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THE ORDER OF CONFORMAL AUTOMORPHISMS

OF RIEMANN SURFACES OF INFINITE TYPE

Ege Fujikawa

Abstract

Let R be a Riemann surface of infinite type such that the injectivity radius at any

point in R is less than a positive constant M, and f a conformal automorphism of R

fixing a compact subset in R. We show that the order of f is less than a certain

constant depending on M.

1. Introduction

On a compact Riemann surface R of genus gb 2, it is known that the order
of a conformal automorphism of R is not greater than 2ð2gþ 1Þ (Wiman see [4,
p. 96]). Since the hyperbolic area of R is 4pðg� 1Þ, the injectivity radius at any
point in R is not greater than a constant depending only on g. This means that
the order of a conformal automorphism of R is estimated by the supremum of the
injectivity radii which is taken over all points in R. We extend this result to the
case of Riemann surfaces which are not necessarily of finite type. That is, for
any hyperbolic Riemann surface R such that the injectivity radius at any point in
R is less than a positive constant M, if a conformal automorphism f of R fixes a
compact subset in R, then the order of f is estimated by M. Note that, in the
case that R has the non-abelian fundamental group, a conformal automorphism
f of R fixes a compact subset on R if and only if f has the finite order.

2. Main theorems

Let H be the upper-half plane equipped with the hyperbolic metric dl ¼
jdzj=Im z. We say that a Riemann surface R is hyperbolic if it is represented
by H=G for a torsion-free Fuchsian group G acting on H. The hyperbolic dis-
tance on H or on R is denoted by dð� ; �Þ. The injectivity radius at p A R is the
supremum of radii of embedded hyperbolic discs centered at p.

Before we state the main theorems, we note the following fact.

Proposition 1. Let R ¼ H=G, where G is a Fuchsian group which is not
necessarily torsion-free, and f a conformal automorphism of R with finite order
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n > 1. Then f fixes either a simple closed geodesic, a puncture, a point or a cone
point on R.

Proof. Let ~ff be a lift of f to H which is an element of PSL2ðRÞ. Since
f has the finite order n, we see that ~ff n belongs to G and that ~ff m ð1am < nÞ
does not belong to G. If ~ff n is parabolic, then ~ff is parabolic. Hence f fixes
a puncture on R. If ~ff n is the identity, then ~ff is elliptic with the fixed point
~pp A H . Hence f fixes the point on R which is the projection of ~pp. If ~ff n is
elliptic, then ~ff is elliptic with the fixed point ~pp A H . Hence f fixes the cone
point on R which is the projection of ~pp. Further, if ~ff n is hyperbolic, then ~ff is
hyperbolic. Hence f fixes a closed geodesic c� on R. In this case, we prove
that f fixes either a simple closed geodesic, a puncture, a point or a cone point
on R. We consider the quotient R̂R ¼ R=h f i by a cyclic group h f i and its

Fuchsian model ĜG ¼ hG; ~ff i. Then ĉc� ¼ c�=h f i is a closed geodesic on R̂R.
There exists a subset ĉc 0 of ĉc� such that ĉc 0 is a non-trivial simple closed curve and
it corresponds to a conjugacy class of an element g in ĜG� G. Indeed, suppose
that there are no such curves. That is, suppose that every non-trivial simple closed
curve ĉci H ĉc� corresponds to a conjugacy class of an element gi in G. Since G
is a normal subgroup of ĜG, the curve ĉc� corresponds to a conjugacy class of the
composition of some elements in fgi; g�1

i gi, which is in G. However, this is a
contradiction. Let c 0 H c� be a connected component of the preimage of ĉc 0.
Then c 0 is a simple closed curve fixed by f . If g is hyperbolic, then there exists
a simple closed geodesic c 0� that is homotopic to c 0, and it is fixed by f . If g
is parabolic, then ĉc 0 surrounds a puncture p̂p on R̂R. Then c 0 surrounds a puncture
p which is a lift of p̂p, and f fixes p. If g is elliptic, then ĉc 0 surrounds a cone
point p̂p on R̂R. In case c 0 is trivial, then it surrounds a point p which is a lift
of p̂p, and f fixes p. In case c 0 is non-trivial, then it surrounds a cone point p
which is a lift of p̂p, and f fixes p. r

This proposition immediately gives the following well known result.

Corollary 1. Let R be a compact Riemann surface, and f a conformal
automorphism of R. If f is irreducible, then f has a fixed point on R.

