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MINIMAL H; ACTIONS AND SIMPLE QUOTIENTS OF DISCRETE
7-DIMENSIONAL NILPOTENT GROUPS

PauL MILNES

Abstract

For connected nilpotent groups, 7 is the lowest dimension where there are infinitely
many non-isomorphic groups, and also where some groups have no discrete cocompact
subgroups. Here one infinite family of 7-dimensional connected groups is studied,
discrete cocompact subgroups H are found for some of them, and then the faithful
simple quotients A of C*(H) are identified. Such A are shown to be isomorphic to
C*-crossed products C*(Hsz,4(T*)) generated by some intriguing effective minimal
distal flows (Hs, T3), where Hj is the discrete 3-dimensional Heisenberg group.

1. Introduction

In 3 dimensions there is a unique (up to isomorphism) connected, simply
connected, nilpotent Lie group, which we call G; (following Nielsen [N]); G
(:R3 as a set) is the Heisenberg group with multiplication

(kym,n)(k',m' ,n') = (k+ k" +nm' ,m+m' n+n').
The faithful irreducible representations of the lattice subgroup H; (=Z° as a
set) of Gj generate the irrational rotation algebras Ay. In 4 dimensions there is
also a unique such connected group Gy, in 5 dimensions there are 6 of them,
Gs, 1 <i<6, and in 6 dimensions there are 24. The main thrust in [MWI,
MW?2] was to find cocompact subgroups Hy = G4 and Hs; = Gs ;, that would be
analogous to H3 < Gj3, and then for these H’s to identify the infinite dimensional
simple quotients of C*(H), both the faithful ones (generated by a faithful repre-
sentation of H) and the non-faithful ones, and also to give matrix representations
over lower dimensional algebras for as many of the non-faithful quotients as
possible. In the course of this work, it was observed that all flow presentations
of simple quotients that arose used actions of abelian groups, namely, Z or Z2,

or subgroups of them; this situation changed for one of the 6-dimensional groups
[M].

2000 Mathematics Subject Classification: 22D25, 46L55.

Keywords and phrases: Nilpotent group, cocompact subgroup, minimal effective flow, simple C*-
algebra, semidirect product.

This research was supported in part by NSERC grant A7857.

Received June 7, 2001; revised March 11, 2002.

209



210 PAUL MILNES

In § of the present paper, following [SS1, SS2], we display an infinite
family of connected, 7-dimensional, nilpotent groups G, and give a proof that
they are pairwise non-isomorphic. In §3 presentations of these groups as semi-
direct products R* x Hj are given. In §4, after discrete cocompact subgroups H
are identified for those G not involving an irrational parameter ¢ or f, the
semidirect product presentations are used to produce flows that identify, and give
concrete representations of, the faithful simple quotients A of the group C*-
algebras C*(H); different presentations of G as R* x Hj give rise to unitarily
inequivalent irreducible representations of H generating A.

Preliminaries.

To present the results and proofs of the paper, we need notation for semi-
direct products and C*-crossed products; the discussion which follows is quite
standard, appearing in [MW1], [Z-M] and many other places.

Suppose that N and K are discrete groups, the identity of each of them
being denoted by e. Suppose that there is a homomorphism s — o, from K into
the automorphism group of N. Then G = N x K becomes a group, the semi-
direct product of N and K, with the multiplication formula

(t,8)(t',s") = (tas(t'), ss").

We will usually write s(¢) instead of o,(z).

Conversely, if N is a normal subgroup of G with quotient group K = G/N
suitably embedded as a subgroup in G, then G is canonically isomorphic to a
semidirect product N x K, whose automorphisms are determined by G, o,(f) =
sts™! (product in G).

Now replace N by a C*-algebra 4 with identity 1 and assume that we
have a homomorphism s+— g; from K into the automorphism group of A.
Then, for f and g in the Banach space / 1(K7A), the convolution product f g
and involution f* are defined by

[#g(s) =" f(5)aslg(s™'s)) and f*(s) = ay(f(s7")");
sekK
with these definitions, /'(K, ) becomes a Banach *-algebra. The C*-crossed
product C*(A,K) is defined to be the enveloping C*-algebra of /!(K,A4).
For ae A and seK, the J-functions a, and J; in /'(K,A) c C*(4,K)
are defined by a,(s) = a, a,(s") =0 otherwise, and J(s) = 1 (the identity of A),
0s(s’) =0 for s # s.

2. Uncountably many 7-dimensional nilpotent groups

The material in this section is adapted from [SS1, SS2], where the setting
is that of Lie algebras. The groups themselves, as well as the classification the-
orem (Theorem 1), are given in some detail, partly because of the necessity to
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work closely with the groups, but also because it seems that [SS2] never appeared
in print; we thank T. Sund for correspondence, including a copy of [SS2].
We start with a description of the connected groups that will concern us here.

