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Abstract

Certain types of singular foliations on a manifold have Leibniz algebra structures

on the space of multivector fields. Each of them has a structure of a central extension

of a Lie algebra in the sense of Leibniz algebra. To a specific Leibniz cohomology

class, there corresponds an isomorphism class of central extension of a Leibniz algebra

similarly as in the case of Lie algebra.

1. Introduction

Recently, a lot of interests have been taken in Leibniz algebra, which is
introduced by Loday [10, 11] as a non-commutative variation of Lie algebra. A
Leibniz algebra g is an R-module, where R is a commutative ring, endowed with
a bilinear map ½ ; � : g� g ! g satisfying

½g1; ½g2; g3�� ¼ ½½g1; g2�; g3� þ ½g2; ½g1; g3��:

Note that we do not require the anti-symmetricity of ½ ; �.
In this paper, we consider Leibniz algebra associated with a certain type of

singular foliations on a manifold. More precisely, we observe that when an in-
tegrable and locally decomposable q-form o on a manifold M is given, there
yields a foliation F of M whose leaves are either of dimension n� q or 0. Any
transversely oriented regular foliation of codimension q is defined by such a q-

form. We show that the bundle of ðqþ 1Þ-vectors 5qþ1
TM on M has a Leibniz

algebroid structure whose anchor map is a interior product by o and whose
bracket is given by

wX ;Y xo ¼ ½ioX ;Y � þ ð�1ÞqhX j doiY

for any X ;Y A Xqþ1ðMÞ, where ½ ; � denotes the Schouten bracket, hji the natural
pairing and Xqþ1ðMÞ the space of ðqþ 1Þ-vector fields. We see that the iso-
morphism class of the algebra is determined by the foliation F. It is not a
Lie algebra in general unless q ¼ 0 or q ¼ n� 2. Considering the di¤erence of
Xqþ1ðMÞ from Lie algebra, it is shown that Xqþ1ðMÞ is, as a Leibniz algebra, a
central extension of the Lie algebra of vector fields tangent to F.
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As it is known, central extensions of a Lie algebra g with the center A are
described by H 2

Lieðg;AÞ where H �
Lieðg;AÞ denotes the Lie algebra cohomology

with coe‰cients in A. One can ask the question: how about the case of Leibniz
algebras? We see that the ‘‘usual’’ cohomology of Leibniz algebra does not
work, but a slightly di¤erent cohomology H �ðg;AÞ makes a similar one-to-one
correspondence between equivalent classes of central extensions and elements in
H 2ðg;AÞ. It means that, when g 0 is a central extension of a Leibniz algebra g
with the center A, Leibniz algebra structures of g 0 is determined by an element
in H 2ðg;AÞ. Applying it to Leibniz algebras associated with foliations, we can
obtain a lot of geometric examples of central extensions of Leibniz algebras.

The (co)homology of Leibniz algebra is studied by Loday and Pirashvili [12].
Lodder [14] extends the Leibniz cohomology from a Lie algebra invariant to an
invariant for a di¤erential manifold. The notion of Leibniz algebroid over a
manifold was defined in [9] as a vector bundle with certain additional conditions
as in the case of Lie algebroid, and it was proved that the bundle of ðp� 1Þ-
forms on a Nambu-Poisson manifold has a Leibniz algebroid structure. In [6],
one of the author discovered an alternative Leibniz algebroid structure which is
a natural generalization of the Lie algebroid associated with a Poisson manifold.
Description of all Leibniz algebras of dimension three is given in [1].

2. Leibniz algebras and cohomologies

First we review the notion of Leibniz algebra defined by Loday [10, 11, 12].
Let R be a commutative ring and g an R-module endowed with a bilinear map
½ ; � : g� g ! g satisfying

½g1; ½g2; g3�� ¼ ½½g1; g2�; g3� þ ½g2; ½g1; g3��ð2:1Þ

for g1; g2; g3 A g. The map ½ ; � is called the Leibniz bracket on g and (2.1) the
Leibniz identity. We remark that if ½ ; � is additionally skew-symmetric, then
the Leibniz identity is just the Jacobi identity and ðg; ½ ; �Þ is a Lie algebra.
Therefore, a Leibniz algebra is a non-commutative variant of Lie algebra.

Now we consider the cohomology of a Leibniz algebra with values in a
module [12]. Suppose that ðg; ½ ; �Þ is a Leibniz algebra and A an R-module
equipped with bilinear actions of g

½ ; � : g� A ! A; ½ ; � : A� g ! A

such that

½a; ½g1; g2�� ¼ ½½a; g1�; g2� þ ½g1; ½a; g2��ð2:2Þ
½g1; ½a; g2�� ¼ ½½g1; a�; g2� þ ½a; ½g1; g2��ð2:3Þ
½g1; ½g2; a�� ¼ ½½g1; g2�; a� þ ½g2; ½g1; a��ð2:4Þ

for g1; g2 A g and a A A. We also use the notations ga ¼ lgðaÞ ¼ ½g; a� and ag ¼
rgðaÞ ¼ ½a; g�. The condition (2.2)–(2.4) above is equivalent to that
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l½g1;g2� ¼ ½lg1 ; lg2 �ð2:5Þ

r½g1;g2� ¼ ½lg1 ; rg2 �ð2:6Þ

rg2 � lg1 ¼ �rg2 � rg1ð2:7Þ

where ½ ; � in the right-hand side of (2.5) and (2.6) denotes the commutator of
operators.

