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ON THE MULTIPLICITY OF THE IMAGE OF SIMPLE CLOSED
CURVES VIA HOLOMORPHIC MAPS BETWEEN COMPACT
RIEMANN SURFACES

HiroSHI YAMAMOTO

Abstract

Every non-trivial closed curve C on a compact Riemann surface R is freely
homotopic to the r-fold iterate Cj of some primitive closed geodesic Cp on R. We call
r the multiplicity of C, and denote it by Ng(C). Let f be a non-constant holomorphic
map of a compact Riemann surface R; of genus g; onto another compact Riemann
surface R, of genus g, with g; > g» > 1, and C a simple closed geodesic of hyperbolic
length /g (C) on R;. In this paper, we give an upper bound for Ng,(f(C)) depending
only on ¢, g» and Ig,(C).

1. Introduction

1.1. Let R be a Riemann surface of analytically finite type, that is, a
Riemann surface obtained by removing n distinct points from a compact Rie-
mann surface of genus g. Take a non-trivial closed curve C on R. Denote by
Ng(C) > 0 the maximum of all numbers r such that for some non-trivial closed
curve Cy on R, the r-fold iterate Cj of Cy is freely homotopic to C on R. We
define Ng(C) =0 for any trivial closed curve C on R (cf. Buser [1], 9.2.6). In
this paper, we call Ng(C) the multiplicity of C on R. A non-trivial closed curve
C on R is said to be primitive if Ngx(C) = 1.

Let f be a non-constant holomorphic map of a compact Riemann surface
R; of genus g; onto another compact Riemann surface R, of genus g, with g; >
ga > 1. Let C be a simple closed geodesic on R;. The purpose of this paper is
to obtain an upper bound for Ng,(f(C)).

1.2. Assume that f has no branch point. Then f: R; — R, is a holo-
morphic unbranched covering. Since C is a closed geodesic on R;, the image
f(C) is also a closed geodesic on R,. Set r= Ng,(f(C)), and let Cy be the
primitive closed geodesic on R, such that the r-fold iterate Cj is freely homotopic
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to f(C) on R,. Then we have Cj = f(C) for suitable parametrizations. On
the other hand, the Riemann-Hurwitz relation (see 1.2.7 of Farkas and Kra [2]
for example) yields

2(g1 = 1) = 2ds(g2 = 1) + B(f),

where B(f) is the total branching number of /" and dy is the degree of f. Thus,
in this case, we conclude that

g1
g -1

A natural question that occurs at this point is the following: In the general
case where f may have branch points, does there exist an upper bound for
Ng,(f(C)) depending only on g; and ¢,? The answer is “No.”. In fact, the
example which will be given in the last section asserts that there is no upper
bound for Ng,(f(C)) depending only on g, g» and f.

In this paper, we obtain the following.

N, (f(C)) = r < dy

THEOREM. Let [ be a non-constant holomorphic map of a compact Riemann
surface Ry of genus g onto another compact Riemann surface R, of genus g, with
g1 =>¢g>>1. Let C be a simple closed geodesic on Ry. Then

W (£(0) < max{ 2= Algr, g (€}

where

2(1+2(91 —g2) (1 —1)/(g2— 1))
n(l) ’

n(l) = 2771 (n — 4 arctan (tanh é) ),

and I, (C) is the length of C with respect to the hyperbolic metric of constant
Gaussian curvature —1 on Rj.

Alg1, 92, 1) = sinh

Note that the function A satisfies
log A(g1,92,1) < Mg?le'’?  for all I >0,
where M is some positive constant.
1.3. Let Hol(Ry, Ry) be the set of all non-constant holomorphic maps of

R; onto R,, and assume that Hol(R;, Ry) is not empty. In 1978, Martens [3]
showed that f € Hol(R;, R;) is determined by the homology map

fi i Hi(R;Z) — Hi(Ry; Z)

induced naturally from f, where Hi(R;;Z) is the first homology group of R;
with integer coefficients. This is called Martens’ rigidity theorem. The result
was strengthened by Tanabe [4] in 1996.
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Let FH(R;) denote the set of all free homotopy classes of closed curves on
R;. Then f also induces a map

Y(f) : FH(R) 3 [c] = [f(c)] € FH(R,).