I The groups Gy ,.

Let ¢ =(..,0,0,1), e=(..,0,0,1,0), e3=(...,0,1,0,0), e4=
(...,0,1,0,0,0), etc., give a basis for R® or R’ and define multiplication as
follows.

Let e;, e; and e3 have commutators

(1) le1,e2] = es, [e2,e3] =es and [es,e] =es.

The resulting multiplication for R® is (isomorphic to) that of Nielsen’s Gg 15
(see the last 6 coordinates of (m,) below). Then add further commutators

(2) le1,ea] = Cige7, ez, es] = Cases and  [e3, €] = Cyper.
The resulting operation for R’ is
(f7 g7h7j7k7m’n)(f/7g/7h,7jl5k/7m,7n,)
(m,) =(f + 1"+ Cunj’ + Czsm(h/ — nk') + C36k(g' + nm’) + Cygnm'k’,
g+g +nmm' h+h —nk' j+j +mk k+kK m+m' n+n').

It is associative and a group multiplication if and only if

(%) Cia + G5 + G356 =0,
and then yields non-isomorphic groups Gy, for 0 <a <1 with
(Ca) Cs=a, Cyx=1 and Ciy=—(Cos5+ Cy)=—(a+1)

(see Theorem 1 below). Thus Gy, is an extension of Gg 5 via the cocycle
[(g7h7ja kaman)) (g/ah/ajlak,am/an/)]
= —(a+ Dnj' + am(h’ —nk') + k(g' +nm') + nm'k’.

Note. 1In this cocycle, and others in this paper, the quadratic terms are the
important part, the cubic terms arising merely from the order of the coordinates.

II The rest of the groups, G7; and Gy ..
Now add commutators
(3) [e2,e6] = Case7  and  [es, e5] = Csseq
to (1) and (2). The multiplication formula for R’ then has
Cym(g’ +nm’) + Cygnm’ (m' — 1)/2 + Cssk(h’' — nk') — Cysnk' (k' — 1)/2
added to the e; coordinate, and gives an associative multiplication if

(%) Ciu+Cs+C36=0
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(as before). Further non-isomorphic groups Gz for f > 0 are arrived at with
(C/}) C14 = —2, C25 =1= C36 and C35 = ﬁ = —C26.

The cocycle on Gg, 15 for G7 4 is seen in the first coordinate of the multiplication
formula

7g7 ) .’ 7m7n ,g, ) '7 7m7n
(fs9.h jk,mn)(f' g b, j' k' m' )
= (f+f =20 +m(h' —nk') + k(g' +nm’) + nm'k’
— pm(g’ +nm') — pnm'(m' —1)/2 + Bk(h' — nk') — pnk’ (k' —1)/2,
g+g +nm' h+h —nk',j+j +mk' k+k',m+m' ,n+n').

(mg)

There is one more group Gy ,; it has
(C*) C14 = —2, C25 =1= C36, C35 =1 and C26 =0.

For Gy, the cocycle on Gg ;5 is seen in the first coordinate of the multiplication
formula

(F19:h joJesm,m) (g ' K ' ')
=(f+f =20 + m(h' —nk') + k(g' +nm’)
+nm'k’ + k(h' —nk') — nk' (k' — 1)/2,
g+g +nm' h+h —nk',j+j +mk' k+kK m+m' n+n').

(m..)

THEOREM 1. These groups, G1, (0<a<1), Grp (f>0), and Gy, are
pairwise non-isomorphic; any 7-dimensional extension (with one-dimensional centre)
of Ge, 15 is isomorphic to one of them.

Proof. Let ¥ be the set of extensions G =R x Gg 15 of Gg 5 with 1-
dimensional centre. We want to divide these up into isomorphism classes and
will do this by determining which cocycles o : Gg 15 X Gg,15 — R give isomor-
phic groups, and then picking one group from each isomorphism class; these will
be the groups in the theorem.

Now a cocycle Gg,15 x Gg,15 — R is a linear combination potentially of
36 (or more) terms, but a lot of these can be eliminated. We end up with the
cohomology group #? = #*(Gg, 15, R) = 66*(Gg 15, R)/%*(Gg 15, R) (the quo-
tient of the cocycles by the boundaries) represented as cocycles of the form

6

6
Ciler el € #7,  a(u,v) =" Cyu,

=1 j=4 i=1 j=4

for u,v € Gg 15 (=R® as a set. Here only the quadratic terms of the cocycles are
being kept track of; see the note before subheading II). The only restriction on
the C;’s is that

(%) Ciu+ Cos + C36 =0,
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as above. (The other commutators [e;,e;| give boundaries, or do not yield an
associative operation, or differ from one of the commutators above by a bound-
ary; see the Note below.) So, from now on we consider 4 to be the extensions
of Gg 15 by these cocycles.

