
819(147)

c⃝2020 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 72, No. 3 (2020) pp. 819–845
doi: 10.2969/jmsj/82128212

Finite-to-one zero-dimensional covers of dynamical systems

By Hisao Kato and Masahiro Matsumoto

(Received Feb. 5, 2019)

Abstract. In this paper, we study the existence of finite-to-one zero-
dimensional covers of dynamical systems. Kulesza showed that any homeomor-

phism f : X → X on an n-dimensional compactum X with zero-dimensional
set P (f) of periodic points can be covered by a homeomorphism on a zero-
dimensional compactum via an at most (n+ 1)n-to-one map. Moreover,

Ikegami, Kato and Ueda showed that in the theorem of Kulesza, the con-
dition of at most (n+1)n-to-one map can be strengthened to the condition of
at most 2n-to-one map. In this paper, we will show that the theorem is also
true for more general maps except for homeomorphisms. In fact we prove that

the theorem is true for a class of maps containing two-sided zero-dimensional
maps. For the special case, we give a theorem of symbolic extensions of pos-
itively expansive maps. Finally, we study some dynamical zero-dimensional
decomposition theorems of spaces related to such maps.

1. Introduction.

A pair (X, f) is called a dynamical system if X is a compact metric space (= com-

pactum) and f : X → X is a map on X. A dynamical system (Z, f̃) covers (X, f)

via a map p : Z → X provided that p is an onto map and the following diagram is

commutative, i.e., pf̃ = fp.

Z
f̃−→ Z

↓ p ↓ p

X
f−→ X

Note that (X, f) is also called a factor of (Z, f̃) and conversely (Z, f̃) is called a cover

(or an extension) of (X, f). We call the map p : Z → X a factor mapping. If Z is

zero-dimensional, then we say that the dynamical system (Z, f̃) is a zero-dimensional

cover of (X, f). Moreover, if the factor mapping is a finite-to-one map, then we say that

the dynamical system (Z, f̃) is a finite-to-one zero-dimensional cover of (X, f).

The (symbolic) dynamical systems on Cantor sets have been studied by many mathe-

maticians and also the strong relations between Markov partitions and symbolic dynamics

have been studied (e.g., see [1], [3], [4], [5], [11], [16, Proposition 3.19] and [18]). In [1],

Anderson proved that for any dynamical system (X, f), there exists a zero-dimensional

cover (Z, f̃) of (X, f), and moreover in [4, Theorem A.1] Boyle, Fiebig and Fiebig proved

that any dynamical system (X, f) has a zero-dimensional cover (Z, f̃) such that the
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topological entropy h(f) of f is equal to h(f̃), where the factor mappings are not nec-

essarily finite-to-one (see Remark 1 below). In topology, there is a classical theorem by

Hurewicz [8] that any compactum X is at most n-dimensional if and only if there is a

zero-dimensional compactum Z with an onto map p : Z → X whose fibers have cardi-

nality at most n + 1. In the theory of dynamical systems, we have the related general

problem (e.g., see [3], [4], [10] and [15]):

Problem 1.1. What kinds of dynamical systems can be covered by zero-

dimensional dynamical systems via finite-to-one maps?

The motivation for this problem comes from (symbolic) dynamics on Cantor sets. To

study dynamical properties of the original dynamics (X, f), the finiteness of the fibers

of the factor mapping may be very important and so, in this paper we focus on the

finiteness of fibers of factor mappings. Related to Problem 1.1, first Kulesza [15] proved

the following significant theorem:

Theorem 1.2 (Kulesza [15]). For each homeomorphism f on an n-dimensional

compactum X with zero-dimensional set P (f) of periodic points, there is a zero-

dimensional cover (Z, f̃) of (X, f) via an at most (n+1)n-to-one map such that f̃ : Z → Z

is a homeomorphism.

He also showed that Problem 1.1 needs the assumption dimP (f) ≤ 0. In fact, for

the disk X = [0, 1]2 or some 1-dimensional continuum X, there is a dynamical system

(X, f) such that f : X → X is a homeomorphism on X with dimP (f) = 1 and (X, f)

has no zero-dimensional cover via a finite-to-one map (see the proof of Example 2.2 and

Remark 2.3 of [15]). In [10] Ikegami, Kato and Ueda improved the theorem of Kulesza

as follows: The condition of at most (n + 1)n-to-one map can be strengthened to the

condition of at most 2n-to-one map.

