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LEIBNIZ ALGEBRAS ASSOCIATED WITH FOLIATIONS
YOHSUKE HAGIWARA AND TADAYOSHI MIZUTANI

Abstract

Certain types of singular foliations on a manifold have Leibniz algebra structures
on the space of multivector fields. Each of them has a structure of a central extension
of a Lie algebra in the sense of Leibniz algebra. To a specific Leibniz cohomology
class, there corresponds an isomorphism class of central extension of a Leibniz algebra
similarly as in the case of Lie algebra.

1. Introduction

Recently, a lot of interests have been taken in Leibniz algebra, which is
introduced by Loday [10, 11] as a non-commutative variation of Lie algebra. A
Leibniz algebra g is an R-module, where R is a commutative ring, endowed with
a bilinear map [,]: g x g — g satisfying

91,192, 93]] = [[91,92], 93] + 192, [91, 93]]-

Note that we do not require the anti-symmetricity of [,].

In this paper, we consider Leibniz algebra associated with a certain type of
singular foliations on a manifold. More precisely, we observe that when an in-
tegrable and locally decomposable g-form «w on a manifold M is given, there
yields a foliation # of M whose leaves are either of dimension n — g or 0. Any
transversely oriented regular foliation of codimension ¢ is defined by such a g-

form. We show that the bundle of (¢ + 1)-vectors /\q+1 TM on M has a Leibniz
algebroid structure whose anchor map is a interior product by w and whose
bracket is given by

[X,Y], =X, Y]+ (-1)KX |do)Y

for any X, Y € 9" (M), where [,] denotes the Schouten bracket, {|> the natural
pairing and 27"'(M) the space of (¢ + 1)-vector fields. We see that the iso-
morphism class of the algebra is determined by the foliation . It is not a
Lie algebra in general unless ¢ =0 or ¢ =n —2. Considering the difference of
Z 7Y (M) from Lie algebra, it is shown that Z7"1(M) is, as a Leibniz algebra, a
central extension of the Lie algebra of vector fields tangent to Z.
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As it is known, central extensions of a Lie algebra g with the center A are
described by HZ (g;4) where Hj..(g;4) denotes the Lie algebra cohomology
with coefficients in 4. One can ask the question: how about the case of Leibniz
algebras? We see that the “usual” cohomology of Leibniz algebra does not
work, but a slightly different cohomology H*(g; 4) makes a similar one-to-one
correspondence between equivalent classes of central extensions and elements in
H?(g;A). It means that, when g’ is a central extension of a Leibniz algebra g
with the center A4, Leibniz algebra structures of g’ is determined by an element
in H?(g;4). Applying it to Leibniz algebras associated with foliations, we can
obtain a lot of geometric examples of central extensions of Leibniz algebras.

The (co)homology of Leibniz algebra is studied by Loday and Pirashvili [12].
Lodder [14] extends the Leibniz cohomology from a Lie algebra invariant to an
invariant for a differential manifold. The notion of Leibniz algebroid over a
manifold was defined in [9] as a vector bundle with certain additional conditions
as in the case of Lie algebroid, and it was proved that the bundle of (p — 1)-
forms on a Nambu-Poisson manifold has a Leibniz algebroid structure. In [6],
one of the author discovered an alternative Leibniz algebroid structure which is
a natural generalization of the Lie algebroid associated with a Poisson manifold.
Description of all Leibniz algebras of dimension three is given in [1].

2. Leibniz algebras and cohomologies

First we review the notion of Leibniz algebra defined by Loday [10, 11, 12].
Let R be a commutative ring and g an R-module endowed with a bilinear map
[,]:gxg— g satisfying

(2.1) 91,92, 93] = [[91,92], 93] + [92. [91, 93]]

for g1,92,93 €g. The map [,] is called the Leibniz bracket on g and (2.1) the
Leibniz identity. We remark that if [,] is additionally skew-symmetric, then
the Leibniz identity is just the Jacobi identity and (g, [,]) is a Lie algebra.
Therefore, a Leibniz algebra is a non-commutative variant of Lie algebra.