Now every 4 = (A,])l3 j—1 € GL(3,R) gives an automorphism of Ge, 15 (also
denoted by A4), and hence an isomorphism of each G € %, by acting on the
generating set,

ei— A(e;) = ZA,,e,—e €Gs 15, 1<i<3;
j=1

(essentially) every automorphism of Gg, s arises in this way. We need to see
how this action of GL(3,R) on Gg, s transfers to a cocycle

3

E chuvj, u,v € Gg, 5.

i=1 :

To do this, first note that, with
ey = les,e5], es=lej,e)] and g = ey, e

(as for the e;’s), we have

3
A(esyi) = eé-&-i = Z&{ije3+jv 1 <i<3,
j=1
where o = (42/,,)13 ., is the matrix of cofactors of 4 = (A4;). Then, since
A" = /T /det A, one sees directly that a cocycle o on Gg 5 with ba51s {ei},
o given by a matrix

C=Clo)=(Cyj1 <i<3,4<j<6)

is transformed by 4 to a cocycle o’ on Gg, 15 with basis {e/}, «’ given by a matrix
C(a') = (det A)ACA™" (product of 3 x 3 matrices). But, by Jordan canoni-
cal form [LT; p. 243, for example], each C(«) can be written as AMA~! for an
A e GL(3,R) and a matrix M of one of the following forms.

x 0 0
(1)’ 0 y 0 (3 real eigenvalues)
0 0 z
x 0 0
(2)’ 0y —z (complex eigenvalues y + iz with z # 0)
0 z vy
x 0 0
3 [0 y 0] (Jordan block)
0 1
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Now the o’s we are considering must give an extension R x Gg s with 1-
dimensional centre (i.e., « is non-degenerate); thus x # 0, also in (1)’ y #0,
z # 0; further, y #0 in (2)" and (3)’, because Tr C = C4 + Crs + C3 = 0 and
x #0. Since the matrix 4 in AMA~! can be multiplied by a scalar multiple of
the identity without changing 4MA~!, we can see that the GL(3, R)-orbit in .#>
of C = C(a) contains exactly one of the following matrices.

—a—1 0 0
(1) 0 a0, 0O<a<l
0 01
2.0 0
@ o 1 =p], g>0
0 B 1
2 0 0
3 o 10
0 11

(For example, in (1)’ we can scale with the det 4 from the action so that 2 of
the eigenvalues are positive and the larger of these equals 1, maybe both equal 1;
this gives (1).)

The proof is completed by observing that the matrices (Cy, 1 <i<3,
4 <j<6)at (1), (2) and (3) give the cocycles determined at (C,), (Cp) and (C.)
for the groups in the statement of the theorem, G;, (0 <a <1), Gy (f>0)
and Gy .. [ |

Note. To eliminate terms in #2, like

[e1,e2] = Fes: substitute f — f + cg (gets rid of the term);

[e1,e1] = Fe;: substitute f +— f + cn® (gets rid of the term).
(These last 2 terms are boundaries.)

[es, e5] = Fes:  doesn’t give an associative operation;

[es,e1] = Feq:  substitute f — f + cnh (converts to —Fley, es)).

3. Presentations as a semidirect product R* x G

All of these groups G have normal subgroups N; = (R, R,R,0,0,0,R) =~ R*
with quotient K; =G/N; =Gj; embedded in G as the subgroup (0,0,0, R, R, R,0),
so that G is a semidirect product R* x G3. The groups G7, have 2 more pre-
sentations as a semidirect product R* x Gj, and the group Gy, has one more.

Presentation 1 for Gy ,.
The relevant action of G;3=(0,0,0,R,R,R,0) =Gy, on R* =
(R,R,R,0,0,0,R) is given by
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(i k,m) = (f',q" 1 n")
(acta.) { — (f + (a+1)jn' +amh’ + k(g —mn’),g" —mn',h' + kn',n"),
and yields multiplication for R*x G; ~ G4,
(fsg:h.n,j.k,m)(f'q' W0’ ' K m')
(mg, 1) = (f+f"+ (a+1)jn" +amh’ +k(g' —mn'),
g+g —mn' h+nh'" +kn' n+n',j+j +mk' k+k',m+m'),
with inverse (f,g,h,n,J, k,m)f1 =
(—f + (a+1)jn+ kg + am(h — kn), —g — mn, —h + kn, —n, —j + mk, —k, —m).
We call this group G, 1. An isomorphism ¢; : G7, — G, is given by
o: (f,9,h, j, k,mn) — (f+ (a+ V)nj —nkm,g — nm,h + nk,n, j, k,m).
Presentation 2 for Gy ,.
Here N> = (R,0,R,R,R,0,0) ~ R* is normal in Gy, with action of
G3 =G7,/N.=(0,R,0,0,0,R,R)
on R* given by
(g,m,n) = (f', 1, ', k")
(actg,2) { = (f = (a+ Dnj' + am(h' —nk') — gk’ b’ — nk', j' + mk’ k'),
so that R* x G; =~ G7,, has multiplication
(fsh, gk g,mn) ([0 j' k' g m' ')
(my2) = (f+S = (a+ D’ + am(h" — nk') — gk',
h+h —nk', j+j +mk' k+k'.g+g" +nm' , m+m' n+n).
We call this group G, .. An isomorphism Gy, — G, . is given by