The aim of this paper is to give a partial answer to Problem 1.1. In fact, we show that

the above theorem is also true for a class of maps containing two-sided zero-dimensional

maps (see Main Theorem 3.18). For the special case that (X, f) is a positively expansive

dynamical system with dimX = n, (X, f) can be covered by a subshift (Σ, σ) of the

shift map σ : {1, 2, . . . , k}∞ → {1, 2, . . . , k}∞ via an at most 2n-to-one map. Also, we

study some dynamical zero-dimensional decomposition theorems of spaces related to such

maps. For the proofs, we need more general and careful arguments than the arguments

of [7], [9] and [10]. In this paper, for completeness we give the precise proofs.

2. Preliminaries.

In this paper, all spaces are separable metric spaces and maps are continuous func-

tions. Let N be the set of all natural numbers, i.e., N = {1, 2, 3, . . . }, Z the set of all

integers and Z+ the set of all nonnegative integers, i.e., Z+ = {0} ∪ N (= {0, 1, 2, . . . }).
Also, let R be the real line. If K is a subset of a space X, then cl(K), bd(K) and int(K)

denote the closure, the boundary and the interior of K in X, respectively. A subset A

of a space X is an Fσ-set of X if A is a countable union of closed subsets of X. Also, a

subset B of X is a Gδ-set of X if B is an intersection of countable open subsets of X. A
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subset B of a space X is residual in X if B contains a dense Gδ-set of X. For a space X,

dimX means the topological (covering) dimension of X (e.g., see [6]). For a collection C
of subsets of X, we put

ord(C) = sup{ordxC | x ∈ X},

where ordxC is the number of members of C which contains x. A closed set K in X is

regular closed in X if cl(int(K)) = K. A collection C of regular closed sets in X is called

a regular closed partition of X provided that C is a finite family,∪
C
(
=
∪
{C | C ∈ C}

)
= X

and C ∩ C ′ = bd(C) ∩ bd(C ′) for each C,C ′ ∈ C with C ̸= C ′. For regular closed

partitions A and B of X, we consider the following family of closed sets of X;

A@B = {cl[int(A) ∩ int(B)] | A ∈ A and B ∈ B}.

Then we have the following proposition.

Proposition 2.1. For regular closed partitions A and B of X, A@B is a regular

closed partition of X.

Proof. First, note that if U is an open set of X, then cl(U) is regular closed,

because that cl(U) ⊂ cl[int(cl(U))] ⊂ cl(U). Also note that the collection

{int(A) ∩ int(B) | A ∈ A and B ∈ B}

is a finite family of mutually disjoint open sets of X. We will prove

X =
∪
{cl[int(A) ∩ int(B)] | A ∈ A and B ∈ B}.

Let x ∈ X. Then there is A ∈ A with x ∈ A = cl(int(A)). We can find a sequence

{xn}∞n=1 of points of int(A) such that x = limn→∞ xn. Since B is a finite family, we may

assume that there is B ∈ B with

[B(xn, 1/n) ∩ int(A)] ∩ int(B) ̸= ∅

for each n ∈ N, where B(xn, 1/n) is the 1/n-neighborhood of xn in X. Then x ∈
cl[int(A) ∩ int(B)] and we see that

X =
∪
{cl[int(A) ∩ int(B)] | A ∈ A and B ∈ B}.

Hence A@B is a regular closed partition of X. □

Note that ord(A@B) ≤ ord(A) · ord(B). A collection {Aλ}λ∈Λ of subsets of X is

called a swelling of a collection {Bλ}λ∈Λ of subsets of X provided that Bλ ⊂ Aλ for each

λ ∈ Λ, and if for any m ∈ N and λ1, . . . , λm ∈ Λ, we have
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m∩
i=1

Aλi ̸= ∅ if and only if
m∩
i=1

Bλi ̸= ∅.

Conversely, a family {Bλ}λ∈Λ of subsets of X is called a shrinking of a cover {Aλ}λ∈Λ

of X if {Bλ}λ∈Λ is a cover of X and Bλ ⊂ Aλ for each λ ∈ Λ.