Assume that R has the non-abelian fundamental group. Then the action of
AutðRÞ is properly discontinuous (see [6, Theorem X.48]). Thus, if a conformal
automorphism f of R fixes either a simple closed geodesic, a puncture, a point or
a cone point on R, then f has the finite order. Hence, by Proposition 1, f has
the finite order if and only if f fixes either a simple closed geodesic, a puncture, a
point or a cone point on R. In each case, we estimate the order of f concretely
in terms of the injectivity radius on R.

Theorem 1. (hyperbolic case) Let R be a hyperbolic Riemann surface.
Suppose that there exists a positive constant M such that the injectivity radius at
any point in R is less than M. Let f be a conformal automorphism of R such that
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f ðcÞ ¼ c for a simple closed geodesic c on R whose length is l. Then the order n
of f satisfies

n < ðe2M � 1Þ coshðl=2Þ:

Theorem 2. (parabolic case) Let R be a hyperbolic Riemann surface.
Suppose that there exists a positive constant M such that the injectivity radius at
any point in R is less than M. Let f be a conformal automorphism of R such
that f ðpÞ ¼ p for a puncture p of R. Then the order n of f satisfies

n < e2M � 1:

Theorem 3. (elliptic case) (i) Let R be a hyperbolic Riemann surface, and f
a conformal automorphism of R such that f ðpÞ ¼ p for a point p in R at which the
injectivity radius is M > 0. Then the order n of f satisfies

n < 2p cosh M:

(ii) Let R ¼ H=G, where G is a Fuchsian group which is not torsion-free. Suppose
that there exists a positive constant M such that the injectivity radius at any point
in R is less than M. Let f be a conformal automorphism of R such that f ðpÞ ¼ p
for a cone point p in R which is a projection of a fixed point ~pp of an elliptic
element of G with order m > 1. Then the order n of f satisfies

n < ðe2M � 1Þ p
m

1

sin2ðp=mÞ
þ 1

sinh2 M

 !1=2
:

Remark 1. In the assumptions of Theorems 1, 2 and 3 (ii), the injectivity
radius at any point in R is uniformly bounded from above. Then R must have
the non-abelian fundamental group. Further, in the assumption of Theorem 3
(i), the conformal automorphism f fixes a point on R at which the injectivity
radius is bounded. Thus, if the fundamental group of R is abelian, then the
order of f is not greater than 2. Hence we may assume that R has the non-
abelian fundamental group.

Remark 2. The upper bound of the order of f obtained in Theorem 2 is
the limiting case of that in Theorem 1 as l ! 0. It is also the limiting case of
that in Theorem 3 (ii) as m ! y.

3. The collar, cusp and cone lemmas

The proofs of the theorems are based on the collar, cusp and cone lemmas
(see [3] and [5]).

Definition 1. A subset SHH is said to be precisely invariant under a
subgroup GS of a Fuchsian group G if gðSÞ ¼ S for all g A GS and gðSÞVS ¼ j
for all g A G� GS.
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Collar Lemma. Let G be a Fuchsian group (which is not necessarily torsion-
free) acting on H, and L an axis of a hyperbolic element g A G whose translation
length is less than l. Assume that there exist no fixed points of elements in G
on L and that L is precisely invariant under the cyclic subgroup hgi generated by
g. Then a collar

CðLÞ ¼ fz A H j dðz;LÞaoðlÞg
is precisely invariant under hgi, where sinh oðlÞ ¼ ð2 sinhðl=2ÞÞ�1. Equiva-
lently, the boundaries qCðLÞ of CðLÞ and the real axis make an angle y, where
tan y ¼ 2 sinhðl=2Þ.

Cusp Lemma. Let G be a Fuchsian group (which is not necessarily torsion-
free) acting on H. Suppose that G contains a parabolic element g with the fixed
point z. Then there exists a horoball CðzÞ tangent at z such that CðzÞ is pre-
cisely invariant under the cyclic subgroup hgi generated by g, and that the area
of cusp neighborhood CðzÞ=hgi is 1.

Cone Lemma. Let G be a Fuchsian group acting on H. Suppose that a
point p A H is fixed by an elliptic element g A G whose order is n > 2. Then a
hyperbolic disc

CðpÞ ¼ fz A H j dðz; pÞ < rðnÞg
is precisely invariant under the cyclic subgroup hgi generated by g, where for
2 < n < 7, rðnÞ is a constant mA :075, and for nb 7, cosh rðnÞ ¼ ð2 sinðp=nÞÞ�1.

4. Proof of Theorems

In this section, we prove the theorems. First we give a proof of Theorem
1 which is based on Collar Lemma. The proof follows from the fact that there
exists a wider collar of the simple closed geodesic c, as the order of a conformal
automorphism f fixing c increases.