The Leibniz cohomology of g with coe‰cients in A is the homology of the
cochain complex Ckðg;AÞ ¼ HomRðnkg;AÞ ðkb 0Þ whose coboundary operator
qk : Ckðg;AÞ ! Ckþ1ðg;AÞ is defined by

qkckðg1; . . . ; gkþ1Þð2:8Þ

¼
Xk

i¼1

ð�1Þ i�1
giðckðg1; . . . ; bgigi; . . . ; gkþ1ÞÞ þ ð�1Þkðckðg1; . . . ; gkÞÞgkþ1

þ
X

1ai< jakþ1

ð�1Þ ickðg1; . . . ; bgigi; . . . ; gj�1; ½gi; gj�; gjþ1; . . . ; gkþ1Þ

where ðg1; . . . ; gkþ1Þ denotes g1 n � � � n gkþ1. The condition q � q ¼ 0 is proved
in [12].

When the left action and the ð�1Þ times of the right action agree, we get the
following ‘‘usual’’ Leibniz cohomology:

Proposition 2.1. Let g be a Leibniz algebra and A a g-module with respect
to the representation of g on A, that is, A is endowed with a bilinear map g� A !
A such that ½g1; g2�a ¼ g1ðg2aÞ � g2ðg1aÞ. Then the operator qk : Ckðg;AÞ !
Ckþ1ðg;AÞ given by

qkckðg1; . . . ; gkþ1Þ ¼
Xkþ1

i¼1

ð�1Þ i�1
giðckðg1; . . . ; bgigi; . . . ; gkþ1ÞÞð2:9Þ

þ
X

1ai< jakþ1

ð�1Þ ickðg1; . . . ; bgigi; . . . ; gj�1;

½gi; gj�; gjþ1; . . . ; gkþ1Þ

defines a Leibniz cohomology of g with coe‰cients in A.

In most of the cases, we consider the Leibniz cohomology of this type, which
is denoted by HL�ðg;AÞ. If ðg; ½ ; �Þ is a Lie algebra, we obtain the subcomplex
of ðC �ðg;AÞ; qÞ that consists of the skew-symmetric cochains. The cohomology
of this subcomplex is just the usual cohomology H �

Lieðg;AÞ of the Lie algebra
ðg; ½ ; �Þ with coe‰cients in A. Thus there is a natural homomorphism

i : H �
Lieðg;AÞ ! HL�ðg;AÞ:

The followings are several examples of Leibniz cohomology we have in mind.
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Example 2.2 ([2, 4, 16]). Let ðM;PÞ be a Nambu-Poisson manifold of order
p, that is, P is a p-vector field satisfying

½Pðdf1; . . . ; dfp�1Þ;P� ¼ 0

for f1; . . . ; fp�1 A CyðMÞ, where ½ ; � denotes the Schouten bracket. It holds that

5p�1
CyðMÞ is a Leibniz algebra by the bracket w ; x defined by

w f15 � � �5 fp�1; g15 � � �5gp�1x

¼
Xp�1

i¼1

g15 � � �5Pðdf1; . . . ; dfp�1; dgiÞ5 � � �5gp�1

for f1; . . . ; fp�1; g1; . . . ; gp�1 A CyðMÞ. Furthermore, by the natural action

½ f15 � � �5 fp�1; f � ¼ Pðdf1; . . . ; dfp�1; df Þ;

we obtain the Leibniz cohomology HL�ð5p�1
CyðMÞ;CyðMÞÞ.

Example 2.3 ([9]). Let ðM;PÞ be a Nambu-Poisson manifold of order
pb 3. The space of ðp� 1Þ-forms Wp�1ðMÞ is a Leibniz algebra by the bracket
w ; x defined by

wa; bx ¼ LPðaÞb þ ð�1ÞpðPðdaÞÞbð2:10Þ

for a; b A W p�1ðMÞ. By the action of Wp�1ðMÞ on CyðMÞ

½a; f � ¼ Pða; df Þ;

we obtain the Leibniz cohomology HL�ðW p�1ðMÞ;CyðMÞÞ. The cochain com-

plex CkðW p�1ðMÞ;CyðMÞÞ has the subcomplex Ckð5p�1
dCyðMÞ;CyðMÞÞ,

and there exist a natural map from Ckð5p�1
CyðMÞ;CyðMÞÞ (Example 2.2) to

CkðWp�1ðMÞ;CyðMÞÞ whose image is this subcomplex.