@ (f7g7h7j7kam7n) = (f_kgahvjvkvgvman)'

Presentation 3 for Gy ,.
Here N3 = (R,R,0,R,0,R,0) =~ R* is normal in Gy, with

Gr.4/N3 = (0,0,R,0,R,0,R) = G;

(note the quotient is only isomorphic to Gs for this presentation). The action
of G3 on R* is given by

(h7 k? n) : (f/7g/7j/7m/)
(aCta,3)
= (f = (a+ Dnj' + k(g +nm’) —ahm’,g' +nm', j' — km',m’),
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so that R* x G; ~ G7,, has multiplication
(fs g, jym.hk,n)(f',q' ' m" W K ')
(my3) = ([ +f" = (a+ D' + k(g + nm") — ahm’,
g+g +nmm' j+j —km' m+m' h+h —nk' k+kK n+n').
We call this group G, 3. An isomorphism ¢ : Gy, — G, 3 is given by
o3 : (fy9,h, j, k,mn) — (f —amh,g, j — mk,m, h, k,n).
Of course, these presentations of Gy, are isomorphic, e.g., the map
prowy ' < (fh, jk,g.m,n)
— (f+ gk + (a+ V)nj — nkm,g — nm, h + nk,n, j, k,m)

is an isomorphism of G,, onto G, ;. One might expect also to get auto-
morphisms of G, with these isomorphisms, much as in [M], where 2 presenta-
tions of a 6-dimensional group Gg 4 as a semidirect product R? x G3 do give rise
to an automorphism of Gg 4 (and also of the simple quotients of the lattice sub-
group He 4 =2 6= Gg,4). However, here we do not seem to get an isomorphism
of G, 1; the problem is the asymmetry of multiplication in the f-coordinate (of
(m, 1), for example).

Presentations for Gy ..
The relevant action of G; =Gy ./N; = (0,0,0,R,R,R,0) c G7 . on N| =
R*=(R,R,R,0,0,0,R) is given by

( ) (o kym) = (f',g' W0y (f' + 20" +mh' + k(g —mn")
act,
! b 'k —1)/2,g" — mn' B+ k0,

and yields multiplication for R* x G3 =~ G7 .,
(fsg.hn, jlem)(f',g" ' ', j' K m)

(m..1) = (f 4"+ 20+ mh' + k(g — mn') + kh' + k(e — 1)/2,

g+g —mn' h+h" +kn' n+n' j+j +mk' k+k'm+m).
with inverse

(9. h j e, m) ™!
= (—f +2jn+ kg +m(h — kn) + kh — nk(k + 1) /2,
—g —mn,—h+ kn, —n, —j + mk, —k, —m).
We call this group G. ;. An isomorphism ¢: Gy, — G, is given by
(f,9,h, j, kym,n) — (f +2nj —nkm + nk(k — 1)/2,9 — nm,h + nk,n, j, k,m).
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The second presentation for G7. has normal subgroup
N> = (R,0,R,R,R,0,0) =~ R* = Gy,

with G3 = G7,/N, = (0,R,0,0,0,R,R). The reason there is no third presenta-
tion for Gy . as R* x H; is simply that (0,0,R,0,R,0,R) is not a subgroup of
Gy ., as it was for Gy,.

Presentation for G 4.
The relevant action of G3 =Gy 4/N =(0,0,0,R,R,R,0) =Gy on N =
R* = (R, R, R.0,0,0,R) is given by
(Johe,m) = (f',g" 0 sn) v (f" + 20" + mh' + k(g" — mn')
(actg 1) + B(kh' +n'k(k —1)/2 —mg" + n'm(m — 1)/2),
g —mn' b +kn' )n'),

and yields multiplication for R* x G; =~ G4,

(f 9. h,m, jk,m)(f',g' 0"’ ' K m)
=(f+f"+2jn" +mh' + k(g —mn")
+ B(kh' +n'k(k —1)/2 —mg' + n'm(m — 1) /2,
g+g —mn' h+h +kn' n+n' j+j +mk' k+k',m+m).