Let X and Y be compacta. A map f : X → Y is zero-dimensional if dim f−1(y) ≤ 0

for each y ∈ Y . A map f : X → Y is a zero-dimension preserving map if for any

zero-dimensional closed subset D of X, dim f(D) ≤ 0. Also a map f : X → X is

two-sided zero-dimensional if f is zero-dimensional and zero-dimension preserving, i.e.,

for any zero-dimensional closed subset D of X, dim f−1(D) ≤ 0 and dim f(D) ≤ 0. In

this case, note that if Z is a zero-dimensional Fσ-subset of X, then dim f(Z) = 0 (see

Proposition 3.1). A map f : X → Y is semi-open (or quasi-open) if for any nonempty

open set U of X, f(U) contains a nonempty open set of Y , i.e., intf(U) ̸= ∅. An onto

map p : X → Y is at most k-to-one (k ∈ N) if for any y ∈ Y , |p−1(y)| ≤ k.

For a map f : X → X, a subset A of X is f -invariant if f(A) ⊂ A. We define the

set

O(x) = {fp(x) | p ∈ Z+}

which denotes the (positive) orbit of x. Similarly we define the eventual orbit of x ∈ X:

EO(x) = {z ∈ X | there exist i, j ∈ Z+ such that f i(x) = f j(z)}

= {z ∈ X | there exists j ∈ Z+ such that f j(z) ∈ O(x)}.

Note that

EO(x) =
∪

i,j∈Z+

f−j(f i(x)),

the family {EO(x) |x ∈ X} is a decomposition of X and EO(x) is f -invariant, i.e.,

f(EO(x)) ⊂ EO(x). Let P (f) be the set of all periodic points of f ;

P (f) = {x ∈ X | f j(x) = x for some j ∈ N}.

A point x ∈ X is eventually periodic if there is some p ∈ Z+ such that fp(x) ∈ P (f).

Let EP (f) be the set of all eventually periodic points of f ;

EP (f) =
∞∪
p=0

f−p(P (f)).

Note that P (f) and EP (f) are Fσ-sets of X. In [14], Krupski, Omiljanowski and

Ungeheuer showed that the set of maps f : X → X with zero-dimensional sets CR(f)

of all chain recurrent points is a dense Gδ-set of the mapping space C(X,X) if X is a

(compact) polyhedron. Note that a point x ∈ X is a chain recurrent point of f if for

any ϵ > 0 there is a finite sequence x = x0, x1, . . . , xm = x of points of X such that

d(f(xi), xi+1) < ϵ for each i = 0, 1, . . . ,m− 1. Since P (f) ⊂ CR(f), we see that the set
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of maps f : X → X with zero-dimensional sets P (f) of all periodic points is residual in

the mapping space C(X,X) if X is a compact polyhedron. Hence almost all maps on

compact polyhedra have zero-dimensional sets of periodic points.

Let X be a compactum and U ,V be two covers of X. Put

U ∨ V = {U ∩ V | U ∈ U , V ∈ V}.

The quantity N(U) denotes minimal cardinality of subcovers of U . Let f : X → X be a

map and let U be an open cover of X. Put

h(f,U) = lim
n→∞

logN(U ∨ f−1(U) ∨ · · · ∨ f−n+1(U))
n

.

The topological entropy of f , denoted by h(f), is the supremum of h(f,U) for all open

covers U of X. Positive topological entropy of maps is one of generally accepted defini-

tions of chaos.

3. Zero-dimensional covers.

In this section, we study zero-dimensional covers of some dynamical systems. First,

we need the following well-known results of dimension theory. For dimension theory, e.g.,

see [6], [19], [20].

Proposition 3.1 ([6, Theorems 1.5.3 and 1.5.11]).
(1) If {Fi | i ∈ N} is a sequence of closed subsets of a separable metric space X with

dimFi ≤ n, then

dim

( ∞∪
i=1

Fi

)
≤ n.

(2) If M is a subset of a separable metric space X with dimM ≤ n, then there is a

Gδ-set M
∗ of X such that M ⊂M∗ and dimM∗ ≤ n.

Proposition 3.2. If X is a separable metric space with dimX ≤ n (1 ≤ n <∞)

and E is an Fσ-set of X with dimE ≤ n− 1, then there exists a zero-dimensional Fσ-set

Z of X such that

Z ∩ E = ∅, dim(X − Z) ≤ n− 1.