Proof of Theorem 1. Let G be a Fuchsian model of R, and ~ff a lift of f
which is a hyperbolic element in PSL2ðRÞ. Note that ~ff n is a hyperbolic ele-

ment in G which is corresponding to c. We consider the quotient R̂R ¼ R=h f i by
the cyclic group h f i and its Fuchsian model ĜG ¼ hG; ~ff i. Then ĉc ¼ c=h f i is a
simple closed geodesic on R̂R whose length is l=n. Since ~ff is corresponding to ĉc,
we may assume that ~ff ðzÞ ¼ expðl=nÞz with the axis L ¼ fiy j y > 0g. Applying
Collar Lemma for ĜG and ~ff , we can take a collar

~CCðLÞ ¼ freiy A H j 0 < r; y0 < y < p� y0g
so that it is precisely invariant under h ~ff iH ĜG, where

tan y0 ¼ 2 sinhðl=ð2nÞÞ:
In particular, gð ~CCðLÞÞV ~CCðLÞ ¼ j for any g A G� h ~ff ni. Then we can take a
tubular neighborhood CðcÞ ¼ ~CCðLÞ=h ~ff ni of c on R whose fundamental region is
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A ¼ freiy A H j 1 < r < el; y0 < y < p� y0g:

We may assume that dðc; qCðcÞÞ ¼ oðl=nÞ > M. Indeed, suppose that

oðl=nÞ ¼ arcsinh
1

2 sinhðl=ð2nÞÞ

� �
aM:

It is easily seen that

eM coshðl=2Þ
n

b
coshðl=2Þ

n
> sinh

l

2n

for n > 1, l > 0 and M > 0. Then

n

2eM coshðl=2Þ <
1

2 sinhðl=ð2nÞÞ a sinh M:

This implies that

n < 2eM sinh M coshðl=2Þ

¼ ðe2M � 1Þ coshðl=2Þ;

and we have nothing to prove.
We take a point p in CðcÞ which satisfies dðp; qCðcÞÞ ¼ M. Here qCðcÞ is a

boundary curve of CðcÞ. From the assumption, the injectivity radius at p is less
than M. That is, the length rp of the shortest non-trivial simple closed curve a
passing through p is less than 2M. Since dðp; qCðcÞÞ ¼ M, the curve a is in
CðcÞ. Let ~pp ¼ reiy A A ðy0 < y < p=2Þ be a lift of p. Setting z1ðtÞ ¼ reit for
tb 0, we have

M ¼ dð~pp; q ~CCðLÞÞ ¼
ð y
y0

jz 01ðtÞj
Im z1ðtÞ

dt ¼
ð y
y0

1

sin t
dtb

ð y
y0

1

t
dt ¼ log

y

y0
:

Hence ya eMy0. We put a ¼ eiy and b ¼ elþiy. Then rp ¼ dða; bÞ. From The-
orem 7.2.1 in [1], we have

sinh
1

2
dða; bÞ ¼ ja� bj

2ðIm a Im bÞ1=2
¼ el � 1

2el=2 sin y
¼ sinhðl=2Þ

sin y
b

sinhðl=2Þ
y

b
sinhðl=2Þ
eMy0

¼ sinhðl=2Þ
eM arctanð2 sinhðl=ð2nÞÞÞ b

sinhðl=2Þ
2eM sinhðl=ð2nÞÞ

¼ n sinhðl=2Þ
eMl

l=ð2nÞ
sinhðl=ð2nÞÞ b

n sinhðl=2Þ
eMl

l

sinh l
¼ n sinhðl=2Þ

eM sinh l

¼ n

2eM coshðl=2Þ :

For the last inequality, we used the fact that xðsinh xÞ�1 is a monotone decreas-
ing function for x > 0. Since rp < 2M, this implies that
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n < 2eM sinh M coshðl=2Þ

¼ ðe2M � 1Þ coshðl=2Þ: r

Next, we give a proof of Theorem 2 which is based on Cusp Lemma. The
idea is similar to that in Theorem 1.

Proof of Theorem 2. Let G be a Fuchsian model of R, and ~ff a lift of f to
H which is a parabolic element in PSL2ðRÞ. We may assume that ~ff ðzÞ ¼ zþ 1.