Example 2.4 ([6]). In case of Nambu-Poisson manifold of order 2, the
bracket (2.10) gives a Leibniz algebra structure only if the Poisson structure is
decomposable (that is, rank Pa 2), and then agrees with the Lie algebra bracket
on the space of 1-forms. One of the authors proved that there is a di¤erent
Leibniz bracket

wa; bx 0 ¼ LPðaÞb � iPðbÞ dað2:11Þ

on Wp�1ðMÞ for pb 2, which agrees with the Lie bracket when p ¼ 2. It
defines a di¤erent Leibniz cohomology from that in Example 2.3, but it holds
similarly that the cochain complex CkðWp�1ðMÞ;CyðMÞÞ has the subcomplex
Ckð5p�1

dCyðMÞ;CyðMÞÞ and there exist a natural map from Ckð5p�1
CyðMÞ;

CyðMÞÞ to it.

Example 2.5 ([13]). Let M be a smooth manifold and ðXðMÞ; ½ ; �Þ the Lie
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algebra of smooth vector fields on M. It is obvious that CyðMÞ is a XðMÞ-
module with respect to the representation by the Lie derivation. The Leibniz
cohomology HL�ðXðMÞ;CyðMÞÞ is, by definition ([13]), the homology of the
complex of continuous cochains Homcont

R ðnkXðMÞ;CyðMÞÞ ðkb 0Þ in the Cy

topology. The coboundary operator is given as the exterior di¤erential, that is,

d kckðX1; . . . ;Xkþ1Þ ¼
Xkþ1

i¼1

ð�1Þ i�1
XiðckðX1; . . . ; cXiXi; . . . ;Xkþ1ÞÞð2:12Þ

þ
X

1ai< jakþ1

ð�1Þ ickðX1; . . . ; cXiXi; . . . ;Xj�1; ½Xi;Xj�;

Xjþ1; . . . ;Xkþ1Þ

for X1; . . . ;Xkþ1 A XðMÞ. The de Rham cohomology H �
DRðMÞ of M is just the

cohomology of the subcomplex of the skew-symmetric and CyðMÞ-linear co-
chains. Then the diagram

H �
DRðMÞ ���!i H �

GF ðXðMÞ;CyðMÞÞ

p� i

???y ????y p

HL�ðXðMÞ;CyðMÞÞ

ð2:13Þ

commutes where H �
GF ðXðMÞ;CyðMÞÞ denotes the Gel’fand-Fuks cohomology.

The map i : H �
DRðMÞ ! H �

GF ðXðMÞ;CyðMÞÞ is induced by the inclusion

Homcont
CyðMÞðXkðMÞ;CyðMÞÞ ! Homcont

R ðXkðMÞ;CyðMÞÞ
where XkðMÞ denotes the space of k-vector fields on M and p : H �

GF ðXðMÞ;
CyðMÞÞ!HL�ðXðMÞ;CyðMÞÞ is induced by the projectionnkXðMÞ!XkðMÞ.

3. Leibniz algebras associated with foliations

The notion of Leibniz algebroid is introduced in [9] as a generalization of the
Lie algebroid:

Definition 3.1. A Leibniz algebroid is a smooth vector bundle p : A ! M
with a Leibniz algebra structure w ; x on GðAÞ (the space of smooth sections of
A) and a bundle map r : A ! TM, called an anchor, such that the induced map
r : GðAÞ ! XðMÞ satisfies the following properties:

(1) (Leibniz algebra homomorphism)

rðwx; yxÞ ¼ ½rðxÞ; rðyÞ�
(2) (derivation law)

wx; fyx ¼ ðrðxÞ f Þyþ f wx; yx

for all x; y A GðAÞ and f A CyðMÞ.
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Example 3.2. If the bracket w ; x is skew-symmetric, we recover the Lie
algebroid.

Example 3.3. The bundle of ðp� 1Þ-forms 5p�1
T �M over a Nambu-

Poisson manifold ðM;PÞ of order p is a Leibniz algebroid with the anchor map

P : 5p�1
T �M ! TM and the bracket either (2.10) ( pb 2 which we assume P is

decomposable when p ¼ 2) or (2.11) ( pb 2).

Example 3.4 ([5]). There is a di¤erent generalization of Lie algebroid. A
Filippov p-algebroid, or p-Lie algebroid, ðE; p; ½ ; . . . ; �Þ over a manifold M is a
vector bundle E endowed with a p-Lie bracket ½ ; . . . ; � on GðEÞ, that is, the skew-
symmetric bracket satisfying the Filippov (or Fundamental) identity

½a1; . . . ; ap�1; ½b1; . . . ; bp�� ¼
Xp

i¼1

½b1; . . . ; ½a1; . . . ; ap�1; bi�; . . . ; bp�

for any a1; . . . ; ap�1; b1; . . . ; bp A GðEÞ, and a bundle map p : 5p�1
E ! TM, called

an anchor, such that the induced map p : Gð5p�1
EÞ ! XðMÞ satisfies the fol-

lowing properties:

½pða15 � � �5ap�1Þ; pðb15 � � �5bp�1Þ�

¼
Xp�1

i¼1

pðb15 � � �5 ½a1; . . . ; ap�1; bi�5 � � �5bp�1Þ;

½a1; . . . ; ap�1; f b� ¼ f ½a1; . . . ; ap�1; b� þ ðpða15 � � �5ap�1Þ f Þb
for all a1; . . . ; ap�1; b1; . . . ; bp�1; b A GðEÞ and f A CyðMÞ. In this case, it is

shown that 5p�1
E is a Leibniz algebroid with the anchor p and the bracket

wa15 � � �5ap�1; b15 � � �5bp�1x ¼
Xp�1

i¼1

b15 � � �5 ½a1; . . . ; ap�1; bi�5 � � �5bp�1:

In the recent paper [20], it has been shown that any Nambu-Poisson mani-
fold has an associated Filippov algebroid.