Fix a homology basis {{ai),{a»),...,{ay, >} on Ry, where {a;) is a homology
class represented by a closed curve a; on Ry for each j. The rigidity theorem
described above yields that f € Hol(R;, R,) is completely determined by

{lﬁ(f)([al]), l//(f)([(lz}), R lp(f)([aztll])}

Our theorem gives a necessary condition for a map ¢ : FH(R;) — FH(R;) to
be induced from some f € Hol(R;, R;), and, for example, it is applicable to the
problem on estimating the number of elements of Hol(R;, R;). Furthermore, the
auther hope that the results and the method are also applicable to problems on
estimating numbers of objects for Mordell conjecture and Shafarevich conjecture
in the function field case.

a2 Q5.3 54 . ko

Tj1 Tjo Tj3 Tjd4 o ZTiko  Tjko+l

FIGURE 1. a geodesic polygon Z

The essential tool of our proof is the estimation of hyperbolic length of
closed geodesic loops on Riemann surfaces (Lemma 5, Lemma 6).

1.4. This paper is organized as follows. In Section 2, we will see several
results on hyperbolic geometry of Riemann surfaces. The proof of Theorem will
be given in Section 3. In the last section, we will construct a holomorphic
branched covering f : Ry — R, and an infinite sequence {C,},~, of simple closed
geodesics on R; satisfying Ng,(f(C,)) =r for every r.

2. Several results on hyperbolic geometry

2.1. First we see a few property of hyperbolic geodesic polygons (piece-
wize geodesic simple closed curves) on the open unit disk A endowed with the
hyperbolic metric of constant negative curvature —1.

For each j=1,2, let # be a geodesic polygon on A satisfying the following
conditions:

(1) Z; consists of ko + 3 sides 4; .1, 4j2, Cj, P15+ 7k, and ko + 3 vertexes

Xj 1y Xjkotl> Gj,1, @j2,---,0j ko1 as illustrated in Figure 1,
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(2) for each k =1,2, a side 4;, intersects C; at right angle, and
(3) dalay1, C) = da(aj2, G) = - -+ = da(@j ko+1, C;), Where dp(ajk, ) is the
hyperbolic distance between a; ; and C;.
For each j=1,2 and k=1,2,... ko, we set
lj‘,k = ZA(yj,k)a
hj = da(aj,1, Gj) = -+ = da(aj k41, G),

where /z(y; ;) is the hyperbolic length of y; ;.

LemmAa 1. Ifhl > hy and Il,k Slz,k fOV all k = 1,2,...,k0, then

da(ai 1, ai ke+1) < dalaz,1,a2 kp+1)-

Proof.  Without loss of generality, we may assume that ko = 2. Let x;, be
the intersection point of C; and the unique perpendicular from a;, to C;. Then
for each j=1,2 and k = 1,2, the relationship

An (X ke, Xj k1)
2 b
da(xj,1,%;,3)
2

follows from hyperbolic trigonometry (see Buser [1], 2.3.1 and Figure 4.1.1).
This yields

. . . 1 2 . . 1 2 .
sinh KACATUE ) sinh b2 1+ sinf 1 (1‘/2’1/2—) + sinh Al 1+ sin (5., (1,22/_2) .
2 2 cosh” i 2 cosh” h;

Hence we obtain da(ai 1,a13) < da(az1,a23). O

A
sinh ]71( = cosh /; sinh

da(aj,1,4;,3)

sinh = cosh #; sinh

FIGURE 2. a degenarate right-angled geodesic hexagon # in the unit disk A

2.2. Let A be a degenarate right-angled geodesic hexagon in the unit disk
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A as illustrated in Figure 2. The hexagon # consists of five geodesic sides Ly,
Ly, L, C;, C;, and the remaining side of # is degenerated into a point pg
at infinity. Let L3 be the unique perpendicular from po to Ly, and ¢y the
intersection point of Ly and L3. Denote by G the compact subset of A bounded
by #. For each j=1,2, we set

1
. N
- {p € G|da(p, Cj) = arcsinh sinhuA(cj))}'

Then Cj intersects Lo at go (see Buser [1], 2.3.1). For each ge L3U{po} and
j=1,2, let Pj" denote the unique perpendicular from ¢ to C;, and a;(q) the
intersection point of P and C; (see Figure 3).