Now we consider the cohomology of a Leibniz algebra with values in a
module [12]. Suppose that (g,[,]) is a Leibniz algebra and 4 an R-module
equipped with bilinear actions of g

[,]:gxAd—A4, [,]:Axg— 4
such that
(22) [aa [91792]] = Ha’gngﬂ + [917 [(l,gz]]
(2.3) 91, [a, g2]] = [lg91. 4], 92] + [a, g1, 92]]
(24) 91,192, a]] = [lg91, g2], a] + [92, [91, ]

for gi1,9, €g and ae€ A. We also use the notations ga = l,(a) = [g,a] and ag =
ry(a) = [a,g]. The condition (2.2)—(2.4) above is equivalent to that
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(2.5) ligi,g0) = (L, 1g,]
(2‘6) Flgr, 2] = [191 ) rgz]
(2.7) , 0l =—1, 01y

where [,] in the right-hand side of (2.5) and (2.6) denotes the commutator of
operators.

The Leibniz cohomology of g with coefficients in A is the homology of the
cochain complex C*(g; 4) = Homg(®*g, 4) (k >0) whose coboundary operator
0% . Ck(g;4) — CFH1(g; A) is defined by

(28) ’\k k(gl7"'7gk+l)

k

~ k
E gla ceen iy - '7gk+l)) + (_1) (ck(glv o 7gk))gk+1
i=1

+ Z (_1)IC (glﬁ"wg;»"ng*l’[giagj]?ngrl)--'yngrl)
1<i<j<k+1
where (g1,...,gk+1) denotes g1 ® -+ ® gry1. The condition 0o d =0 is proved
n [12].
When the left action and the (—1) times of the right action agree, we get the
following ““usual” Leibniz cohomology:

PROPOSITION 2.1. Let g be a Leibniz algebra and A a g-module with respect
to the representation of g on A, that is, A is endowed with a bilinear map g x A —
A such that [g1,¢:)a = g1(g2a) — g2(g1a). Then the operator 3% : C*(g;4) —
Ckl(g; A) given by

k+1

(29) akck(gl, B angrl) = Z(_l)iilgi(ck(gla oo vé;a s 7gk+1))

i=1

D DR G S M (TR 7
1<i<j<k+l

9,951, 915+ -+ Grer1)
defines a Leibniz cohomology of q with coefficients in A.
In most of the cases, we consider the Leibniz cohomology of this type, which
is denoted by HL*(g; 4). 1If (g,[,]) is a Lie algebra, we obtain the subcomplex
of (C*(g;A),0) that consists of the skew-symmetric cochains. The cohomology

of this subcomplex is just the usual cohomology H (g;A4) of the Lie algebra
(g,[,]) with coefficients in A. Thus there is a natural homomorphism

1: Hf\.(9;4) — HL"(g; A4).

The followings are several examples of Leibniz cohomology we have in mind.
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Example 2.2 ([2, 4, 16]). Let (M,II) be a Nambu-Poisson manifold of order
p, that is, IT is a p-vector field satisfying
((dfr,....df,-1),11] =0
for fi,...,f,-1 € C*(M), where [,] denotes the Schouten bracket. It holds that
N - C®(M) is a Leibniz algebra by the bracket [,] defined by

[AA-Afomt, g1 A Agpi]
—1
gi A - AD(dfy, . dfpor,dgi) A A g

S

Il
-

i
for fi,...,fp-1,091,...,9p-1 € C*(M). Furthermore, by the natural action
[ﬁ AN /\fg‘)flvf] = H(dﬁw"adfl;fladf)?
we obtain the Leibniz cohomology HL*(AP_] C*(M); C*(M)).
Example 2.3 ([9]). Let (M,II) be a Nambu-Poisson manifold of order

p >3, The space of (p — 1)-forms Q?~'(M) is a Leibniz algebra by the bracket
[,] defined by

(2.10) [2. 8] = LB + (—1)"(I(dx))p
for o, € QP (M). By the action of Q”~'(M) on C*(M)
(o, f] = H(a, df ),

we obtain the Leibniz cohomology HL*(Q"~'(M); C*(M)). The cochain com-
plex CK(Q”~'(M); C*(M)) has the subcomplex CK(N'~'dC*(M);C*(M)),
and there exist a natural map from Ck(/\”_] C*(M); C*(M)) (Example 2.2) to
CHQP~ 1 (M); C*(M)) whose image is this subcomplex.

Example 2.4 ([6]). In case of Nambu-Poisson manifold of order 2, the
bracket (2.10) gives a Leibniz algebra structure only if the Poisson structure is
decomposable (that is, rank IT < 2), and then agrees with the Lie algebra bracket
on the space of 1-forms. One of the authors proved that there is a different
Leibniz bracket

(2.11) [ B = Lo B — mp) dex

on Q" '(M) for p>2, which agrees with the Lie bracket when p=2. It
defines a different Leibniz cohomology from that in Example 2.3, but it holds
similarly that the cochain complex CK(QP~!(M); C*(M)) has the subcomplex
C"(Ap_l dC*(M); C*(M)) and there exist a natural map from C"(/\p_1 C*(M);
C*(M)) to it.