Let F be a transversely oriented foliation of codimension q on M. Then
we deduce, by using a partition of unity, that there exists a transverse volume
form o on M such that o is decomposable (that is, o ¼ o15 � � �5oq for some
1-forms o1; . . . ;oq) and integrable (do ¼ g5o for some 1-form g). In this
paper, we call a decomposable and integrable form o on M simply an integrable
form. We remark that o needs not to be nonsingular. When o is nonsingular,
the transversely oriented foliation F is recovered by o1 ¼ � � � ¼ oq ¼ 0 where
o ¼ o15 � � �5oq. If o is singular, it yields a foliation whose leaves are of co-
dimension q where o0 0 and otherwise of dimension 0; we consider the foliation

to be given by the interior product io : 5qþ1
TM ! TM. Thus the equivalence

class of an integrable form gives a foliation.
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Now, we will prove that such a foliation given by an integrable q-form on a
manifold M gives the Leibniz algebroid structure to the bundle of ðqþ 1Þ-vectors.

Theorem 3.5. Let M be an n-dimensional smooth manifold endowed with a

decomposable and integrable q-form o ðq < nÞ. Then 5qþ1
TM becomes a Leibniz

algebroid over M whose anchor is the interior product io : 5qþ1
TM ! TM and

whose bracket is defined by

wX ;Y xo ¼ ½ioX ;Y � þ ð�1ÞqhX j doiY :

for any X ;Y A Xqþ1ðMÞ, where ½ ; � denotes the Schouten bracket, hji the natural
pairing and Xqþ1ðMÞ the space of ðqþ 1Þ-vector fields.

Proof. This Leibniz algebroid is essentially the same as that in Example
3.3 with the bracket (2.10) by the correspondence P ¼ ð�1ÞnqFðoÞ where F is
an arbitrary co-volume field on M (that is, a dimensional multivector field).
However, we will give a direct verification in the realm of multivector fields.

We abbreviate w ; xo to w ; x. It is easy to see wX ; fY x ¼ ððioXÞ f ÞY þ
f wX ;Y x. Let us prove ioðwX ;Y xÞ ¼ ½ioX ; ioY �. Since o is integrable, there
is a 1-form g such that do ¼ g5o. By the decomposability of o we have
oðXðoÞÞ ¼ 0. Thus

iXðoÞ do ¼ ð�1ÞqhX j doio:ð3:1Þ

Moreover,

ðLX ðoÞYÞðoÞ ¼ LXðoÞðYðoÞÞ � YðLX ðoÞoÞ

¼ ½XðoÞ;Y ðoÞ� � ð�1ÞqhX j doiðYðoÞÞ:

Therefore, we get

iowX ;Y x ¼ ½XðoÞ;Y �ðoÞ þ ð�1ÞqhX j doiðYðoÞÞð3:2Þ
¼ ½ioX ; ioY �:

Now we will see that the Leibniz identity holds. Let X ;Y ;Z A Xqþ1ðMÞ.
By (3.1),

diXðoÞ do ¼ o5ðdhX j doiÞ þ ð�1ÞqhX j doi do:

Thus we have

wX ;Y xðdoÞ ¼ ðLXðoÞYÞðdoÞ þ ð�1ÞqhX j doihY j doi

¼ LX ðoÞhY j doi� Y ðLXðoÞ doÞ þ ð�1ÞqhX j doihY j doi

¼ ðXðoÞÞhY j doi� YðdiXðoÞ doÞ þ ð�1ÞqhX j doihY j doi

¼ ðXðoÞÞhY j doi� ðYðoÞÞhX j doi:
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Therefore, by (3.2),

wwX ;Y x;Zx ¼ ½½XðoÞ;Y ðoÞ�;Z � þ ð�1ÞqððXðoÞÞhY j doi� ðYðoÞÞhX j doiÞZ:

Also using (3.2), we have

wX ; wY ;Zxx ¼ ½X ðoÞ; wY ;Zx� þ ð�1ÞqhX j doiwY ;Zx

¼ ½X ðoÞ; ½YðoÞ;Z � þ ð�1ÞqhY j doiZ �
þ ð�1ÞqhX j doið½YðoÞ;Z � þ ð�1ÞqhY j doiZÞ

¼ ½X ðoÞ; ½YðoÞ;Z ��
þ ð�1ÞqððX ðoÞÞhY j doiÞZ þ ð�1ÞqhY j doi½X ðoÞ;Z �
þ ð�1ÞqhX j doi½YðoÞ;Z � þ hX j doihY j doiZ:

In the same way, we have

wY ; wX ;Zxx ¼ ½Y ðoÞ; ½XðoÞ;Z ��
þ ð�1ÞqððY ðoÞÞhX j doiÞZ þ ð�1ÞqhX j doi½Y ðoÞ;Z �
þ ð�1ÞqhY j doi½XðoÞ;Z � þ hX j doihY j doiZ:

Then the Leibniz identity

wX ; wY ;Zxx ¼ wwX ;Y x;Zxþ wY ; wX ;Zxx

is equivalent to

½X ðoÞ; ½YðoÞ;Z �� ¼ ½½X ðoÞ;YðoÞ�;Z � þ ½YðoÞ; ½XðoÞ;Z ��

which is true since ½LXðoÞ;LY ðoÞ� ¼ L½X ðoÞ;Y ðoÞ� holds. r

Corollary 3.6. (1) ðXqþ1ðMÞ; w ; xÞ is a Leibniz algebra where

wX ;Y x ¼ ½ioX ;Y � þ ð�1ÞqðXðdoÞÞY :ð3:3Þ

The interior product io is a Leibniz algebra homomorphism from Xqþ1ðMÞ
to the Lie algebra of vector fields ðXðMÞ; ½ ; �Þ. It also holds that
wker io;Y x ¼ 0 and wX ; ker iox A ker io where X ;Y A Xqþ1ðMÞ.

(2) For any non-zero function f , the multiplication by f induces an isomor-

phism from the Leibniz algebra ðXqþ1ðMÞ; w ; xfoÞ to ðXqþ1ðMÞ; w ; xoÞ.
That is, the isomorphism class of Leibniz algebra structure is determined
by the foliation.

Proof. Since (1) is obvious, we will check (2). We have

wX ;Y xfo ¼ f ½X ðoÞ;Y � � XðoÞ5Yðdf Þ þ ðX ðo5df ÞÞY þ ð�1ÞqhX j f doiÞY

¼ f wX ;Y xo þ ðX ðoÞ5Y Þðdf Þ:
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On the other hand, we have

w fX ; fY xo ¼ ð fX ðo5df ÞÞY þ f w fX ;Y xo

¼ f 2½XðoÞ;Y � � fXðoÞ5Y ðdf Þ

þ ð�1Þqf 2ðXðdoÞÞY þ f ðXðo5df ÞÞY

¼ f 2wX ;Y xo þ f ðXðoÞ5YÞðdf Þ:
This is equal to f wX ;Y xfo, and we obtain (2). r

In general, ðXqþ1ðMÞ; w ; xÞ is not a Lie algebra unless q ¼ 0 or q ¼ n� 2.

Example 3.7. (1) The case q ¼ n� 2 corresponds to the Lie algebra as-
sociated with a Poisson manifold of rank 2 via the isomorphism by the
volume.

(2) Consider the case q ¼ 0. For any function f on M, the Lie bracket is
given as

½X ;Y �f ¼ f ½X ;Y � þ ðXf ÞY � ðYf ÞX
where X ;Y A XðMÞ. This corresponds to the Lie algebra associated with
a Nambu-Poisson manifold coming from a volume form.

(3) Consider the case q ¼ n� 1. Then the Leibniz bracket is given as

w fF; gFxo ¼ ð fZg� gZf þ fghZjgiÞF
where F is a co-volume field, f ; g A CyðMÞ, do ¼ g5o and Z ¼ FðoÞ.
Therefore, if o is a closed ðn� 1Þ-form, ðXnðMÞ; w ; xoÞ is a Lie algebra.
This corresponds to ðCyðMÞ; ½ ; �ZÞ defined by an arbitrary vector field Z
where

½ f ; g�Z ¼ fZg� gZf :

Sometimes, we have a Lie algebra as a Leibniz subalgebra. For example,
let us consider ðX2ðRnÞ; w ; xoÞ. By Corollary 3.6, it is a Leibniz algebra if o
is an integrable 1-form on Rn. In the following by a constant bivector field we
mean the bivector field of the formX

i< j

aij
q

qxi
5

q

qxj

where aij A R.

Proposition 3.8. Let f be a quadratic function on Rn. In the Leibniz alge-
bra ðX2ðRnÞ; w ; xdf Þ, the subset of constant bivector fields X2

constðRnÞ forms a Lie
algebra.

Proof. It follows from a direct computation. r

We can relate this Lie algebra to the Lie algebra of matrices; let ð j; kÞ be the
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signature and l the nullity of any quadratic function f on Rn. Denote by Pf the
matrix diagðIjþk; 0lÞ where Ijþk is the unit matrix of size j þ k and 0l is the zero
matrix of size l, and by soð j; k; lÞ the set of matrices in glðnÞ satisfying

IjklAþ tAIjkl ¼ 0

where Ijkl ¼ diagðIj;�Ik; IlÞ. Then,

Theorem 3.9. ðX2
constðRnÞ; w ; xdf Þ is isomorphic to ðsoð j; k; lÞ; f ; gPf Þ where

fX ;YgPf ¼ XPf Y � YPf X for any X ;Y A soð j; k; lÞ.