LemMma 2. If IA(C)) < IA(Cy), then

da(ai(q1), a1(q2)) < da(ax(q1), a2(q2))
Sor any q1,9> € L3U {po}.

Po

11(‘11)
Cy :'f az(g2)

z1(g2)

Lo o

FIGURE 3. a degenarate right-angled geodesic hexagon #

Proof. For every g e L3U{po}, we denote by x;(q) the intersection point of
P/ and C;.

Fix q1,92 € L3;U{po} arbitrarily. Tt is sufficient to consider the case where
q1,q2 € L3 and da(qo,q1) = da(qo,q2). Assume that IA(Cy) < Ia(Cy). Set

Sk = COth2 dA(q07 qk)7

(xi(q0), x;(qx))
5 7

oy da
tjx = cosh™ and

u; = tanh? Iy (C;)

for j,k=1,2. Then we have 0 <u; <up <1 <s; <s;,. By hyperbolic trigo-
nometry (see Buser [1], 2.3.1), we obtain



74 HIROSHI YAMAMOTO
1 1 1
—==|——=+1], and
e 2 (wl —u; /s )

s st LG - R G)

for j,k =1,2. This yields

> = A(s1,8,u;) for j=1,2,

sinh

where
)»(X, y7Z) = )vl(xa yaz) - M(y,X, 2)7

i pz) = 22D g

Jnlx z):l<;+l><;—l>
2 4\\/1-z/y V0I—z/x .

By calculation, we have

J,
EM(X’ »2) = 4z3/2 1—z/y l1—z/x

Aa(x, y,2) (1—\/1—2/}1_’_1—0—\/1—2/)(_2)

and obtain
0, 0 . 0
EA(X,)/,Z)—E/Ll(m)az)—all(y,x,z)

A 1 1
+ (Va2(x,3,2) + V22 (3, x,2)) (\/1 ey = z/y) }

>0

for any x, y,ze Rwith 0 <z <1 <x<y. Hence A(sy, 5, -)|<0’1) is an increasing
function, and da(ai1(q1),a1(q2)) < da(az(q1), a2(q2))- O

2.3. Let G’ be a copy of G. By pasting G and G’ together along the sides
Ly, L and L,, we obtain a degenerate pair of pants Y which has two boundary
geodesics and one puncture. Conversely, every degenerate pair of pants Y with
two boundary geodesics and one puncture can be obtained by the above con-
struction for a suitable G (see Buser [1], 3.1 and 4.4).

2.4. Next we recall several facts of hyperbolic geometry on Riemann
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surfaces. Let R be a hyperbolic Riemann surface of analytically finite type
endowed with the hyperbolic metric of constant negative curvature —1, and L a
closed geodesic on R. We shall use the same symbol for a curve (a continuous
map of an interval into a Riemann surface) and its image if there is no fear of
confusion.

For an arbitrary simple closed geodesic L on R, we set

1
sinh(lR(L)/2)}’
where dr(p, L) is the distance between L and p with respect to the hyperbolic

metric on R. The set Gg(L) is called the collar around L. The interior of x(L)
is conformally equivalent to an annulus (see Buser [1], 4.1.1).

Gr(L) = {p € R|dr(p,L) < arcsinh

LEMMA 3. Let L be an arbitrary simple closed geodesic on R, and C : I =
[0,1] — R a closed geodesic loop freely homotopic to the r-fold iterate L" of L with
some r> 1. If Cis included in the collar €r(L) and C(0) = C(1) € 0%r(L), then

sinh (leC)) = sinh (”ﬁ”) coth (lR(zL)> >

Proof.  We first note that

(2.1) sinh <S21> coth <é> > s

holds for all s >1 and /> 0.