Example 2.5 ([13]). Let M be a smooth manifold and (Z(M),[,]) the Lie
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algebra of smooth vector fields on M. It is obvious that C* (M) is a Z(M)-
module with respect to the representation by the Lie derivation. The Leibniz
cohomology HL*(Z(M); C*(M)) is, by definition ([13]), the homology of the
complex of continuous cochains Hom§y™ (®*2' (M), C*(M)) (k = 0) in the C*
topology. The coboundary operator is given as the exterior differential, that is,

k+1
(2.12)  d¥eF(Xn,. . X)) =D (DT IX(K (X, X X))
i=1

+ Z (_l)ick(Xla"'727"-7&717[)(}7)(}]7
I<i<j<k+1
Afj+la' .. 7Xk+l)

for X1,..., Xp+1 € Z(M). The de Rham cohomology Hj (M) of M is just the
cohomology of the subcomplex of the skew-symmetric and C*(M)-linear co-
chains. Then the diagram

H} (M) —— Hip(2(M); C* (M)

(2.13) J /

HL*(Z(M); C*(M))
commutes where H (% (M); C*(M)) denotes the Gel'fand-Fuks cohomology.
The map 1: Hix(M) — Hlp(Z(M); C*(M)) is induced by the inclusion
Hom@?{,, (2(M); C* (M) — Hom™ (2" (M); C* (M)
where 2%(M) denotes the space of k-vector fields on M and n: Hip(2(M);
C*(M)) — HL*(Z(M); C*(M)) is induced by the projection ®*2' (M) — 2*(M).

3. Leibniz algebras associated with foliations

The notion of Leibniz algebroid is introduced in [9] as a generalization of the
Lie algebroid:

DEerINITION 3.1. A Leibniz algebroid is a smooth vector bundle 7: 4 — M
with a Leibniz algebra structure [,] on I'(4) (the space of smooth sections of
A) and a bundle map p: 4 — TM, called an anchor, such that the induced map
p:T(A4) — (M) satisfies the following properties:

(1) (Leibniz algebra homomorphism)

p([x y1) = [p(x), p()]

(2) (derivation law)

[x, 7] = (p(x).f)y + /1 ]
for all x,yeI'(4) and f e C*(M).
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Example 3.2. 1f the bracket [,] is skew-symmetric, we recover the Lie
algebroid.

Example 3.3. The bundle of (p —1)-forms /\’771 T*M over a Nambu-
Poisson manifold (M,II) of order p is a Leibniz algebroid with the anchor map
IT: /\p71 T*M — TM and the bracket either (2.10) (p > 2 which we assume IT is
decomposable when p =2) or (2.11) (p = 2).

Example 3.4 ([5]). There is a different generalization of Lie algebroid. A
Filippov p-algebroid, or p-Lie algebroid, (E,x,|[,...,]) over a manifold M is a
vector bundle E endowed with a p-Lie bracket [,...,] on I'(E), that is, the skew-
symmetric bracket satisfying the Filippov (or Fundamental) identity

P

lar, ..y ap1,[bry. b)) =D [brs. . far, .y, bl by
i1
for any ai,...,a,-1,b1,...,b, e I'(E), and a bundle map 7 /\pilE — TM, called
an anchor, such that the mduced map nw: I /\P — Z (M) satisfies the fol-
lowing properties:

[77,'(611 AN s A Cl],,l),ﬂ(bl N s A bpfl)]

p—1

E 7Zb1/\ al,...,apfl,bi]/\---/\bpfl),
i=1

[alv-“aap—lvfb} :f[alv"'aap—lab] +(n(a1 AN /\ap—l)f')b
for all ai,...,ap—1,b1,...,bp—1,beT(E) and fe C*(M). In this case, it is
shown that Ap “'E is a Leibniz algebroid with the anchor 7 and the bracket

lai A~ Anap_1,by A Aby ] = E biA--Alar,...,ap_1,b] A - Aby_y.

In the recent paper [20], it has been shown that any Nambu-Poisson mani-
fold has an associated Filippov algebroid.