(mg 1)

We call this group Ggi. An isomorphism ¢ : G753 — Gg 1 is given by

¢ : (f7g7h7j7k7m’n)
— (f +2in —nkm + pn(m(m — 1) /2 + k(k — 1)/2),g — nm, h + nk,n, j, k,m).

4. Lattice subgroups H and faithful simple quotients of C*(H)

The groups H; ,, 0 <a <1

The objective is to identify a cocompact lattice subgroup of G7,; such a
subgroup H clearly exists if a is rational and this is the case we will deal with in
detail. However, such an H also exists for some ‘mildly’ irrational . What this
means is there are matrices C, as in the proof of Theorem 1, even with entries
in Z, for which the corresponding (connected) group is shown by the classifica-
tion process in Theorem 1 to be isomorphic to Gy, for an irrational g; e.g., the
group with
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is isomorphic to G7, with a =+2—1/2. (We thank Dave Witte for corre-
spondence about these matters.)

So, let us work with G, (as above), and suppose that 0 < a = p/q < 1 with
( P,q) = 1(.1 Tl}lleq (Z/q) 1>1< Z% is a cocompact.subgroup of G, 1b (whose finvers)e
image under the isomorphism ¢, : G7, — G,,1 is a cocompact subgroup of G7 ,);
we multiply the first coordinate of G, ; by ¢ and define Hy , to be the set Z 7 with
multiplication

(f’g’h’n’j)k’m)(f/7g/7h/7n/)jl7kl’m/)
(my ;) =(f+f"+(p+q)jn' +pmh' + qk(g" —mn’),
g+g —mn' h+h'" +kn' n+n',j+j +mk' k+k' \m+m').

Of course, Hy, is the semidirect product Z* x H;, with action of H; on Z*
given by

oy G (f',g" ' n")
= (' + (p+ q)jn’ +pmh' + qk(g' —mn'),g' —mn' W + kn' ).

To identify the simple quotients of C*(H; ,) this action must be transferred to the
generators x, w and v of 4(T°) (and of L*(T?), i..,

x,w and v: (x,w,v) — x,w and v).
For A = e*? with irrational 0, we get
(acty ) (j,k,m):x— %X, wis 2Py and e APTOTTdRmymmy Ky
Some operator equations on L2(T?) are relevant here. The generators are
(0,0,1) ~U:w APw and v x v,
(0,1,0) ~V:x+— Al and v+~ wo, and
W:f—uof (fel*(T)

(a generator u, v or w in L2(T?) not being mentioned when it is left fixed). The
operator equations and subsidiary operators are given by

(1,0,0) ~ [U, V] = X : v+ ATy,
(CR,.1) (U W) =Z" . fx'f, [V, W)=Y :f—wf,
(X, W] =% [U,Y]= and [V,Z] =21

(the other commutators from U, V, W, ,X,Y and Z being trivial, i.e., the oper-
ators commute). The point about the equations (CR, ) is that the map

(m) (f,g,h,n, j ke,m) — X ZIYhwrxiykym

is a representation of Hy,, generating a C*-algebra ‘l[;f, say.
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The next theorem also involves the (minimal distal) flow #,;, = (H;, T?)
from (act ;); to get it, just apply inversion to Hjz at (act),) and arrive at

(Fa1) (U k,m) : (x,w,0) = (A %x, A7y, p- (PO TtPkmymy=kyy -3 T3,

TurorREM 2. Let 1 = e*™ for an irrational 0.

(@) There is a unique (up to isomorphism) C*-algebra AZ;“ generated (via m)
by (any) unitaries Z, Y, W X,V and U satisfying
(CR,1) {[Uv V}:Xa [Uv W}:Z_lv [V’ W]:Yv

(X, W] =% (U, Y]=2 and [V,Z]=.1"

A70'” is simple and is universal for the equations (CR, 1). Let Hy act on 4(T?) as

indicated at (act) |); then

Aj“ = C*(%(T%), Hy) = ).

(b) Let ©n' be a representation of Hy , such that m=n' (as scalars) on the
center (Z£,0,0,0,0,0,0) of Hy,, and let A be the C*-algebra generated by n'.
Then A;AZ)’“ via a unique isomorphism « such that the following diagram
commutes.

(c) The C*-algebra A;’“ has a unique tracial state.

Proof. The proof can be much as for Theorem 1.1 in [MW2]; we give some
details.

One must note first that the flow 7, = (Hj, T°) above is minimal and
effective; so the generated C*-crossed C*(%(T?),Hs) product is simple, by Cor-
ollary 5.16 of Effros and Hahn [EH].