Let C be a lift of the curve C:[0,1] — R in the universal covering surface
A of R, and h the covering transformation which corresponds to C. Denote by
p; (j=1,2) the endpoints of C, and by 4; the perpendicular from p; to the axis
Axis(h) of h. Then, C, Ay, A, Axis(h) together bound a geodesic quadrangle 2.
Dropping the common perpendicular between C and Axis(h), we obtain two
isometric trirectangle 77,7, (see Figure 4). By 2.3.1 of Buser [1], we have

21 P2

¢

A Ay

Axis(h)

FIGURE 4. a quadrangle 2

Ir(C)

(2.2) sinh? /5 (4;) = sinh? IR(ZC) coth? VZRZ(L) — cosh?
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If C is included in the collar (L) and C(0) = C(1) € 0%r(L), then

sinh /x(4;) = sinh™! IR(ZL) ,
and we obtain
. lR(C) s }"IR(L) ZR(L)
s1nh< 5 ) = sinh <T coth 5
by (2.2). O

LemMMa 4. Let L be an arbitrary closed geodesic on R, and C a rectifiable
closed curve on R which is freely homotopic to the r-fold iterate L" of L for some
r>1. If the hyperbolic length Ir(C) of C satisfies Ig(C) < 2 arcsinh r, then L is
simple and C is included in the interior of €g(L).

Proof. Since r > 1 and Ig(C) < 2 arcsinh r, we have
rir(L) < Ir(C) < 2 arcsinh r < 4r arcsinh 1.

Hence, by Lemma 7 of Yamada [5], L is simple.

Let p be an arbitrary point of C. We may assume that C(0) = C(1) = p.
There exists a geodesic loop C’: I — R such that C'(0) = C’(1) =p and C’' is
homotopic to C rel the base point. Similarly as the proof of Lemma 3, we take
a lift C’ of C’ in the universal covering surface A of R. Denote by p,, p, the
endpoints of C’. For j=1,2, let 4; be the perpendicular from p; to the axis of
the covering transformation which corresponds to C’. The inequality /zr(C’) <
[r(C) < 2 arcsinh r, (2.1) and (2.2) together yield

sinh? dg(p, L) < sinh? Iz(4)

/ L !
— sinh? —IR(C ) coth? —rlR( ) — cosh? —ZR(C )
2 2 2
< r? sinh ™2 @ -1
< coth? M —1=sinh? ﬂ
2 2
Thus, we obtain p € Interior(%g(L)). O

3. Proof of Theorem

3.1. Before proceeding to the proof of Theorem, we must establish two
preliminary results.

Let R be a hyperbolic Riemann surface of analytically finite type, and pg
a point of R. Assume that there exists a subset Y of R such that Y contains po
and Y = Y\{po} is a degenerate pair of pants which has two distinct boundary
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geodesics with respect to the hyperbolic metric on R=R\{po}. Let C1, G
denote the boundary geodesics of Y, and Lo the unique simple common per-
pendicular between C; and C, in Y. Then, there exist simple curves 4;: ] — Y
(j=1,2) and D:I — Y such that

Cy D Cy

FIGURE 5. a figure of Y

(1) 4;(0) =po and A4;(1) is a point of C; for each j=1,2,
(2) D is a simple closed curve freely homotopic to C; on Y satisfying
D(0) = D(1) = po,
(3) Ailo,1)> A2l(0.1)» Dlo,1) are geodesics with respect to the hyperbolic metric
on R,
(4) each Ay, (j=1,2) is a perpendicular to C;, and
(5) D,y intersects Lo at right angle.
We set L; = Aj ) for j=1,2 and L3 = D| y (see Figure 5). The three per-
pendiculars Ly, L;, L, together decompose Y into two isometric degenerate right-
angled geodesic hexagons G, G'.
We first state the following assertion.

LEMMA 5. Let C:1— Y be an arbitrary rectifiable closed curve. Assume
that the hyperbolic length I3(C) of C satisfies

(3.1) Ix(C) < 2 arcsinh Ng(C).

Then C does not intersect Lj.

Proof. Let C:I— Y be an arbitrary rectifiable closed curve. Assume
that C intersects L3. We shall prove /3(C) = 2 arcsinh Ng(C).