Let # be a transversely oriented foliation of codimension ¢ on M. Then
we deduce, by using a partition of unity, that there exists a transverse volume
form @ on M such that w is decomposable (that is, w = w; A --- A w, for some
l-forms w;,...,w,) and integrable (dw =7y A w for some l-form p). In this
paper, we call a decomposable and integrable form «w on M simply an integrable
form. We remark that @ needs not to be nonsingular. When w is nonsingular,
the transversely oriented foliation & is recovered by w; =--- = w, =0 where
w=w; A ANw; If wis singular, it yields a foliation whose leaves are of co-
dimension ¢ where @ # 0 and otherwise of dimension 0; we consider the foliation
to be given by the interior product i, : /\"+1 TM — TM. Thus the equivalence
class of an integrable form gives a foliation.
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Now, we will prove that such a foliation given by an integrable ¢g-form on a
manifold M gives the Leibniz algebroid structure to the bundle of (¢ + 1)-vectors.

THEOREM 3.5. Let M be an n-dimensional smooth manifold endowed with a

decomposable and integrable g-form w (q <n). Then /\‘H'l ™ Ifecomes a Leibniz
algebroid over M whose anchor is the interior product 1, : /\q+ T™ — TM and
whose bracket is defined by

[X, Yﬂw = [1L,X, Y]+ (—1)q<X|da)>Y.
for any X,Y € XY (M), where [,] denotes the Schouten bracket, {|» the natural
pairing and XV (M) the space of (q + 1)-vector fields.

Proof. This Leibniz algebroid is essentially the same as that in Example
3.3 with the bracket (2.10) by the correspondence IT = (—1)"'®(w) where @ is
an arbitrary co-volume field on M (that is, a dimensional multivector field).
However, we will give a direct verification in the realm of multivector fields.

We abbreviate [,], to [,[. It is easy to see [X,fY]= ((1X)f)Y +
SI[X,Y]. Let us prove 1,([X,Y]) = [1oX,1,Y]. Since w is integrable, there
is a l-form y such that dw =y A w. By the decomposability of w we have
(X (w)) =0. Thus

(3.1) () do = (—1) X |do)o.
Moreover,
(Lx(0) Y) (@) = Lx(0) (Y () = Y(Ly()®)
= [X (@), Y(o)] = (=1)KX [dw)(Y(w)).
Therefore, we get
(32) [ X, Y] = [X(0), Y](w) + (=1) X | do)(Y(w))
= [1o6X,1,Y].

Now we will see that the Leibniz identity holds. Let X,Y,Ze 27 (M).
By (3.1),

diy(w) do = o A (d{X |dw)) + (—-1)!(X | dw) do.
Thus we have
X, Y[(do) = (Lo V) (do) + (—1) <X | deo ¥ | dev
= Ly <Y |dw) — Y(Ly(w) do) + (—1)1{X | dw){Y |dw)
= (X(0)Y |dw) — Y(diy () dw) + (—1D)UX |dod{Y |dw)
= (X ()XY [dw) — (Y (0))<X |dw).
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Therefore, by (3.2),

[[X. Y].Z] = [X(@), Y(@)}. Z] + (~D)/(X (@)<Y | do) — (Y()){X | dw))Z.
Also using (3.2), we have

[X,[Y, Z]] = [X(), [V, Z]] + (=) X | dw)[ Y, Z]
= [X(@),[Y (), Z] + (=1) <Y |dw) Z]
+ (D)X [dw)([Y (@), Z] + (=1) <Y [ dw)Z)
= [X(0),[Y (), Z]]

+ (=DUX (@)Y |dw))Z + (-1) <Y |dw)[X (o), Z]
+ (=D)X | do)[Y (o), Z] + <X [dw){Y |dw)Z.
In the same way, we have
[Y,[X,Z]] = [Y(w), [X(w), Z]]
+ (=DU(Y ()X |dw))Z + (-1) KX |dw)[Y (o), Z]
+ (D)UY |do)[X (o), Z] + (X |do){Y |dw)Z.
Then the Leibniz identity
[Xv[[YvZM] = [[[[X, Y],Z] + [[Y’ [[X»ZM
is equivalent to
(X (@), [Y(w), Z]] = [[X (@), Y(0)], Z] + [Y (0), [X (), Z]]
which is true since [Ly(w);, Ly(w)] = Lix(w), v(w) holds. O

CorOLLARY 3.6. (1) (7Y (M),[,]) is a Leibniz algebra where
(3.3) [X,Y] =X, Y]+ (-1)!(X(dw))Y.