Proof. Let B be a countable open base ofX such that if B ∈ B, then dimbd(B) ≤
n − 1. Let Y =

∪
{bd(B) |B ∈ B} ∪ E. By (1) of Proposition 3.1, dimY ≤ n − 1. By

(2) of Proposition 3.1, we have a Gδ-set Y
∗ such that Y ⊂ Y ∗ and dimY ∗ ≤ n− 1. Put

Z = X − Y ∗. Then Z satisfies the desired property. □

Proposition 3.3 ([6, Theorem 1.5.13]). Let M be a subset of a separable metric

space X and dimM ≤ n. For any disjoint closed subsets A,B of X, there exists a

partition L between A and B such that dim(M ∩L) ≤ n−1. In particular, if dimM ≤ 0,

there exists a partition L between A and B such that M ∩ L = ∅.
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Theorem 3.4 (Hurewicz’s theorem [6, Theorem 4.3.4]). If f : X → Y is a closed

map between separable metric spaces and there is k ≥ 0 such that dim f−1(y) ≤ k for

each y ∈ Y , then dimX ≤ dimY + k.

We say a collection G of subsets of a compactum X with dimX = n < ∞ is in

general position provided that if S ⊂ G and 1 ≤ |S| ≤ n + 1, then dim(
∩
S) ≤ n − |S|,

where
∩
S =

∩
{S |S ∈ S} and |S| denotes the cardinality of S. We find the following

two results in [10]. For completeness, we give the proofs again.

Lemma 3.5 ([10, Lemma 3.2]). Let X be a compactum with dimX = n < ∞.

Suppose that for any j ∈ N, G(j) is a finite collection of Fσ-sets of X and G(j) is in

general position. Then there is a zero-dimensional Fσ-set Z of X such that if A is a

subset of X with A ∩ Z = ∅, then G(j) ∪ {A} is in general position for each j ∈ N.

Proof. Let j ∈ N. Note that {
∩
S | S ⊂ G(j) and

∩
S ̸= ∅} is a finite col-

lection such that each element is an Fσ-set in X. By Proposition 3.2, we choose a

zero-dimensional Fσ-set Z
′ of X such that dim(X−Z ′) ≤ n−1. Also, for each S ⊂ G(j)

with
∩
S ≠ ∅, we can choose a zero-dimensional Fσ-set ZS of

∩
S such that

dim
(∩
S − ZS

)
≤ dim

(∩
S
)
− 1.

Note that {ZS | S ⊂ G(j) and
∩
S ≠ ∅} is a finite collection of zero-dimensional Fσ-sets

of X. Then

Z =
∪{

ZS

∣∣∣ j ∈ N, S ⊂ G(j) and
∩
S ≠ ∅

}
∪ Z ′

is also a zero-dimensional Fσ-set of X. We will show that Z is a desired set. Now suppose

A ⊂ X with A∩Z = ∅. Let S ⊂ G(j)∪ {A} such that 1 ≤ |S| ≤ n+ 1 and
∩
S ̸= ∅. We

may assume that A ∈ S. If |S| = 1, then

dim
(∩
S
)
= dimA ≤ dim(X − Z ′) ≤ n− 1.

On the other hand, suppose 2 ≤ |S| ≤ n+1. Since S−{A} ⊂ G(j) and 1 ≤ |S−{A}| ≤ n

and
∩
(S − {A}) ̸= ∅, we see that

dim
(∩
S
)
= dim

[∩
(S − {A}) ∩A

]
≤ dim

[∩
(S − {A})− Z(S−{A})

]
≤ dim

[∩
(S − {A})

]
− 1 ≤ (n− |S − {A}|)− 1

= n− (|S| − 1)− 1 = n− |S|.

