. Chen in [6] showed that if M is a
properly immersed minimal surface with finite number of ends and finite genus
and M has quadratic volume growth, then total curvature of M is finite. Here
M is said to have quadratic volume growth if volðfjxja rgÞ ¼ Oðr2Þ. From a
result by Jorge and Meeks [12] it follows that for proper immersed minimal
surfaces with finite number of ends and finite genus, quadratic volume growth is
equivalent to finiteness of its total curvature.

On the other hand, Tkachev [15] introduced projective volume VpðMÞ of
properly immersed minimal submanifolds of dimension m defined by

VpðMÞ ¼ lim
r!y

1

log r

ð
fjxjarg

1

jxjm dv ðayÞ:

While this makes sense only for properly immersed minimal submanifolds, he also
introduced

QpðM; aÞ ¼
ð
M

jðx � aÞ?j2

jx � aj2þm
dv ðayÞ;

for a A Rn where ðx � aÞ?ðxÞ is a projection of x � a on the normal space to the
surface xðMÞ at a point xðxÞ. This is well-defined even for improper minimal
submanifolds. He showed that for properly immersed minimal submanifold M
of dimension m with a B xðMÞ,
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VpðMÞ ¼ mQpðM; aÞ:
He also showed that finiteness of QpðM; aÞ is independent of the choice of
a A Rn. Namely if QpðM; aÞ < y for some a A Rn, then QpðM; aÞ < y for any
a A Rn. We are interested in the case when the immersion may be improper and
M may be geodesically incomplete. Our result is

Theorem 1. Let x : M ! Rn be a minimal surface with finite number of ends
and finite genus. Suppose that M is stochastically complete and QpðM; aÞ < y
for some a A Rn with dðxðMÞ; aÞ > 0 where d is Euclidean distance of Rn. Then
M has finite total curvature. In addition if M is geodesically complete, then the
immersion x is proper.

The second assertion follows directly from the Jorge-Meeks theorem ([12]).
If M is properly immersed, then M is stochastically complete. Moreover if M
has quadratic volume growth, 2QpðM; aÞ ¼ VpðMÞ < y. Hence our result is a
generalization of Chen’s result.

It is well-known that a properly immersed surface with quadratic volume
growth is parabolic (cf. [8]). And it is also true that so is a properly immersed
surface with VpðMÞ < y. It is the first step of the proof of our result to show
M is parabolic under the assumption of the theorem. Thus we first note a
relationship between parabolicity and projective volume in section 1. In section
2 we give a lemma on logarithmic derivative of subharmonic functions which is
a main tool for our proof. We give a proof of the theorem there using it. We
add some remarks about relationships among stochastic completeness, para-
bolicity and finiteness of total curvature in section 3. Especially we note there
that the assumption on stochastic completeness can not be removed.

We also remark that the situation in the case that dðxðMÞ; aÞ ¼ 0 is di¤erent
from the case that dðxðMÞ; aÞ > 0 when x is improper. To treat the former case
we need some amount of discussion. The case is not treated here and will be
discussed elsewhere.

We would note that Fujimoto [7] considered an analogue of Nevanlinna
theory for minimal surface and obtained a result looking like the second main
theorem by Nevanlinna (see also [5]). Though he did not use a lemma on
logarithmic derivative, our lemma of logarithmic derivative and our result would
be closely related to it as they originally were in Nevanlinna theory for mer-
omorphic functions.

Throughout this note we use some probabilistic notions and technique.

1 Parabolicity and projective volume

We say that a Riemannian manifold M is parabolic if it does not have a
positive Green function on M, or equivalently,ðy

0

pðt; x; yÞ dt ¼ y; for x; y A M;
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where pðt; x; yÞ is the heat kernel for ð1=2ÞDM . We say that a Riemannian
manifold M is stochastically complete ifð

M

pðt; x; yÞ dvðyÞ ¼ 1; for x A M;

where dv is the measure defined by Riemannian volume. We remark that
parabolic Riemannian manifolds are always stochastically complete. The heat
kernel pðt; x; yÞ defines Brownian motion on M.

We first note that

Proposition 2. Let x : M ! Rn be a minimal surface. If M is stochas-
tically complete and

QpðM; aÞ ¼
ð
M

jðx � aÞ?j2

jx � aj4
dv < y;

for some a A Rn with dðxðMÞ; aÞ > 0, then M is parabolic.

Let X be a Brownian motion on M starting from x0 A M with respect to
the induced metric, Ex0

denote the expectation with respect to X and uðxÞ ¼
logjxðxÞj.