The interior product 1, is a Leibniz algebra homomorphism from & ‘]H(M )
to the Lie algebra of vector fields (Z(M),[,]). It also holds that
[ker 1,,, Y] =0 and [X,ker 1,] € ker 1, where X, Y € 2771 (M).

(2) For any non-zero function f, the multiplication by f induces an isomor-
phism_ from the Leibniz algebra (2" (M),[,],) to (X7 (M),[,],,)-
That is, the isomorphism class of Leibniz algebra structure is determined
by the foliation.

Proof. Since (1) is obvious, we will check (2). We have
[X, Y]y, =X (@), Y] = X(w) A Y(df) + (X (@ A df)Y + (=1)X | [ dw)) Y
=/1X, Y], + (X (@) A Y)(d).
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On the other hand, we have
/X, fY], = (X (0 Adf)Y + f1/X, Y],
= f?[X(), Y] ~ fX () A Y(df)
+ (=D (X(dw))Y + f(X(w A df)Y

)
= ’[X, Y], + [(X(@) A Y)(df).
This is equal to f[X, Y],,, and we obtain (2). O

In general, (24" (M),[[,]) is not a Lie algebra unless ¢ =0 or ¢ =n — 2.

Example 3.7. (1) The case ¢ =n —2 corresponds to the Lie algebra as-
sociated with a Poisson manifold of rank 2 via the isomorphism by the
volume.

(2) Consider the case ¢ =0. For any function f on M, the Lie bracket is
given as

X, Y], = 71X, Y]+ (X)) Y = (X)X

where X, Y € Z(M). This corresponds to the Lie algebra associated with
a Nambu-Poisson manifold coming from a volume form.
(3) Consider the case ¢ =n— 1. Then the Leibniz bracket is given as

Lf®,9®], = (fZg — 9Zf + f9{Z|>)®
where @ is a co-volume field, f,g € C*(M), do =y A w and Z = ®(w).
Therefore, if w is a closed (n — 1)-form, (2"(M),[,],) is a Lie algebra.
This corresponds to (C*(M),[,],) defined by an arbitrary vector field Z
where

[f 9], = fZg — 9Zf .

Sometimes, we have a Lic algebra as a Leibniz subalgebra. For example,
let us consider (Z*(R"),[,],). By Corollary 3.6, it is a Leibniz algebra if
is an integrable 1-form on R”. In the following by a constant bivector field we
mean the bivector field of the form

Zal/ ox;

i<j

where a; € R.

ProOPOSITION 3.8. Let f be a quadratic function on R". In the Leibniz alge-

bra (Z*(R"),[,1,) ar)» the subset of constant bivector fields 4 22, (R") forms a Lie
algebra.
Proof. 1t follows from a direct computation. O

We can relate this Lie algebra to the Lie algebra of matrices; let (/, k) be the
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signature and / the nullity of any quadratic function f on R". Denote by Pr the
matrix diag(fj;«,0;) where I,y is the unit matrix of size j+ k and 0; is the zero
matrix of size /, and by so(j,k,/) the set of matrices in g/(n) satisfying

IiqA + ‘Al =0
where [y = diag(l;, —I,I;). Then,

THEOREM 3.9. (%fonst(R”)7[[,]dfv) is isomorphic 1o (so(j,k,1),{,}p) where

{X, Y}P, =XPY — YP/X for any X,Y e€so(j,k,I).
Proof. 1t also follows from a direct computation. O

. g ,2
In case f is nondegenerate, (2.,

(R"),[, 1) is isomorphic to (so(j,k),[,]).

4. Central extensions of Leibniz algebras

Let us return to the Leibniz cohomology of a Leibniz algebra g. The
condition (2.2)—(2.4) admits the case that the right action r, = 0 for any g e g. If
this is the case, we get a different Leibniz cohomology from “usual” one given
by Proposition 2.1. In this section, we assume the right action r, =0, and we
use this kind of Leibniz cohomology since it is essential when we consider the
extensions of Leibniz algebras.

PROPOSITION 4.1. Let g be a Leibniz algebra and A a g-module with respect
to the representation of g on A, that is, A is endowed with a bilinear map g x A —
A such that [g1,92)a = g1(g2a) — g2(g1a). Then the operator 6 : C*(g;4) —
Ck+l(g; A) given by

k
(A1) 6K (g gie) = S DTG GG g1

i=1
+ Z (71)ick(g17'"aé}v"'agj—la
1<i<j<k+1
[gi7 g]]) Jjt+1y--, gk+l)

defines a Leibniz cohomology of g with coefficients in A.