Therefore G(j) ∪ {A} is in general position for any j ∈ N. □

Lemma 3.6 ([10, Lemma 3.3]). Let C = {Ci | 0 ≤ i ≤ m} be a finite open cover

of a compactum X with dimX = n < ∞, and let B = {Bi | 0 ≤ i ≤ m} be a closed

shrinking of C. Suppose that O is an open set of X, Z is an at most zero-dimensional

Fσ-set of O, and for each j ∈ N, G(j) is a finite collection of Fσ-subsets of O such that
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each G(j) is in general position. Then there is an open shrinking C′ = {C ′
i | 0 ≤ i ≤ m}

of C such that for each 0 ≤ i ≤ m,

(1) Bi ⊂ C ′
i ⊂ Ci,

(2) C ′
i = Ci if bd(Ci) ∩O = ∅,

(3) C ′
i −O = Ci −O,

(4) bd(C ′
i)−O ⊂ bd(Ci)−O,

(5) bd(C ′
i) ∩ Z = ∅,

(6) G(j) ∪ {bd(C ′
i) ∩O | 0 ≤ i ≤ m} is in general position for any j ∈ N.

Proof. Without loss of generality, we may assume that B0 = C0 = ∅ (i = 0). We

will construct C ′
k by induction on k = 0, 1, . . . ,m. For the case k = 0, we put C ′

0 = ∅.
Next we assume that there is {C ′

i | i < k} (k ≤ m) satisfying the conditions (1)–(5) and

G(j) ∪ {bd(C ′
i) ∩O | i < k}

is in general position for each j ∈ N. We will construct C ′
k as follows. By Lemma 3.5,

there is a zero-dimensional Fσ-set Zk of O such that if A ⊂ O and A ∩ Zk = ∅, then
G(j) ∪ {bd(C ′

i) ∩ O | i < k} ∪ {A} is in general position for each j ∈ N. Consider the

following open subspace of X:

Yk = X − [bd(Ck)−O].

Also consider the following closed set of Yk:

B′
k = [Bk ∪ (cl(Ck)−O)] ∩ Yk = Bk ∪ (Ck −O).

Since dim(Zk ∪Z) ≤ 0, by Proposition 3.3 we can choose an open set C ′
k of Yk such that

B′
k ⊂ C ′

k ⊂ clYk
(C ′

k) ⊂ Ck and bdYk
(C ′

k) ∩ (Zk ∪ Z) = ∅. Then C ′
k is an open set of X.

Note that

bdYk
(C ′

k) ⊂ O, bd(C ′
k) ⊂ bdYk

(C ′
k) ∪ (bd(Ck)−O).

Also, note that

C ′
k −O = B′

k −O = Ck −O,

bd(C ′
k)−O ⊂ bd(Ck)−O,

bd(C ′
k) ∩O ⊂ bdYk

(C ′
k) ∩O.

Hence (bd(C ′
k) ∩ O) ∩ (Zk ∪ Z) = ∅. By the construction, we see that C ′

k satisfies the

conditions (1)–(5), and G(j) ∪ {bd(C ′
i) ∩O | i ≤ k} is in general position for each j ∈ N.

By the induction on k, we obtain the desired open shrinking

C′ = {C ′
i | 0 ≤ i ≤ m}

of C. □

Lemma 3.7. Suppose that f : X → X is a map of a compactum X. If x /∈ P (f),
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then f−i(x) ∩ f−j(x) = ∅ = f−i(x) ∩ f j({x}) for any i, j ≥ 0 with i ̸= j. Moreover if

x /∈ EP (f), f i({x}) ∩ f j({x}) = ∅ for any i, j ∈ Z with i ̸= j.

Proof. Suppose that for i, j ≥ 0 with i ̸= j, f−i(x)∩f−j(x) ̸= ∅. We may assume

i > j. Take y ∈ f−i(x) ∩ f−j(x). Then

x = f i(y) = f i−j(f j(y)) = f i−j(x).

Hence x ∈ P (f). Similarly, if f−i(x)∩f j({x}) ̸= ∅, then f i+j(x) = x and hence x ∈ P (f).

Similarly, if f i(x) = f j(x), f i−j(f j(x)) = f i(x) = f j(x) and hence f j(x) ∈ P (f).

Consequently x ∈ EP (f). □

Lemma 3.8. Suppose that f : X → X is a zero-dimensional map of a compactum

X. Then EP (f) is an Fσ-set of X with dimEP (f) = dimP (f).

Proof. Note that P (f) is an Fσ-set of X and hence EP (f) is so. Since f is a

zero-dimensional map, we see that for each n ∈ N, dim f−n(P (f)) ≤ dimP (f). Note

that P (f) ⊂ EP (f). By Proposition 3.1, we see that dimEP (f) = dimP (f). □

Proposition 3.9. If f : X → X is a two-sided zero-dimensional onto map of a

compactum X, then for any closed subset A of X, dimA = dim f(A) = dim f−1(A).