There exists a unique geodesic loop C': 1 — R with respect to the hyper-
bolic metric on R such that C’(0) = C’(1) = C(0) = C(1) and C’ is homotopic
to C rel the base point. Then the geodesic loop C’ is included in Y and sat-
isfies /x(C’") < Ix(C). Hence, we may assume without loss of generality that C
is a closed geodesic loop with respect to the hyperbolic metric on R satisfying
C(0) = C(1) e L3. It is sufficient to consider the case where

(32) IR(CI) < lR(Cz).
For each j=1,2, we define the half-collar %; around C; by
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1
% = {peY|d(p, _)<arcs1nhmh</2)}
Let C/’ be the simple closed boundary curve of %; lying on the interior of
Y.

For any ge L3 and j=1,2, let P :1 — Y denote the unique perpendic-
ular from ¢ to C; such that P | 0.1] does not intersect L3. For each j=1,2, we
define a projection g; : Y — C/ as follows:

(1) For any pe Y\(L, ULZ) there exists a unique point ¢ on L3 such that

peP/UP]. We let ¢;(p) be the unique intersection point of P! and
Cl.
j
(2) For any pe Ly UL,, we let a;(p) be the unique intersection point of L;
and C/.

Set X = C’ UCJUL3U((LoULiULy)\(61U%>)). Since C is a closed geo-
desic loop in Y with C(0) = C(1) € Ls, there exist points #y,f,...,t, € I with
0=ty<f<---<t,=1 such that C(r) e X if and only if = #;, for some k =
0,1,...,n. Foreach k=0,1,...,n—1, we set ay = C|[tk_tk+]], and let §, denote
the unique geodesic curve from a;(C(#)) to a;(C(#x11)) homotopic to the curve
ay oy [tk, tkr1] — Y rel a1(C(ty)), ai (C(tx+1)). Fix k arbitrarily, then oy sat-
isfies either oy < Y\(%l U®,) orop =« 6 UG, Ifap = Y\(% U®,), then Lemma
2 and (3.2) yield

(3-3) I(ox) = lx(Be)-

In the case of o = % U%,, we also obtain (3.3) by Lemma 1, Lemma 2 and
(3.2). Hence (3.3) holds for all k. Denote by f:1— Y the unique closed
geodesic loop homotopic to the closed curve ajo C: I — Y rel f(0) =p(1) =
a1(C(0)) = a1(C(1)). Then, by Lemma 3, we have [z(f) > 2 arcsinh Nx(C) and
conclude that

> x(F)
> 2 arcsinh Ng(C).

The proof of Lemma 5 is finished. O
3.2. We also need the following estimation.

LemMA 6. Let R be a hyperbolic Riemann surface of analytically
finite type. Take k >0 distinct points pi,p2,...,pr of R and set R= R\



ON THE MULTIPLICITY OF THE IMAGE 79

{p1,p2,---,pk}. Let C be an arbitrary simple closed geodesic with hyperbolic
length Ig(C) on R. .
Then there exists a simple closed geodesic C' on R such that
(@) C’ is freely homotopic to C on R, and
(b) the hyperbolic length I4(C') of C' satisfies
272 (k +1)
n(r(C)) ’

n(l) = 277[ (n — 4 arctan (tanh i))

Proof. Take an annulur cover

IR(C/) <

where

prody={zeC|l <|z| <r} =R

of R with respect to C, i.e., p is a holomorphic unbranched covering of R
such that p({ze€ ||zl = /o}) = C and pli.. |- % 18 an injection. Set
lo = Ir(C). Then, by calculation, we have

(3.4) Iy log ro = 27,
Let ér(C) be the collar around C, i.e.,

Gr(C) = {p € R|dr(p,C) < arcsinh(W) }

Then, by the collar theorem, there exists a number r; € [1,,/ro] such that
(1) oy ={zeClr <|z| <ro/r1} = </ is a component of the interior of
p~1(%(C)), and
(2) the restricted map pl,, is an injection.
By calculation, we obtain a relation

(3.5) logr = 4n arctan | tanh fo .
Iy 4
By (3.4) and (3.5), the conformal modulus M (/) = log(ro/r?) of </ satisfies
o
M(<) = log 2