We denote this Leibniz cohomology by H*(g; 4). Note that even though g
is a Lie algebra and c¥ is skew-symmetric, ¢! is not skew-symmetric in general.

Now, we will consider the central extensions of Leibniz algebras. A central
extension (g',[,]) of a Leibniz algebra (g,[,]) with a center 4 is a Leibniz alge-

bra with a surjective homomorphism IT : ¢’ — g whose kernel 4 is a center in the
sense of [A4,g'] =0. This is equivalent to giving an exact sequence

O—)A—l>glﬂ>g—>0

such that 4 is a center of g'.
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The next theorem shows that an analog of the case of Lie algebra holds (see
also [12]).

THEOREM 4.2. Let (g,[,]) be a Leibniz algebra and A a g-module. Then
an element of H*(g; A) determines an equivalence class of central extensions of g
with the center A. The action of g on A is recovered by g-a = [s(g),a] where
(', 1,]) is a central extension of g and s : ¢ — §' an arbitrary linear map satisfying
IMos=idy. Conversely, an equivalence class of central extensions of g with the
center A defines the action of ¢ on A by g-a = [s(g),a] where s is as above, and
determines an element of H*(g; A). That is, a central extension of a Leibniz alge-
bra g with a center A is in one-to-one correspondence to an element of H?(g; A) up
to isomorphisms.

Proof. Take an arbitrary “section” s. Then S = s(g) has a Leibniz bracket
[,], induced by s. We may write ¢’ =S @ A. Thus it may be written g/ =
s(gi) + a; for any g/ e g’ where Il(g]) =gieg,a;,€ 4 and i=1,2. We deduce
that the action of g on A4 is independent to the choice of a section map s. It
holds

[givgﬂ] = [[S(gl)vs(g2)]] + [[S(gl)vaz]}v
and from II([g{,g5]) = [s(g1),s(g2)], it follows

[s(g1),5(92)] = slg1, 92] + (g1, 92)

for some linear map ¥, : g® g — A. It is shown that the Leibniz identity holds
if and only if i, is a 2-cocycle. Now, we will see that [if,] € H*(g;4) does not
depend on the choice of s. Take a section § and let a; =g; — §(g;) (i=1,2).
Then we may define a 1-cochain 7:g— A by #(g) =§—s. Since

s([g1,92]) + [5(91), a2 ] + (g1, 92) = 5([91, 92]) + [5(g1), a2 ] + (91, 92),

we have

(s =) (91, 92) = g1 - t(92) — t([g1, 92])-

The right hand of the equation is just d#(gi,¢2), thus we deduce that [y,] e
H?(g; A) does not depend on the choice of s. We denote this element simply by

Next we prove that by the equivalence class of extensions iy is determined
up to coboundaries. Suppose that (g',[,]),(§’,[,] ) are isomorphic central
extensions of g, and ., ; are corresponding cocycles with respect to sections s, §
respectively. We consider the commutating diagram

i
0 A l g 0 g
|
g g

1~ I
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where f is a Leibniz algebra isomorphism. We define 1-cochain 7:g— 4 by
t=fos—35 Then, from y, = foy, f|,=1 and

fos([gl,QZD + H:fOS(gl)aa2]]7 + lpfox(glaQZ)

=3(l91,92)) + [5(91), a2 + 1(92)]™ + VY91, 92)

where g/ = s(g;) + a;, it follows
(s = U5)(91,.92) = 91 - 1(92) — 1([91,92]) = 61(g1,92).-

Hence we have [y] = [f]. Conversely, it is not difficult to see that if corre-
sponding cohomologies with two central extensions of g are equal then they are
isomorphic. O

We remark that we cannot develop a Leibniz generalization of the abelian
extension of a Lie algebra because [[ai,s(g2)],s(g3)] + [s(92), [a1,s(g3)]] does
not vanish in general for g/ =s(¢9;)) +a; (i=1,2,3).