Proof. It also follows from a direct computation. r

In case f is nondegenerate, ðX2
constðRnÞ; w ; xdf Þ is isomorphic to ðsoð j; kÞ; ½ ; �Þ.

4. Central extensions of Leibniz algebras

Let us return to the Leibniz cohomology of a Leibniz algebra g. The
condition (2.2)–(2.4) admits the case that the right action rg ¼ 0 for any g A g. If
this is the case, we get a di¤erent Leibniz cohomology from ‘‘usual’’ one given
by Proposition 2.1. In this section, we assume the right action rg ¼ 0, and we
use this kind of Leibniz cohomology since it is essential when we consider the
extensions of Leibniz algebras.

Proposition 4.1. Let g be a Leibniz algebra and A a g-module with respect
to the representation of g on A, that is, A is endowed with a bilinear map g� A !
A such that ½g1; g2�a ¼ g1ðg2aÞ � g2ðg1aÞ. Then the operator dk : Ckðg;AÞ !
Ckþ1ðg;AÞ given by

dkckðg1; . . . ; gkþ1Þ ¼
Xk

i¼1

ð�1Þ i�1
giðckðg1; . . . ; bgigi; . . . ; gkþ1ÞÞð4:1Þ

þ
X

1ai< jakþ1

ð�1Þ ickðg1; . . . ; bgigi; . . . ; gj�1;

½gi; gj �; gjþ1; . . . ; gkþ1Þ
defines a Leibniz cohomology of g with coe‰cients in A.

We denote this Leibniz cohomology by H �ðg;AÞ. Note that even though g
is a Lie algebra and ck is skew-symmetric, ckþ1 is not skew-symmetric in general.

Now, we will consider the central extensions of Leibniz algebras. A central
extension ðg 0; w ; xÞ of a Leibniz algebra ðg; ½ ; �Þ with a center A is a Leibniz alge-
bra with a surjective homomorphism P : g 0 ! g whose kernel A is a center in the
sense of wA; g 0x ¼ 0. This is equivalent to giving an exact sequence

0 ! A !i g 0 !P g ! 0

such that A is a center of g 0.
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The next theorem shows that an analog of the case of Lie algebra holds (see
also [12]).

Theorem 4.2. Let ðg; ½ ; �Þ be a Leibniz algebra and A a g-module. Then
an element of H 2ðg;AÞ determines an equivalence class of central extensions of g
with the center A. The action of g on A is recovered by g � a ¼ wsðgÞ; ax where
ðg 0; w ; xÞ is a central extension of g and s : g ! g 0 an arbitrary linear map satisfying
P � s ¼ idg. Conversely, an equivalence class of central extensions of g with the
center A defines the action of g on A by g � a ¼ wsðgÞ; ax where s is as above, and
determines an element of H 2ðg;AÞ. That is, a central extension of a Leibniz alge-
bra g with a center A is in one-to-one correspondence to an element of H 2ðg;AÞ up
to isomorphisms.

Proof. Take an arbitrary ‘‘section’’ s. Then S ¼ sðgÞ has a Leibniz bracket
½ ; �s induced by s. We may write g 0 ¼ SlA. Thus it may be written g 0

i ¼
sðgiÞ þ ai for any g 0

i A g 0 where Pðg 0
i Þ ¼ gi A g; ai A A and i ¼ 1; 2. We deduce

that the action of g on A is independent to the choice of a section map s. It
holds

wg 0
1; g

0
2x ¼ wsðg1Þ; sðg2Þxþ wsðg1Þ; a2x;

and from Pðwg 0
1; g

0
2xÞ ¼ ½sðg1Þ; sðg2Þ�s it follows

wsðg1Þ; sðg2Þx ¼ s½g1; g2� þ csðg1; g2Þ

for some linear map cs : gn g ! A. It is shown that the Leibniz identity holds
if and only if cs is a 2-cocycle. Now, we will see that ½cs� A H 2ðg;AÞ does not
depend on the choice of s. Take a section ~ss and let ~aai ¼ g 0

i � ~ssðgiÞ ði ¼ 1; 2Þ.
Then we may define a 1-cochain t : g ! A by tðgÞ ¼ ~ss� s. Since

sð½g1; g2�Þ þ wsðg1Þ; ~aa2xþ csðg1; g2Þ ¼ ~ssð½g1; g2�Þ þ w~ssðg1Þ; a2xþ c~ssðg1; g2Þ;

we have

ðc~ss � csÞðg1; g2Þ ¼ g1 � tðg2Þ � tð½g1; g2�Þ:

The right hand of the equation is just dtðg1; g2Þ, thus we deduce that ½cs� A
H 2ðg;AÞ does not depend on the choice of s. We denote this element simply by
½c�.

Next we prove that by the equivalence class of extensions c is determined
up to coboundaries. Suppose that ðg 0; w ; xÞ; ðg 0; w ; x�Þ are isomorphic central
extensions of g, and cs;cs are corresponding cocycles with respect to sections s; s
respectively. We consider the commutating diagram

0 ���! A ���!
i

g 0 ���!
P

g ���! 0���� ???yf

����
0 ���! A ���!

i�
g 0 ���!