Once the simplicity of C*(%(T>),H;) is established, it is straightforward to
prove the rest of (a) using the correspondence of

5(0,0,1)76(0,1,0)a5(1.0,0)7U(O,O,O)aW(0,0,0)7x(0,0,0)
e /! (Hs,4(T%)) = C*(4(T%), Hy)
to U,V , X, W,Y,Z, respectively; see [MW2; proof of Theorem 1.1], for example,
also for (b) and (c). [ |

Since the C*-algebra AZ)'” is generated by a faithful representation of Hy 4,
we refer to it as a faithful simple quotient of the group C*-algebra C*(Hj,).
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Concrete representations of A7"’

The first 3 are derived from the 3 semidirect product presentations of Gy , as
R* x Hj; they are 1nterest1ng in part because they generate unitarily 1nequ1va1ent
representations of A on LZ(T 3).

1. The first representatlon is the one generatlng ‘2[91 above.

2. The second representation of A is derived in similar fashion from
Guo = R* x H; ~ Gy, which yields multlphcdtlon

(.f7h?j’k’g’m7n)(f/7/1/7j/7k/7g/7m/’n,)
(my, ,) =(f+f" = (p+ ' +pm(h' —nk') — qgk’,
h+h' —nk' j+j +mk' k+k',g+g +nm' m+m' n+n')

for Hj ,=Z'; H} , is a semidirect product Z* x Hs with action of Hs on Z*
given by

(g7m7n) : (f/7h/,j/7k/)
(act; »)
’ — (f" = (p+qnj' +pm(h' —nk') — qgk',h' —nk', j' + mk' k').

Transferring this action of Hs to %(T°) (and L*(T?)) gives
(acty,) (g,m,n):x—=2""x, wr ATPEOm, and oy s ATy,
and leads to operators and operator equations on L?(T?)

0,0,1) ~ U :wr A~y and v x o,

(0,1,0) ~ V' :x— A’x and v~ wo,
W':f—uof (felL*T?), and
(1,0,0) ~ [U", V'] =X": v 274,

(CR,.2) U W=7 f=xf, VW)=Y :fwf,
X' W= [U,Y=i""9 and [V',Z]=1".

Then, much as for presentation 1, the map
(') (f h, j.k,g,mn) — A Z" Y Twkx iy myn

is a representation of H7 . generating a C*-algebra 9102, say. Of course,
the isomorphism ¢, o p;!: G,> — G, yields isomorphisms H7 — Hy, and
V3 QIZ; ‘JIZI To implement the last isomorphism, note that the unitaries
X', Z' U, Y' W' V' satisfy (CR, ), so that, by Theorem 2, i~ QI; 1= QI;;
is generated by

Z9 Y/‘l Wan Vk U™ — X/gz/h U/n Yl] Wlk V/m.
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3. The third representation of A;’“ is derived from G, 3 = R* x H; ~ Gy 4,
which yields multiplication

(f,g,j,m,h,k,n)(f/,g/,j',m/,h/,k/,n/)
(my 3) =(f+/" = (p+ a0+ qk(g' +nm") — phm’,
g+g +mm' j+j —km' \m+m' h+h —nk' k+k',n+n'),

for HY , = Z7, which is a semidirect product Z* x Hz with the action of Hs on
Z* given by

(h7 k7 n) : (f"’g,7j/7m,)
(ac ;3) / ./ ! / /i Y / !
‘ = ("= (p+ @' + gk(g" +nm") — phm',g" +nm’, j* — km',m"),

Transferring this action of Hs to %(T3) (and L*(T?)) gives
(acty3) (hk,n):x Ax, wis ATPFOMand g s ATy
and leads to operators and operator equations on L2(T?),

0,0,1) ~ U" :wis APy and v x,

(0,1,0) ~ V" : x> 2% and v+ wlp,
W": f—uof (feL*(T?), and
(=1,0,0) ~ [U", V"= X" : 0 AP,

(CRy,3) U W =Z":f=xf, V' W]=Y""f=wf,

(X" W' =", [U", Y= and [V" Z"] =19
The map
(7‘[”) (f, g, j,m,h,k, n) — /lf'Z//g Y/(/ W//mX//h V//k U’
is a representation of HY ,, generating a C*-algebra 91;;’ There are isomor-
phisms H7 , — Hy, and ¥, : QI;; — A, the latter of which is implemented by
noting that the unitaries Z”, X", U”, Y", V", W satisfy (CR,, 1), so that x//fl is
generated by
Z9 Yh Wan V/c U™ — Z//gX//h U//n Yl/] Vl/k Wl/m.
4. There is a fourth representation. It is generated by a representation p of
H;, on /*(Z°),
p(f7 g, h7 ka j7 m, n) : 5(g’,h’,j’,k’,m’,n’) — )”f+<p+q)jnl+pmh/+qk(§]’7’11n/>6sa
where
s=(g+g —mn' h+h +kn' n+n',j+j +mk' k+k' m+m').
The unitaries U = p(0,0,0,0,0,0,1), ¥V =p(0,0,0,0,0,1,0) and W =
0(0,0,0,1,0,0,0) satisfy (CR, 1), so the C*-algebra generated by p is isomorphic
to Aj“.
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THEOREM 3. The representations n, n' and 7" of H;, generating
QI;:' (;A;’“), 1 <i <3, are irreducible, and are not unitarily equivalent.