As an example of a central extension, we have the Leibniz algebras as-
sociated with foliations. For any foliation %, given by a g-form w, we have
shown that (24" (M),[,],) is a Leibniz algebra. In fact, it follows from Cor-
ollary 3.6(1) that there is a central extension

0 — ker 1, — 29 (M) % Z,(M) — 0.

where Z,(M) denotes the image of i, which yields the foliation Z,. We will
calculate the 2-cocycle of this extension. When w is nonsingular, that is, the
given foliation is regular, we may take a section s by s(X) =Z A X where Z is
an arbitrary g-vector field satisfying w(Z) =1, and then y is given by

(X, Y) = LZA Y +CXYZ A Y)

where dw =y A w. Therefore, if a foliation is given by w; = 0 for non-zero 1-
forms wy,...,wy,

U (X, Y)=Lx(Zi A - NZy) A Y+<X|§q:yﬁ>(Y/\Zl/\---/\Zq)

i=1

where dw; =Y,y A wr and w;(Z;) =0;. For a singular g-form w = fo’
where f is an arbitrary function and ' a nonsingular g-form, we take a metric
g and identify the tangent space and the cotangent space. Then we may take a
section

where g(Z) = w, which is well-defined since both Z and an element of Z,(M) are
divisible by f. Using the metric g satisfying |@’| = 1, the corresponding cocycle
with s is given by
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(X, Y) = LZ' A Y + X)X Z A Y
where Z’ and Y’ denote f~'Z and /'Y, respectively.
Conversely, by the theorem above, an arbitrary element of H?(%,,(M); ker 1,,)
determines a Leibniz algebra structure on 24" (M).

The following consideration gives us homomorphisms between Leibniz alge-
bras.

ProposITION 4.3.  Suppose that a p-form o and a q-form [ which are both
integrable are given, and that o A f #0. Then o A f is also integrable, and we get
the exact sequence

unp

(4.2) 0 —— ker 1,5 —— ZPHT(M) Lunp(M) — 0.

The following diagram of Leibniz algebra commutes where 1, = (—1)"15 and
I M) < 29N (M) is the image of the interior product 1, : XPTTN(M) —
2N (M).

(%p+q+1(M)7[’ﬂaAﬁ)

/ ’ff

@4 (), 1,1,) J @ (), L 1,)

<%“Aﬂ(M)>[’})
Proof. Tt is easy to see that a A f is an integrable (p+ ¢)-form. Let
us show the above diagram commutes. All the maps are well-defined since

w(%j“(M)),M.%}f“(M)) < Zynp(M). For any X,Y e 277" (M), we calcu-
late

[tanpX, Y(2) = Lxunp (Y (2) = Y(Lranp®)
= [(1X)(B),1. Y] = (=1)"™X | doc A BH(Y ().

Therefore,
la([[Xa Y]x/\/}) = ([IOU\/)'Xv Y] + (71)p+q<X | d(OC A ﬁ)>Y)(OC)
= [(12X)(B), 12 Y] + (=1) X o A dBH(Y ()
= [ X)(B), 1 Y] + (= 1)<t X [ dB)(Y ()
= [1.X, 1, Y ]
and thus we conclude that z, : 274" (M) — 29" (M) is a Leibniz homomor-
phism; similarly for 1 : 27 (M) — 277 (M). O

Example 4.4. We consider the Lie algebra s/(2,R) with the basis
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C1(1 0 (01 (0 0
‘=380 -1) 27 \o o) 27 \1 o)
Then it holds that

le1,e2] = ez, [er,e3] =2e1, [e1,e3] = —es.

Let us take the dual ef,e;,e; of ej,er,e3. From de; = —ej A 3, it follows
that (A2s/(2,R),[,],:) is a Leibniz algebra which is a central extension of the Lie
algebra g where ’

g:span(61,€3), [63761] = e3.

As we mentioned before, we may take a section s(X) =ex» A X. Then the cor-
responding cocycle € H?(g;9 A g) is given by

VX, Y)=[X,ea) A Y —{Xl|ejdea A Y
for any X, Y e€g. Since it follows that
Yler,er) = (e, e3) = Yles,er) =0, Y(es,e3) =2a

where a =e3 Aej € g A g, we may write Y = 2ae; ® e;.
When we replace e; with ce; where ¢ is a non-zero constant, which preserves
the foliation, then by

H:gl ) gz:l]cez* = Cﬂ:gl ’ gz]e;

we deduce that the cocycle y is replaced with ¢ .
Now, let us elucidate all the central extension (A%s/(2,R),[,]) of g. The
action of g on g A g is given by