Note that ~ff n belongs to G. We set ĜG ¼ hG; ~ff i, which is a Fuchsian model of

R̂R ¼ R=h f i. Applying Cusp Lemma for ĜG and ~ff , we can take a horoball

~CCðyÞ ¼ fz A H j 1 < Im zg
so that it is precisely invariant under h ~ff iH ĜG. In particular, we have
gð ~CCðyÞÞV ~CCðyÞ ¼ j for any g A G� h ~ff ni. We set CðpÞ ¼ ~CCðyÞ=h ~ff ni, whose
fundamental region is

fz A H j 0 < Re z < n; 1 < Im zg:
We take a point q in CðpÞ so that dðq; qCðpÞÞ ¼ M. Here qCðpÞ is the boun-
dary curve of CðpÞ. From the assumption, the injectivity radius at q is less than
M. That is, the length rq of the shortest non-trivial simple closed curve a passing
through q is less than 2M. Since dðq; qCðpÞÞ ¼ M, the curve a is in CðpÞ. We
put a ¼ eMi and b ¼ nþ eMi. Then rq ¼ dða; bÞ. From Theorem 7.2.1 in [1],
we have

sinh
1

2
dða; bÞ ¼ ja� bj

2ðIm a Im bÞ1=2
¼ n

2eM
:

Since rq < 2M, this implies that

n < 2eM sinh M

¼ e2M � 1: r

Finally, we prove Theorem 3. The proof is based on Cusp Lemma.

Proof of Theorem 3 (i). Since 2p cosh M > 6 for M > 0, we may assume
that nb 7. Let ~pp be a lift of p to H, and ~ff a lift of f to H fixing the point
~pp, which is an elliptic element in PSL2ðRÞ. Note that ~ff n is the identity. We
set ĜG ¼ hG; ~ff i, which is a discrete group. Applying Cone Lemma for ĜG and ~ff ,
we can take a hyperbolic disc

~CCð~ppÞ ¼ fz A H j dðz; ~ppÞ < rðnÞg
so that it is precisely invariant under h ~ff iH ĜG, where

cosh rðnÞ ¼ ð2 sinðp=nÞÞ�1:

In particular, gð ~CCð~ppÞÞV ~CCð~ppÞ ¼ j for any g A G� fidg. Then there exists a
hyperbolic disc CðpÞ centered at p with radius rðnÞ. Thus the length of any
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non-trivial simple closed curve passing through p is greater than 2rðnÞ. On the
other hand, the injectivity radius at p is M by the assumption. That is, there
exists a non-trivial simple closed curve passing through p whose length is 2M.
Hence we have rðnÞaM, and this implies that

na pfarcsinð2 cosh MÞ�1g�1

< 2p cosh M: r

Proof of Theorem 3 (ii). Let ~ff be a lift of f to H, which is an elliptic
element in PSL2ðRÞ. Note that the order of ~ff is mn, and that ~ff n A G. Ap-
plying Cone Lemma for ĜG ¼ hG; ~ff i, we can take a hyperbolic disc

~CCð~ppÞ ¼ fz A H j dðz; ~ppÞ < rðmnÞg
so that it is precisely invariant under h ~ff iH ĜG, where

cosh rðmnÞ ¼ ð2 sinðp=ðmnÞÞÞ�1:

In particular, gð ~CCð~ppÞÞV ~CCð~ppÞ ¼ j for any g A G� h ~ff ni. Then the fundamental

region of CðpÞ ¼ ~CCð~ppÞ=G is conformally equivalent to

freiy A C j 0a r < rðmnÞ; 0 < y < 2p=mg:
We may assume that rðmnÞ > M. Indeed, if

rðmnÞ ¼ arccoshð2 sinðp=ðmnÞÞÞ�1
aM;

then

na
p

m
ðarcsinð2 cosh MÞ�1Þ�1 <

2p

m
cosh M <

2peM

m

<
2peM

m

sinh M

sinðp=mÞ

� �2
þ 1

( )1=2

¼ ðe2M � 1Þ p
m

1

sin2ðp=mÞ
þ 1

sinh2 M

 !1=2
;

and we have nothing to prove.
We take a point q in CðpÞ that satisfies dðq; qCðpÞÞ ¼ M. Here qCðpÞ is

the boundary curve of CðpÞ. From the assumption, the injectivity radius at q
is less than M. That is, the length rq of the shortest non-trivial simple closed
curve a passing through q is less than 2M. Since dðq; qCðpÞÞ ¼ M, the curve a
is in CðpÞ. From the cosine rule of triangles (see [1, p. 148]), we have

cosh rq ¼ cosh2ðrðmnÞ �MÞ � sinh2ðrðmnÞ �MÞ cosð2p=mÞ

¼ sinh2ðrðmnÞ �MÞð1� cosð2p=mÞÞ þ 1:

Then rq < 2M implies that
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rðmnÞ < arcsinh
cosh 2M � 1

1� cosð2p=mÞ

� �1=2
þMð1Þ

¼ arcsinh
sinh M

sinðp=mÞ

� �
þM

¼: M1:

To obtain (1), we used the fact that the inverse function of y ¼ sinh2 x for x > 0
is arcsinh

ffiffiffi
y

p
. Since

rðmnÞ ¼ arccoshð2 sinðp=ðmnÞÞÞ�1;

the inequality (1) implies that

n < ðp=mÞfarcsinð2 cosh M1Þ�1g�1

< ð2p=mÞ cosh M1

¼ ð2p=mÞ cosh arcsinh
sinh M

sinðp=mÞ

� �
þM

� �
:

We set

X ¼ sinh M

sinðp=mÞ :

Using the hyperbolic cosine formula and the fact that coshðarcsinh xÞ ¼
ðx2 þ 1Þ1=2 for x > 0, we have

n < ð2p=mÞ coshfarcsinh X þMg
¼ ð2p=mÞfcoshðarcsinh X Þ cosh M þ sinhðarcsinh X Þ sinh Mg
< ð2p=mÞfcoshðarcsinh X Þ cosh M þ coshðarcsinh XÞ sinh Mg

¼ ð2p=mÞeM coshðarcsinh XÞ

¼ ð2p=mÞeMðX 2 þ 1Þ1=2

¼ 2peM

m

sinh M

sinðp=mÞ

� �2
þ 1

( )1=2

¼ ðe2M � 1Þ p
m

1

sin2ðp=mÞ
þ 1

sinh2 M

 !1=2
: r

5. Application

In this section, we apply our main theorem to investigating a certain prop-
erty on hyperbolic geometry on Riemann surfaces. The property we observe is
as follows.
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Definition 2. We say that a Riemann surface R satisfies the lower bound
condition if there exists a positive constant e such that the e-thin part of R consists
only of cusp neighborhoods. Further, we say that R satisfies the upper bound
condition if there exists a positive constant M such that the injectivity radius at
any point in R is less than M.

In [2], we defined the (generalized) upper bound condition, and showed the
following.

Proposition 2 ([2]). Let R be a hyperbolic Riemann surface of analytically
finite type, and ~RR a normal covering surface of R which is not a universal cover.

Then ~RR satisfies the lower and (generalized ) upper bound conditions.

In connection with this result, we show that a Riemann surface inherits the
lower and upper bound conditions from its normal covering surface.

Proposition 3. Let R be a hyperbolic Riemann surface, and ~RR a normal
covering surface of R. If ~RR satisfies the lower and upper bound conditions, then
R also satisfies these conditions.

Proof. It is clear that R satisfies the upper bound condition. Suppose that
R does not satisfy the lower bound condition. Then R has a sequence fcng of
disjoint simple closed geodesics with ln ¼ lðcnÞ ! 0 ðn ! yÞ. Here lð�Þ means

the hyperbolic length of a curve. Let ~ccn H ~RR be a connected component of the
preimage of cn. Since ~RR satisfies the lower bound conditions, there exists a pos-
itive constant e such that lð~ccnÞ > e for all n. We take a positive constant M
so that ~RR satisfies the upper bound condition for M. Assume that lð~ccnÞa 2M
for infinitely many n. Then, by Theorem 1, the order of a conformal auto-

morphism ~ffn of ~RR that fixes ~ccn is less than N ¼ ðe2M � 1Þ cosh M. Then we
have lðcnÞ > e=N. However, this contradicts lðcnÞ ! 0 ðn ! yÞ. Next, we
assume that lð~ccnÞ > 2M (including the case that ~ccn is not closed) for infinitely
many n. By Collar Lemma, there exists a tubular neighborhood CðcnÞ of cn
with width oðlnÞ, where sinh oðlnÞ ¼ ð2 sinhðln=2ÞÞ�1. From the proof of The-
orem 1, there exists a (tubular) neighborhood of ~ccn with width oðlnÞ. Since
~RR satisfies the upper bound condition for the constant M, there exists a non-
trivial simple closed curve passing through ~ppn A ~ccn whose length is less than
2M. However, since lð~ccnÞ > 2M and since oðlnÞ ! y as n ! y, we have a
contradiction. r

The following example shows that, in Proposition 3, if the normal covering
surface ~RR of R satisfies only one of the two conditions, then R does not neces-
sarily satisfy the conditions.

Example 1. Let

~RR ¼ C � 6
y

n¼1

6
m AZ

m

n
G n2

ffiffiffiffiffiffiffi
�1

p� �
;
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and set R ¼ ~RR=h f i, where f ðzÞ ¼ zþ 1. The normal covering surface ~RR of R
satisfies the lower bound condition but does not satisfy the upper bound con-
dition. On the other hand, R does not satisfy the lower bound condition.
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