Proof. We show that the representation = of Hy, is irreducible, and start
by noting that, in our notation, {x9w"v” : g,h,n € Z} is the usual basis for # =
L*(T?). Then we have

/H—nvn

U = xIwmh" s AP0l s x9whu™ s x99 x9w and

W xIw™" s xIwhypn L
Suppose that T € B(#) commutes with U, ¥V and W; we must show that T is
a multiple of the identity. Let matrix coefficients for 7' be given by

g, h.on __ g,h,n g’ h' n'
TxIw™" = E Ly X WO
g',h'\n'eZ

. h . . .
with 29,7,1,‘n,ez|t5;‘,;,’fn,|2 < o0 and, in fact, uniformly bounded in g,h,n.

Now TW = WT, TV = VT and TU = UT imply that

g, hon+1 — _ _g.h.n 99 ;9:h+n,n __ 1qg' .g.h,n
(1) tg’.h’,nurl - [g’,h’,n” (2) A [g’,h’.n’ =4 tg’,h’fn’,n’

h,g—n,h,n h' g, h,n
and (3) AP1ZZ’,II’J’[’ = /117 tg’+n’,/1’,n/

respectively. Then (3), with n =0, implies that (4) %7, =0 if ' 0,
because of the convergence condition. Also (1) and (4) imply that lgg;,h,;,"‘n, =0
if n#n’, (2) and (1) imply that tg,hh,"n =01if g #¢’, and then (3) and (1) imply
that t;’",i’;ﬁ"n =0 if h # &'; it follows that 15.71}11::11 is constant for all g,h,n, T is a
multiple of the identity.

The proof that the other representations are irreducible is similar. To see
that the representations 7 and =’ of AZ‘” are not unitarily equivalent, suppose that
T is a linear isometry of J# onto itself, intertwines U, V', W and V', W', U’, and

is given by

'h. i ; -
TxIwp" = E 1) /:’,’th w/ vk,
n,jkeZ

Then TU = V'T, TV = W'T and TW = U'T imply that

ph,g—nh,n __ 1ph’ .g,h,n 9q .9, h+n.n __ g, h.n
(1) AP et =22 e (2) AT =00
Skl g i gh,
and (3) 4% =4 (p+")1t,§’,+1,i1_j7k,
respectively. Then (1), with n = 0, implies that (4) t,‘f,h/(;( =0if k # 0, (2) implies

that 75;"% =0, and then (3) implies that tf,h/'}( =0 always, which is a contra-

diction.” The other proofs of inequivalence are similar. |
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The group H .
Here there is only one group Gy, = G, |, and Hy, is defined to be the
lattice subgroup Z7 < G. 1; so H; . has the same multiplication formula as G, ;

(f7g7h7n7j7k7m)(f/’g,’h/7n/7j/7k,7m/)
(mf ) = (f +f +2n" +mh' +k(g' —mn') +kh' +n'k(k —1)/2,
g+g —mn' h+h' +kn' n+n' j+j +mk' k+k',m+m').

Of course, Hy . is the semidirect product Z 4 x Hj, with action of H3 on Z* given
by

(Jiksm) = (f',g", 0 n") = (f" +2jn" +mh" + k(g" — mn")
(act] ;)

+kh' +n'k(k—1)/2,9" —mn' ,h' + kn' n").
For /=¥ with irrational 0, transferring this action of H; to %(T?) (and
L*(T?)) gives

(act” ) (j,kym):x— iFx, w2 K and  p e pFRmEREED

/2x*’”wkv,
and leads to operators and operator equations on L2(T?).
(0,0,1) ~U:w—Jiw and v x v,
(0,1,0) ~V:x+— Ax, wr—iw and v wo,
W:f—uof (feL*(T*?) and
(1,0,0) ~ [U, V] = X : v+ 2?0,
(CR..1) U, W) =Z" fxf, V,W]=Y:funf,
X, W] =22 [U,Y)=i=[V,Z]=[V,Y]
The map
(p) (f g, hon, j k,m) — A Z9Y"wrxivkym
is a representation of Hy ., generating a C*-algebra Q[Z;‘ .

To get a (minimal distal) flow (Hs, T7), apply inversion to Hj at (act!;)
and arrive at '

(Z.1)  Gok,m) : (x,w,0) o (A7"x, ARy, jm 2 thmm(md /2 =y =myyy
Of course, there is an analogue of Theorem 2 for Hy ..
TurOREM 4. Let 1 = e*™ for an irrational 0.