P�
g ���! 0
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where f is a Leibniz algebra isomorphism. We define 1-cochain t : g ! A by
t ¼ f � s� s. Then, from cf �s ¼ f � cs, f jA ¼ 1 and

f � sð½g1; g2�Þ þ w f � sðg1Þ; a2x� þ cf �sðg1; g2Þ

¼ sð½g1; g2�Þ þ wsðg1Þ; a2 þ tðg2Þx� þ csðg1; g2Þ

where g 0
i ¼ sðgiÞ þ ai, it follows

ðcs � csÞðg1; g2Þ ¼ g1 � tðg2Þ � tð½g1; g2�Þ ¼ dtðg1; g2Þ:

Hence we have ½c� ¼ ½c�. Conversely, it is not di‰cult to see that if corre-
sponding cohomologies with two central extensions of g are equal then they are
isomorphic. r

We remark that we cannot develop a Leibniz generalization of the abelian
extension of a Lie algebra because wwa1; sðg2Þx; sðg3Þxþ wsðg2Þ; wa1; sðg3Þxx does
not vanish in general for g 0

i ¼ sðgiÞ þ ai ði ¼ 1; 2; 3Þ.
As an example of a central extension, we have the Leibniz algebras as-

sociated with foliations. For any foliation Fo given by a q-form o, we have
shown that ðXqþ1ðMÞ; w ; xoÞ is a Leibniz algebra. In fact, it follows from Cor-
ollary 3.6(1) that there is a central extension

0 ! ker io !i Xqþ1ðMÞ !io XoðMÞ ! 0:

where XoðMÞ denotes the image of io, which yields the foliation Fo. We will
calculate the 2-cocycle of this extension. When o is nonsingular, that is, the
given foliation is regular, we may take a section s by sðXÞ ¼ Z5X where Z is
an arbitrary q-vector field satisfying oðZÞ ¼ 1, and then cs is given by

csðX ;Y Þ ¼ LXZ5Y þ hX jgiðZ5YÞ

where do ¼ g5o. Therefore, if a foliation is given by oi ¼ 0 for non-zero 1-
forms o1; . . . ;oq,

csðX ;YÞ ¼ LX ðZ15 � � �5ZqÞ5Y þ X j
Xq

i¼1

gii

* +
ðY5Z15 � � �5ZqÞ

where doi ¼
Pq

k¼1 gik5ok and oiðZjÞ ¼ dij. For a singular q-form o ¼ fo 0

where f is an arbitrary function and o 0 a nonsingular q-form, we take a metric
g and identify the tangent space and the cotangent space. Then we may take a
section

sðXÞ ¼ 1

joj2
Z5X

where gðZÞ ¼ o, which is well-defined since both Z and an element of XoðMÞ are
divisible by f . Using the metric g satisfying jo 0j ¼ 1, the corresponding cocycle
with s is given by
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csðX ;YÞ ¼ LXZ
05Y 0 þ hX jgiðZ 05Y 0Þ

where Z 0 and Y 0 denote f �1Z and f �1Y , respectively.
Conversely, by the theorem above, an arbitrary element of H 2ðXoðMÞ; ker ioÞ

determines a Leibniz algebra structure on Xqþ1ðMÞ.
The following consideration gives us homomorphisms between Leibniz alge-

bras.

Proposition 4.3. Suppose that a p-form a and a q-form b which are both
integrable are given, and that a5b0 0. Then a5b is also integrable, and we get
the exact sequence

0 ��! ker ia5b ��!i Xpþqþ1ðMÞ ��!ia5b

Xa5bðMÞ ��! 0:ð4:2Þ
The following diagram of Leibniz algebra commutes where i 0b ¼ ð�1Þpqib and
Xqþ1

a ðMÞHXqþ1ðMÞ is the image of the interior product ia : X
pþqþ1ðMÞ !

Xqþ1ðMÞ.
ðXpþqþ1ðMÞ; w ; xa5bÞ

ia

????y ????yi 0b
ðXqþ1

a ðMÞ; w ; xaÞ
???yia5b ðXpþ1

b ðMÞ; w ; xbÞ

ib

????y
????y ia

ðXa5bðMÞ; ½ ; �Þ

Proof. It is easy to see that a5b is an integrable ðpþ qÞ-form. Let
us show the above diagram commutes. All the maps are well-defined since
ibðXqþ1

a ðMÞÞ; iaðXpþ1
b ðMÞÞHXa5bðMÞ. For any X ;Y A Xpþqþ1ðMÞ, we calcu-

late

½ia5bX ;Y �ðaÞ ¼ LXða5bÞðYðaÞÞ � YðLXða5bÞaÞ

¼ ½ðiaX ÞðbÞ; iaY � � ð�1ÞpþqhX j da5biðYðaÞÞ:
Therefore,

iaðwX ;Y xa5bÞ ¼ ð½ia5bX ;Y � þ ð�1ÞpþqhX j dða5bÞiYÞðaÞ

¼ ½ðiaXÞðbÞ; iaY � þ ð�1ÞqhX j a5dbiðYðaÞÞ
¼ ½ðiaXÞðbÞ; iaY � þ ð�1ÞqhiaX j dbiðYðaÞÞ
¼ wiaX ; iaY xb

and thus we conclude that ia : X
pþqþ1ðMÞ ! Xqþ1ðMÞ is a Leibniz homomor-

phism; similarly for i 0b : X
pþqþ1ðMÞ ! Xpþ1ðMÞ. r

Example 4.4. We consider the Lie algebra slð2;RÞ with the basis
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e1 ¼
1