Moreover, if A is an Fσ-set of X, then dimA = dim f(A) = dim f−1(A).

Proof. Note that dim f−1(y) ≤ 0 for each y ∈ X. By Hurewicz’s theorem, we

see that dim f−1(A) ≤ dimA ≤ dim f(A). By induction on dimA ≤ k, we will prove

dim f(A) ≤ k. For dimA ≤ k = 0, by the definition we see that dim f(A) ≤ 0. For

k − 1 (k ≥ 1), we assume that the claim is true. We will prove that the claim for k is

true. Let A be a closed set of X with dimA ≤ k. By Proposition 3.2, we choose an Fσ-set

Z of A such that dimZ = 0 and dim(A−Z) ≤ k− 1. Since dim f(Z) = 0, we can choose

a zero-dimensional Gδ-set Z̃ of f(A) with f(Z) ⊂ Z̃ (see (2) of Proposition 3.1). Note

that [f−1(f(A)−Z̃)∩A] (⊂ A−Z) is an Fσ-set of A and dim[f−1(f(A)−Z̃)∩A] ≤ k−1.
By the assumption, we see that

dim(f(A)− Z̃) = dim f(f−1(f(A)− Z̃) ∩A) ≤ k − 1.

Since f(A) = (f(A) − Z̃) ∪ Z̃, by [6, (1.5.7)] we see dim f(A) ≤ k. Consequently, we

see that dimA = dim f(A). Also note that dim f−1(A) = dim f(f−1(A)) = dimA. By

Proposition 3.1, we see that this result is true for the case of Fσ-sets of X. □

Proposition 3.10. Let f : X → X be a two-sided zero-dimensional map of a

compactum X and ij ∈ Z+ (j = 0, 1, . . . , k). Suppose that Mij (j = 0, 1, . . . , k) are

Fσ-sets of X and A,B are disjoint closed subsets of X. Then there exists a partition L

between A and B in X such that

dim(Mij ∩ f−ij (L)) ≤ dimMij − 1

for each j.
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Proof. By Proposition 3.2, we can find zero-dimensional Fσ-sets Zij (j =

0, 1, 2, . . . , k) of Mij such that dim(Mij −Zij ) ≤ dimMij − 1. Note that Zij are Fσ-sets

of X. Since f is two-sided zero-dimensional, dim f ij (Zij ) ≤ 0. Since
∪k

j=0 f
ij (Zij ) is

zero-dimensional, we can find a partition L between A and B such that

L ∩

[
k∪

j=0

f ij (Zij )

]
= ∅.

Note that f−ij (L) ∩ Zij = ∅. Hence we see that

dim(Mij ∩ f−ij (L)) ≤ dimMij − 1

for each j. □

Lemma 3.11 (cf. [10, Lemma 3.4]). Let f : X → X be a two-sided zero-dimensional

map of a compactum X such that dimX = n <∞ and dimP (f) ≤ 0. Let F be an Fσ-set

of X with dimF ≤ 0. Suppose that C = {Ci | 1 ≤ i ≤ M} is a finite open cover of X

and let B = {Bi | 1 ≤ i ≤ M} be a closed shrinking of C. Then for each k = 0, 1, 2, . . . ,

there is an open shrinking C′(k) = {C ′
i | 1 ≤ i ≤M} of C such that for each 1 ≤ i ≤M ,

(1) Bi ⊂ C ′
i ⊂ Ci,

(2) {f−p(bd(C ′
i)) | 1 ≤ i ≤M,p = 0, 1, . . . , k} is in general position,

(3) bd(C ′
i) ∩ (EP (f) ∪ F ) = ∅ for each i.