(@) There is a unique (up to isomorphism) C*-algebra A;‘* generated (via p)
by (any) unitaries Z, Y, W, X,V and U satisfying

_ o -
(CR,.1) {[UaV]—X, U, w)=z", [v,w] =y,

(X, W) =22 [UY|=4 and [V,Z]=7"
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A;’* is simple and is universal for the equations (CR, 1). Let Hy act on 6(T") as
indicated at (act ); then
Tox A * ~ 7,%
AT = CH(6(T?),Hs) = Ay

(b) Let p' be a representation of Hy . such that p=p' (as scalars) on the
center (Z,0,0,0,0,0,0) of Hy ., and let A be the C*-algebra generated by p'.
Then A_A > via a unique isomorphism « such that the following diagram
commutes.

Hy. = A
PN S
A

(c) The C*-algebra A;’* has a unique tracial state.

The simple quotient A7‘* of C*(Hy,.) has 3 concrete representations the first
of which is 917"’f above. The second presentation G, , for G7 . gives another

concrete representation ‘2102 for A . These C*-algebras QI;T and 9192 arise

from irreducible representations of H7 4 that are unltarlly inequivalent (much as
in Theo7ren1 3). The third representation of A is analogous to representation
4 of Ay“.

0

The groups H7 4, 0 < f
Here G732 Gg1, and as for G,;, we deal only with the rational case

0 < f=p/q with (p,q) = 1. Then (Z/q) x Z° is a cocompact subgroup of Gg.1,
so multiply the first coordinate of Gg 1 by ¢ and define H; g to be the set Z 7 with
multiplication

(f?g7h’n’j7k7m)(fl,g/7h/7n/7j/’k/’m/)
= (f+/" +q2jn" +mh' +k(g" —mn"))

+plkh' +n'k(k —1)/2 —mg’' +n'm(m —1)/2),

g+g —mn' h+h' +kn' n+n' j+j +mk' k+k',m+m).
Of course, Hy, is the semidirect product Z* x Hs, with action of Hy on Z*
given by
(acty )

(Jokom) : (f',g", 0 n') = (f" + q(2in" +mh" + k(g" — mn'))

+pkh' +n'k(k —1)/2 —mg' +n'm(m —1)/2),9" —mn',h' + kn' n’).

For /. = ¢?™ with irrational 0, transferring the action of Hz to %(T?) (and

L*(T?)) gives
(act”, ) { (jok,m) x> A%Px s 297y and
act

Bl

N )Lq(ijkm)er(m(mfl)/2+k(k7 1)/2)x7m ka’
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and leads to operators and operator equations on L*(T?)

(0,0,1) ~U:x+— A Px, w— Alw and v~ x'v,
(0,1,0) ~ V:x— A%, ww— APw and v+ wo,
Wef—uo (feLX(T%), and

(1,0,0) ~ [U,V]:X:v|—>/12qv,

UWl=Z" foxlf, [V, W]=Y:fwf,

(CRﬂ) 2q 19 —_ P

(X, wj=24, [U,Y]|=21, [UZ]=.7,

[V,Y]=4" and [V, Z] =419

To get a (minimal distal) flow (Hj, T?), apply inversion to Hj at (acty ;)
and arrive at

Jok,m) : (x, w,v) o (AR jmampky,
- {( ) o) e

24 q(— 2/+km)+p(m(m+l)/2+k(k+l)/2)xmw kl)).

The reader can devise analogues of Theorems 2 and 3 for Hy .

Notes. As for A;, we have here AZ)"” gAZ’(;I; this is because of the iso-
morphism of flows effected by the homeomorphism

(x,w,v) — (X, W, D)
of T3. The same observation holds for AZ}’* and AZ}-ﬂ . However, the broad
task of classifying these C*-algebras must wait until a later time; it seems that
the presence of different powers of the same A in the commutation equations,
e.g., (CR, 1), is an obstacle. It may be worthwhile to point out that the faith-
ful simple quotients here, e.g., A() , are non-faithful simple quotients of an

8-dimensional group Hg (=Z% as a set) that does not involve such exponents; Hg
has 2-dimensional centre, and multiplication

(e’f7 g7 h?"?j’ k7m)(e/7f/7g/7h/?n/7j,’kl7ml)
(ms) =(et+e' +jn' +mh', f+f"+jn" +k(g" —mn'),
g+g —mn' h+h +kn' n+n' j+j +mk’ k+k m+m).

The faithful simple quotients of this group are generated by representations of
Hg, (e, f,...) — Au/ ... for linearly independent A, ue T. The algebras A(, are
generated by (non-falthful) representations of Hg, (e, f,...) — P29 ..
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