By direct calculation and Dynkin’s formula (cf. [4]) we have

Lemma 3. Assume dðxðMÞ; 0Þ > 0. We have

1

2
DMuðxÞ ¼ jx?j2

jxj4
;

and

Ex0
½uðXtDÞ� � uðx0Þ ¼ Ex0

ð tD

0

jx?j2

jxj4
ðXsÞ ds

" #
¼

ð
D

gDðx0; yÞ
jx?j2

jxj4
ðyÞ dvðyÞ;

where x0 A DHM is a relatively compact set, tD ¼ infft > 0 : Xt B Dg and gD is
Green function with Dirichlet boundary condition with respect to ð1=2ÞDM on D.

Proof of Proposition 2. Assume that a ¼ 0 for simplicity. Let fDng be a
sequence of sets such that Dn " M and Dn HDnþ1. Stochastic completeness
implies that tDn

! y as n ! y a.s.
Assume that M is not parabolic. Then there exists a global Green function

gðx; yÞ on M. Finiteness of QpðM; 0Þ implies that

sup
n

Ex0
½uðXtDn

Þ�a uðx0Þ þ
ð
M

gðx0; yÞ
jx?j2

jxj4
ðyÞ dvðyÞ < y:

Since uðXtÞ is a submartingale bounded from below, by Fatou’s lemma

Ex0
½uðXtÞ� ¼ Ex0

lim inf
n!y

uðXt5tDn
Þ

h i
a sup

n
Ex0

½uðXtDn
Þ� < y
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for 0 < t < y. Hence supt Ex0
½uðXtÞ� < y. By martingale convergence theo-

rem (cf. [14]) uðXtÞ converges almost surely to a finite random variable as
t ! y. On the other hand, from the next proposition we have supt uðXtÞ ¼ y,
a.s. Thus we arrive at contradiction. r

Proposition 4 ([1]). Let x : M ! Rn be a stochastic complete minimal
surface and X Brownian motion on M. Then supt jxðXtÞj ¼ y a.s.

Proof. We first note that DM jxðxÞj2 ¼ 4 since x is an isometry and a
harmonic map. Applying Ito’s formula we have

jxðXtÞj2 � jxðX0Þj2 ¼ B

ð t

0

j‘jxj2j2ðXsÞ ds
� �

þ 2t;

where B is 1-dimensional standard Brownian motion. On the other hand,Ð t

0 j‘jxj
2j2ðXsÞ dsa

Ð t

0 jxj
2ðXsÞ ds since j‘jxj ja 1. Law of iterated logarithm of

Brownian motion enables us to get the desired conclusion. r

2 Lemma of logarithmic derivative for d-subharmonic functions on
parabolic Riemann surfaces

If M is a parabolic Riemann surface, there exists an exhaustion function r
such that log r is harmonic function and the number of critical points of r in
fra rg is �wðrÞ for every r > 0 where wðrÞ is Euler characteristic of fra rg.

We first prove some preliminary lemmas to obtain our lemma of logarithmic
derivative. Set Dr ¼ fr < rg, qDr ¼ fr ¼ rg and Dðe; rÞ ¼ fe < r < rg.

Lemma 5. Let grðx; yÞ be Green function on Dr. For any x0 A Dr there exist
constants C1 > 0, C2 > 0 independent of r and y such that

C1 log
r

rðyÞ a grðxo; yÞaC2 log
r

rðyÞ :

Proof. We first see that log rðXtÞ=rðX0Þ ¼ BðftÞ where ft ¼
Ð t

0 j‘rj
2=r2ðXsÞ ds

and B is one dimensional Brownian motion.
Rewriting it as rðXf�1

t
Þ ¼ rðX0Þe2BðtÞ, we have

rðXtÞ=rðX0Þ ¼ rct
; ct ¼

ð t

0

j‘rj2ðXsÞ ds;

where rt is a 2-dimensional Bessel process.
We can assume that rðX0Þ ¼ 1 without loss of generality.
Define tr ¼ ft > 0 j rðXtÞb rg. Take 0 < e < r and xo A De. For

h A C0ðð0;yÞÞ
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Exo

ð tr

0

hðrðXtÞÞj‘rj2ðXtÞ dt
� �

¼ Exo

ð tr

0

hðrct
Þ dct

� �

¼ E1

ð sr

0

hðrtÞ dt
� �

;

where sr ¼ ft > 0 j rt b rg.
From this we have that there exist c1 > 0, c2 > 0 such that

c1t log
r

t
a

ð
qDt

grðx0; yÞj‘rjðyÞ dAtðyÞa c2t log
r

t
;

holds for 0 < t < r where dAtðyÞ is the induced surface measure on qDt.
Take e A ð0; rÞ. By local Harnack inequality on qDe we can see that there

exist c3 > 0, c4 > 0 independent of r and y such that

c3 log ra grðx0; yÞa c4 log r for y A qDe:

Since grðxo; yÞ is a bounded harmonic function on Dðe; rÞ,

grðxo; yÞ ¼ Ey½grðxo;Xtr5teÞ� ¼ Ey½grðxo;XteÞ : tr > te�:
Hence

c3ðlog rÞPyðtr > teÞa grðxo; yÞa c4ðlog rÞPyðtr > teÞ:

Combining this with

Pyðtr > teÞ ¼
log

r

rðyÞ
log

r

e

;

we have the desired inequality. r

Lemma 6. Let f be a nonnegative locally integrable function on M. Then
for any d > 0 there exists Ed HR with jEdj < y such that for r B Ed,

Ex0

f

j‘rj2
ðXtrÞ

" #
aCr d Ex0

ð tr

0

f ðXtÞ dt
� �� �ð1þdÞ2

:

Proof. Set mr ¼
Ð
qDr

f =j‘rj dAr where dAr is the induced surface measure
on qDr. We proceed to carrying out the same calculation as in [2] with the help
of Lemma 5. Applying co-area formula we have

Ex0

ð tr

0

f ðXtÞ dt
� �

¼
ð
Dr

gðx0; yÞ f ðyÞ dvðyÞ

¼
ð r

0

dt

ð
qDt

gðx0; yÞ
f

j‘rj ðyÞ dAtðyÞ:
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By Lemma 5 we have

C1

ð r

0

log
r

t
mt dtaEx0

ð tr

0

f ðXtÞ dt
� �

aC2

ð r

0

log
r

t
mt dt:

We first see that Lebesgue measure of the set

Ed ¼ r A ð0;yÞ jmr > r1þd Ex0

ð tr

0

f ðXtÞ dt
� �� �ð1þdÞ2( )

is finite. Set

E
ð1Þ
d ¼ r A ð0;yÞ j 1

r

ð r

0

mt dt >

ð r

0

log
r

t
mt dt

� �ð1þdÞ
( )

:

Then it is easy to see that jE ð1Þ
d j < y.ð

EdVðE ð1Þ
d

Þ cV½1;yÞ
draC

�ð1þdÞ2

1

ð
ðE ð1Þ

d
Þ cV½1;yÞ

mr

rdþ1
Ð r

0 log
r

t
mt dt

� �ð1þdÞ2 dr

aC
�ð1þdÞ2

1

ðy
1

mr

ð
Ð r

0 mt dtÞ1þd
dr < y:

Thus jEdj < y.
Harmonic measure ox0

on qDr with respect to x0 and Dr is obtained byð
qDr

f ðxÞ dox0
ðxÞ ¼

ð
qDr

f ðxÞ q

qn
grðx0; xÞ dArðxÞ;

where q=qn is inward normal derivative on qDr. Since n ¼ ‘r=j‘rj,
q

qn
log

r

rðxÞ ¼ � ‘ log
r

rðxÞ ; n
� �

¼ j‘rj
rðxÞ :

Hence by Lemma 5

C1

ð
qDr

f

j‘rj dAr a r

ð
qDr

f

j‘rj2
do ¼ rEx0

f

j‘rj2
ðXtrÞ

" #
aC2

ð
qDr

f

j‘rj dAr: r

We say u is a d-subharmonic function if u is a di¤erence of two subharmonic
functions locally on M. A signed measure m ¼ mþ � m� ðmþ; m� b 0Þ uniquely
corresponds to a d-subharmonic function u (cf. [9]). Such a m is called a Riesz
charge of u.

By a little probabilistic argument we have

Lemma 7 ([2]). Let u be a nonnegative d-subharmonic function on M with
Riesz charge mþ � m� and uðx0Þ be finite. If m� is not supported by a set of
positive capacity, then it holds that
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Ex0

ð tD

0

j‘uj2ðXsÞ ds
� �a� �

aCaðEx0
½uðXtDÞ� þ

ð
D

gDðx0; yÞ dm�ðyÞÞ
2a

holds for 0 < a < 1=2 and any relatively compact domain DHM.

From these lemmas we have the following theorem in similar way to [2].
Set uþðxÞ ¼ maxfuðxÞ; 0g.

Theorem 8 (Lemma of logarithmic derivative for d-subharmonic functions.).
Let u be a d-subharmonic function on M and uðx0Þ be finite. Suppose that uþ has
Riesz charge mþ � m� such that m� is not supported by a set of positive capacity.
Then for any d > 0 there exist constants C1;C2;C3 > 0 and Ed HRþ with
jEdj < y such that

Ex0½logþj‘ujðXtrÞ�aC1 logþðEx0½uðXtrÞ� þ
ð
D

gDr
ðx0; yÞ dm�ðyÞÞ

þ C2 log rþ C3

ð r

1

� wðtÞ
t

dt;

holds for r B Ed.