=logro—2logr

= 2n <7z — 4 arctan <tanh 1—0)> =n5(ly).
lo 4

Let {z1,z2,...,zir} = o/ be the finite set of distinct points such that
{zi,22, ..z} = A N p~ ' ({p1, pay - oopi}) and 1 =X < x; <X <+ < <
X1 =ro/r (X =z;|,j=1,2,...,k’). Since



80 HIROSHI YAMAMOTO

X1 X2 X' Tkegl o
X I X e X X ——=— =exp(M(e)) =ex lp)),
W) = T = exp(M () = expla(l)

there exists a number j; such that

3.6 Xjo-+1 ro) /Y - I /D
(3.6) o == = (exp(n(h))) :
Jo 1

Set
o) = {ZG C|XJ0 < |Z| < xjo+1} c .

Then p(</3) = R and

L={zeCll|z| = \/XjXjy41} < o>
is the closed geodesic of .</,. The hyperbolic length /., (L) of L satisfies
272

Let C’ be the simple closed geodesic of R freely homotopic to p(L) on R.
Then C’ is freely homotopic to C on R. By (3.6) and (3.7), the hyperbolic length
[x(C") on R satisfies
IR(C") <1y (L)
_ 2n?
~ log(xj,41/%;,)
272 (k' + 1)
n(lo)
2n%(k + 1)
n(lo)

This completes the proof of Lemma 6. O

3.3.  Proof of Theorem. Let C be an arbitrary simple closed geodesic on R;
and f a non-constant holomorphic map of R; onto R;. Assume that

(3.8) Nr,(f(C)) > Algr,92,Ir, (C)).
We shall prove
-1
Ny (f(€) < =
g2 — 1
Denote by BP(f ) < Ry the set of all branph poinj[s of f. Set Ry =R»\
f(BP(f)), Ry = f~1(Ry) and f = flk,- Then Ry and R, are Riemann surfaces
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of analytically finite type (g1,n1) and (go,ny) respectively. The map f:R — R,
is a holomorphic unbranched covering. The Riemann-Hurwitz relation yields

2(g1 — 1) =2ds(92 — 1) + B(f),

where B(f) is the total branching number of " and d; is the degree of f. Thus
we have ny < B(f) < 2(g1 — g2) and ny <mydy < 2(g91 — 92)(91 —1)/(92 — 1), and
conclude by Lemma 6 that there exists a simple closed geodesic C’ on R; such
that

(a) C' is freely homotopic to C on R;, and

(b) the hyperbolic length I (C’) of C’ satisfies

- 27%(1 4 2(g1 — g2) (g1 — 1)/ (g2 — 1)).

) () < e, (C)

By (3.8) and (3.9), we obtain

(3.10) I, (f(C")) < I, (£(C"))
= Iz (C)
_ 221+ 2(g1 — 92)(g1 — D/(g2— 1))
- n(lr, (C))

< 2 arcsinh Ng,(f(C)) = 2 arcsinh Ng,(f(C")).

Set 1y = Ng,(f(C)) = Ng,(f(C")). Let Cy be the primitive closed geodesic of
R such that the ro-fold iterate C;° of Cy is freely homotopic to f(C) on R,. By
(3.10) and Lemma 4, we conclude that Cy is a simple curve, and that f(C’) is
included in the interior of the collar

; . 1
%r,(Co) = {p € Ry | dg,(p, Cy) < arcsinh (m> }
around Cj. )

First we consider the case of (R;\R:)NInterior(%z,(Co)) =9. In this
case, the closed geodesic f(C’) of R, is freely homotopic to C” on R>. Then
by the Riemann-Hurwitz relation we have ro <dy <(gy —1)/(92 —1). Next
we see the case of (R2\R,) NInterior(%,(Co)) # 0. Denote all the elements of
(R2\R7) N1Interior(%r,(Co)) by {p1,---,Pn,} (1 <nz <m). Let B, By be two
boundary simple closed curves of %g,(Cy). For each je {l1,2,...,n3}, we take a
simple closed curve D; on R; as follows: For each i = 1,2, let C; be the simple
closed geodesics of Ry\{p;} freely homotopic to B; on R,\{p;}. The geodesics
C; and G, together bound a doubly connected domain Y; of R, containing p;.
The domain ¥; = Y;\{p;} is a degenerate pair of pants on R,\{p;}. Let L, be
the unique simple common perpendicular between C; and C, in Y} with respect
to the hyperbolic metric on R,\{p;}. We take a simple closed curve D; : I — Y;
so that
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(1) D; is a simple closed curve freely homotopic to C; on Y; satisfying
D;(0) = D;(1) = pj,