(4.3) ej-a=-2a, e3-a=0,
that is, g-a =2%a, and any l-cochain ¢ is generated by
t =aey, t3=ae;.
Since 5¢(g1,92) = g1 - t(g2) — t([g1, 92]), we have
(4.4) oti(e1,e1) = —=2a, oti(er,e3) =0t1(e3,e1) =oti(es,e3) =0,
(45) dtz(e1,e3) = ot3(ez, e1) = —a, dtz(er,er) =dtz(es,e3) =0,

thus we may write 6¢; = 2x11 and Jt3 = i3 + k31 where x; denotes —ae/ ® e;‘.
A direct computation shows Jrc13(eq,e3,e3) # 0, that is, k13 is not a cocycle, thus
we deduce that H?(g;g A g) is 1-dimensional and a cocycle cr33; where ¢ is a
constant determines an element in H?(g;g A g). The corresponding Leibniz
algebra structure on AZ%s/(2,R) is then given by

[[6‘2/\61,6‘2/\61]:0, [62/\6‘1,82/\63]:—62/\63,

[ex nes,eanel] =exnes, [ernes,ernes]=—cesne
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(the rest is given by (4.3) and [g A g, A%s/(2,R)] = 0). Thus we have shown that,
on any central extension of g with the center g A g, the Leibniz algebra structure
is necessarily of this type.

(2]

REFERENCES

SH. A. Ayurov AND B. A. OMmIROv, On Leibniz algebras, Algebra and Operator Theory,
Kluwer Academic Publishers, Dordrecht, 1998, 1-12.

Y. L. DALETSKII AND L. A. TAKHTAJAN, Leibniz and Lie algebra structures for Nambu algebra,
Lett. Math. Phys., 39 (1997), 127-141.

A. FRABETTI AND F. WAGEMANN, On the Leibniz cohomology of vector fields, Ann. Global
Anal. Geom., 21 (2002), 177-190.

P. GAUTHERON, Some remarks concerning Nambu mechanics, Lett. Math. Phys., 37 (1996),
103-116.

J. GrABOWSKI AND G. MarMO, On Filippov algebroids and multiplicative Nambu-Poisson
structures, Differential Geom. Appl., 12 (2000), 35-50.

Y. HaGiwArRA, Nambu-Dirac manifolds, J. Phys. A, 35 (2002), 1263-1281.

R. IBAREZ, M. DE LEON, J. C. MARRERO AND D. MARTIN DE DIEGO, Dynamics of generalized
Poisson and Nambu-Poisson brackets, J. Math. Phys., 38 (1997), 2332-2344.

R. IBANEzZ, M. DE LEON, J. C. MARRERO AND E. PADRON, Nambu-Jacobi and generalized
Jacobi manifolds, J. Phys. A, 31 (1998), 1267-1286.

R. IBAREZ, M. DE LEON, J. C. MARRERO AND E. PADRON, Leibniz algebroid associated with a
Nambu-Poisson structure, J. Phys. A, 32 (1999), 8129-8144.

J.-L. Lopay, Cyclic Homology, Grundlehren Math. Wiss. 301, Springer-Verlag, Berlin, 1992.

J.-L. Lopay, Une version non commutative des algébres de Lie: les algebres de Leibniz,
Enseign. Math. (2), 39 (1993), 269-293.

J.-L. Lopay anD T. PirasHviLi, Universal enveloping algebras of Leibniz algebras and
(co)homology, Math. Ann., 296 (1993), 139-158.

J. M. LopDER, Leibniz cohomology for differentiable manifolds, Ann. Inst. Fourier (Gre-
noble), 48 (1998), 73-95.

J. M. LopDER, Leibniz homology, characteristic classes and K-theory, preprint.

K. Mikami AND T. Mizutani, Foliations associated with Nambu-Jacobi structures, preprint.

N. NakanisHI, On Nambu-Poisson manifolds, Rev. Math. Phys., 10 (1998), 499-510.

Y. NamBu, Generalized Hamiltonian dynamics, Phys. Rev. D, 7 (1973), 2405-2412.

H. J. SussmMaANN, Orbits of families of vector fields and integrability of distributions, Trans.
Amer. Math. Soc., 180 (1973), 171-188.

L. TakHTAJAN, On foundations of the generalized Nambu mechanics, Comm. Math. Phys.,
160 (1994), 295-315.

J. A. VarLeio, Nambu-Poisson manifolds and associated n-ary Lie algebroids, J. Phys. A, 34
(2001), 2867-2881.

DEPARTMENT OF MATHEMATICS
SAITAMA UNIVERSITY
SartaMa 338-8570, JAPAN