Lemma 9. Let uðxÞ ¼ logjxj. If QpðM; 0Þ < y and dðxðMÞ; 0Þ > 0, then

Ex0
½uðXtrÞ� � uðx0Þ ¼ Ex0

ð tr

0

jx?j2

jxj4
ðXsÞ ds

" #
¼ Oðlog rÞ:

Proof. Apply co-area formula and note the form of Green function on Dr.
r

Proof of Theorem 1. Let x : M ! R3 be a minimal surface. Assume that
a ¼ 0 for simplicity. Set uðxÞ ¼ logjxj. We first note that

j‘uj2 ¼ jx>j2

jxj2
;

where x> is a projection of x on the tangential space to the surface xðMÞ at a

point xðxÞ. Note that jxj2 ¼ jx>j2 þ jx?j2.
We apply Theorem 8 and Lemma 3 to this u. Then we have

Ex0
log

jx>j
jxj2

ðXtrÞ
" #

a const: logþ Ex0

ð tr

0

jx?j2

jxj4
ðXsÞ ds

" #
þOðlog rÞ;

for r outside the exceptional set. On the other hand, we proceed to making
direct calculation and similar way to Lemma 9 to see that

Ex0
½logjx>j2ðXtrÞ� ¼ const:

ð r

d

KðtÞ
t

þ const;
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for 0 < d < r where KðtÞ ¼
Ð
rat

�kðxÞ dv with the Gaussian curvature kðxÞ.
Hence with Lemma 9 we have

ð r

d

KðtÞ
t

¼ Oðlog rÞ;

which implies finiteness of total curvature. r

3 Remarks

We give some remarks on the assumptions of Theorem 1.
1. We first point out that if M is geodesically complete and of finite total

curvature, then M is parabolic. This well-known fact is originally due to Huber.
We can see this from Picard type theorem of Gauss map due to Fujimoto ([7],
Theorem 6.10, p124.). Let us assume that M is not parabolic and the total
curvature of M is finite. Then the characteristic function in the sense of Ne-
vanlinna of Gauss map G of M is bounded. This implies G omits a set of
hyperplanes of positive capacity. This contradicts completeness of M by Fu-
jimoto’s theorem.

2. There exists a minimal surface which is geodesically incomplete, of finite
total curvature and not parabolic. We can construct such surfaces by Weier-
strass formula. We choose a meromorphic function g on the unit disk in C such
that its image area is finite. We take it as a Gauss map. By Weierstrass
formula there exists a minimal surface in R3 which Gauss map is g. It has finite
total curvature and is not parabolic and geodesically incomplete by a similar
argument to 1 of this remark.

3. We also note there exist minimal surfaces which are geodesically complete
and stochastically incomplete. It is known that there exist bounded and geo-
desically complete minimal surfaces immersed in Rn. As for the construction of
such minimal surfaces, see [11] for the case n ¼ 6; 8 and [13] for n ¼ 3. Both of
them considered immersions from a unit disc in C.

We have that such surfaces are stochastically incomplete and not parabolic
and of infinite total curvature. As we saw, boundedness of minimal surfaces
implies stochastic incompleteness. In particular it is not parabolic. The second
assertion follows from 1 in this remark.

4. We note a little about Qp. We consider a hypersurface
M ¼ fðz;wÞ A C2 j gðzÞ ¼ wg in C2 where g is a holomorphic function on D: unit

disk in C. Then D has the metric ds2 ¼ ðjg 0ðzÞj2 þ 1Þjdzj2 induced by
x : D ! MHC2. We can see

jx?j2 ¼ 2jzg 0ðzÞ þ wj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg 0ðzÞj2 þ 1

q :

Hence
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QpðM; 0Þ ¼
ð
D

jx?j2

jxj4
ds2

a

ð
D

ðjg 0ðzÞj2 þ jgðzÞj2Þ
ðjzj2 þ jgðzÞj2Þ2

jdzj2:

It follows from this that for such a hypersurface M, QpðM; 0Þ < y if and only ifÐ
M
g�oP1 < y where oP1 is Fubini-Study metric on P1: one dimensional complex

projective space. It is easy to see that this surface is not stochastically complete
since lim t!z gðXtÞ exists. There are a lot of holomorphic functions on D
satisfying this condition. It would be a problem whether there is a geodesically
complete surface among these hypersurfaces or not.

5. We can construct a minimal surface which is geodesically incomplete and
stochastically complete using Weierstrass formula. This surface has Gauss map
with bounded image. The details will be in [3].

6. Our last remark is about properness and stochastic completeness. As we
mentioned, properness implies stochastic completeness and geodesic completeness.
Then a natural question may arise, asking if there exists an improper, sto-
chastically and geodesically complete minimal surface.

Proposition 10. There exists a geodesically and stochastically complete and
improper minimal surface in R3.

We already gave a non-flat, geodesically and stochastic complete minimal
surface between two parallel planes ([1]). By the half-space theorem due to
Ho¤man and Meeks ([10]) this must be improper.

There are a lot of minimal surfaces which are not only stochastically but also
geodesically complete.
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