2

1 0

0 �1

� �
; e2 ¼

0 1

0 0

� �
; e3 ¼

0 0

1 0

� �
:

Then it holds that

½e1; e2� ¼ e2; ½e2; e3� ¼ 2e1; ½e1; e3� ¼ �e3:

Let us take the dual e�1 ; e
�
2 ; e

�
3 of e1; e2; e3. From de�2 ¼ �e�1 5e�2 , it follows

that ð52slð2;RÞ; w ; xe �
2
Þ is a Leibniz algebra which is a central extension of the Lie

algebra g where

g ¼ spanðe1; e3Þ; ½e3; e1� ¼ e3:

As we mentioned before, we may take a section sðXÞ ¼ e25X . Then the cor-
responding cocycle c A H 2ðg; g5gÞ is given by

cðX ;Y Þ ¼ ½X ; e2�5Y � hX je�1ie25Y

for any X ;Y A g. Since it follows that

cðe1; e1Þ ¼ cðe1; e3Þ ¼ cðe3; e1Þ ¼ 0; cðe3; e3Þ ¼ 2a

where a ¼ e35e1 A g5g, we may write c ¼ 2ae�3 n e�3 .
When we replace e�2 with ce�2 where c is a non-zero constant, which preserves

the foliation, then by

wg1; g2xce �
2
¼ cwg1; g2xe �

2

we deduce that the cocycle c is replaced with c�1c.
Now, let us elucidate all the central extension ð52slð2;RÞ; w ; xÞ of g. The

action of g on g5g is given by

e1 � a ¼ �2a; e3 � a ¼ 0;ð4:3Þ

that is, g � a ¼ 2Lga, and any 1-cochain t is generated by

t1 ¼ ae�1 ; t3 ¼ ae�3 :

Since dtðg1; g2Þ ¼ g1 � tðg2Þ � tð½g1; g2�Þ, we have

dt1ðe1; e1Þ ¼ �2a; dt1ðe1; e3Þ ¼ dt1ðe3; e1Þ ¼ dt1ðe3; e3Þ ¼ 0;ð4:4Þ
dt3ðe1; e3Þ ¼ dt3ðe3; e1Þ ¼ �a; dt3ðe1; e1Þ ¼ dt3ðe3; e3Þ ¼ 0;ð4:5Þ

thus we may write dt1 ¼ 2k11 and dt3 ¼ k13 þ k31 where kij denotes �ae�i n e�j .
A direct computation shows dk13ðe1; e3; e3Þ0 0, that is, k13 is not a cocycle, thus
we deduce that H 2ðg; g5gÞ is 1-dimensional and a cocycle ck33 where c is a
constant determines an element in H 2ðg; g5gÞ. The corresponding Leibniz
algebra structure on 52slð2;RÞ is then given by

we25e1; e25e1x ¼ 0; we25e1; e25e3x ¼ �e25e3;

we25e3; e25e1x ¼ e25e3; we25e3; e25e3x ¼ �ce35e1
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(the rest is given by (4.3) and wg5g;52slð2;RÞx ¼ 0). Thus we have shown that,
on any central extension of g with the center g5g, the Leibniz algebra structure
is necessarily of this type.
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Enseign. Math. (2), 39 (1993), 269–293.

[12] J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and

(co)homology, Math. Ann., 296 (1993), 139–158.

[13] J. M. Lodder, Leibniz cohomology for di¤erentiable manifolds, Ann. Inst. Fourier (Gre-

noble), 48 (1998), 73–95.

[14] J. M. Lodder, Leibniz homology, characteristic classes and K-theory, preprint.

[15] K. Mikami and T. Mizutani, Foliations associated with Nambu-Jacobi structures, preprint.

[16] N. Nakanishi, On Nambu-Poisson manifolds, Rev. Math. Phys., 10 (1998), 499–510.

[17] Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D, 7 (1973), 2405–2412.

[18] H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans.

Amer. Math. Soc., 180 (1973), 171–188.

[19] L. Takhtajan, On foundations of the generalized Nambu mechanics, Comm. Math. Phys.,

160 (1994), 295–315.

[20] J. A. Vallejo, Nambu-Poisson manifolds and associated n-ary Lie algebroids, J. Phys. A, 34

(2001), 2867–2881.

Department of Mathematics

Saitama University

Saitama 338-8570, Japan

leibniz algebras associated with foliations 165