(2) Djlig,1) is a geodesic of Ro\{p;}, and

(3) D; intersects Lo at right angle.

Let D/ denote a connected component of D;NInterior(%ég,(Cy)) con-
taining p;. Then, for each j, we have D/Nf(C') =0 as follows: Suppose
that D/ N f(C’) is not empty. Take a point x of D/N f(C’), and let « be the
unique geodesic loop of R>\{p;} homotopic rel x to f(C’) on R>\{p;}. Then
o is included in ¥;. Indeed, by Baer-Zieschang theorem (A.3 of Buser [1]), there
exists a self-homeomorphism w of R,\{p;} isotopic to the identity and there
exists an isotopy A, : (R2\{p;}) x I — R>\{p;} such that h,(-,0) =id, h,(-,1) =
w(-), and w(Interior(%g,(Co))\{p;}) = Y;. The set D/\{p;} consists of two com-
ponents at most. Take a point y e D/\{p;} so that

(1) y is in a component of D;\{p;} containing x, and

(2) for each rel, define a curve o, by d(s) = h(y,st) (sel), then o, is

included in ¥;.
Let € be a curve from x to y with € < Dj’ . We set

G=edh (e f(Ce, )0 e, el

Then () = ee' f(C')ec! is homotopic rel x to { = edyw(e'f(C"e)d; ¢! by
the homotopy {, (teI). The loop {, is homotopic rel x to «, and the loop {;

is included in ¥;. This implies that « is included in ¥;. On the other hand,
(3.10) yields

Ira\ () (#) < Traa ) (/(C7))
< Ip,(f(C))
< 2 arcsinh Ng,(f(C")) = 2 arcsinh Ng, ().

This contradicts the assertion of Lemma 5. Therefore we obtain D/ N f(C’) = 0.

Since each component of %r,(Co)\(DjU---UD, ) is topologically a disk
or an annulus, and is included in R, the closed geodesic f(C') is the ro-fold
iterate (C})" of some simple closed geodesic C; of R,. Hence, by the Riemann-
Hurwitz relation we obtain ro <d; < (g1 —1)/(g92—1). Theorem is now proved.

O

4. Example

In this section, we shall give an example which asserts that there is no upper
bound for Ng,(f(C)) depending only on g; and g».

Let R, be a Riemann surface of genus 2. Fix four distinct points
P1,41, P2,492 € R, and two disjoint simple arcs «; from p; to ¢; (j=1,2). We
cut R, along the arcs oy, @;. Each cut o; has two edges, labeled oc;r edge and o
edge. We take two replicas of R, with cuts, and call them sheet I and sheet

II. To construct a Riemann surface R;, we attach the oc;r edge on sheet I and
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the o edge on sheet II, and then attach the oc/+ edge on sheet II and the o edge

on sheet I for each j=1,2. Then we obtain a compact Riemann surface R; of
genus 5 and two-sheeted branched covering f : Rj — R, which is branched over
D1, 491, P2, q2» with branch order two (see Figure 6).

sheet 1

sheet II

FIGURE 6. a figure of f: Ry — R,

We take two simple closed curves y; and y, on R; with base point p € Ry, as
illustrated in Figure 6. For an arbitrary positive integer r, let C, be the simple
closed geodesic freely homotopic to y{y, on R;, where y| is the r-fold iterate
of y,. Then the image curve f(C,) is freely homotopic to the r-fold iterate of
the simple closed curve Cy = f(y;) on R,, and we have Ng,(f(C;)) =r. This
example implies that there is no upper bound for Ng,(f(C)) depending only on
g1, g2 and f.
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