Proof. We will construct an open shrinking C′(k) of C by induction on k. Note

that dimEP (f) = dimP (f) ≤ 0, because that f is zero-dimensional. In the case k = 0,

we put O = X and Z = EP (f) ∪ F . Note that dimZ ≤ 0. By Lemma 3.6 there is

an open shrinking C′(0) = {C ′
i | 1 ≤ i ≤ M} of C such that the conditions (1)–(3)

hold. Next we suppose the result holds for k − 1. Then there is an open shrinking

D(= C′(k − 1)) = {Di | 1 ≤ i ≤M} of C such that for each i,

(1’) Bi ⊂ Di ⊂ Ci,

(2’) {f−p(bd(Di)) | 1 ≤ i ≤M and p = 0, 1, . . . , k − 1} is in general position,

(3’) bd(Di) ∩ (EP (f) ∪ F ) = ∅.
Put

K =
M∪
i=1

bd(Di).

Since K contains no eventually periodic points, we see that for any point z ∈ K, f t(z)∩
f t′(z) = ∅ for any integers with t, t′ ∈ Z with t ̸= t′ (see Lemma 3.7). Take open

neighborhoods U(f t(z)) (−2k ≤ t ≤ 2k) of f t(z) such that the sets U(f t(z)) (−2k ≤ t ≤
2k) are mutually disjoint. SinceK is compact, we can choose finite points zj(1 ≤ j ≤ mk)

and a finite family

O = {Oj | 1 ≤ j ≤ mk}

of open sets of X such that K ⊂
∪
O, zj ∈ Oj ⊂ U(zj) and f t(Oj) ⊂ U(f t(zj)) for each
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−2k ≤ t ≤ 2k.

For convenience, we put O0 = ∅. By induction on j = 0, 1, . . . ,mk, we will construct

a family {D(j) | 0 ≤ j ≤ mk} of open shrinkings of C such that for 0 ≤ j ≤ mk, D(j)
satisfies the following conditions;

(a) D(0) = D,
(b) D(j) = {D(j)i | 1 ≤ i ≤M},
(c) Bi ⊂ D(j)i ⊂ D(j − 1)i,

(d) for each 1 ≤ i ≤M ,

D(j)i ∩ (X −Oj) = D(j − 1)i ∩ (X −Oj),

bd(D(j)i) ∩ (X −Oj) ⊂ bd(D(j − 1)i) ∩ (X −Oj),

and if bd(D(j − 1)i) ∩Oj = ∅, then D(j)i = D(j − 1)i,

(e) the family

G(j) = {f−p(bd(D(j)i)) | 0 ≤ p ≤ k − 1, 1 ≤ i ≤M}

∪

{
f−k

[
bd(D(j)i) ∩

(
j∪

s=0

Os

)] ∣∣∣∣∣ 1 ≤ i ≤M

}

is in general position,

(f) bd(D(j)i) ∩ (EP (f) ∪ F ) = ∅ for each 1 ≤ i ≤M .

We construct D(j) by the induction on j. For j = 0, we have D(0) = D. Suppose

that we have D(j) satisfying the desired conditions. We will construct D(j + 1). For

each t with −k ≤ t ≤ k, we assume that the collection

St = {f−p(bd(D(j)i)) ∩ U(f t(zj+1)) | 0 ≤ p ≤ k − 1, 1 ≤ i ≤M}

∪

{
f−k

[
bd(D(j)i)) ∩

(
j∪

s=0

Os

)]
∩ U(f t(zj+1))

∣∣∣∣∣ 1 ≤ i ≤M

}

is in general position in U(f t(zj+1)). Note that

f−t(St)|Oj+1
= {f−t(S) ∩Oj+1 | S ∈ St}

is also in general position (see Proposition 3.9). By Lemma 3.6, we obtain an open

shrinking D(j + 1) of D(j) such that for each 1 ≤ i ≤M ,

(1) Bi ⊂ D(j + 1)i ⊂ D(j)i,

(2) D(j + 1)i = D(j)i if bd(D(j)i) ∩Oj+1 = ∅,
(3) D(j + 1)i −Oj+1 = D(j)i −Oj+1,

(4) bd(D(j + 1)i)−Oj+1 ⊂ bd(D(j)i)−Oj+1,

(5) bd(D(j + 1)i) ∩ (EP (f) ∪ F ) = ∅, and
(6) f−t(St)|Oj+1

∪{bd(D(j+1)i)∩Oj+1 | 1 ≤ i ≤M} is in general position for any

−k ≤ t ≤ k.

By the similar arguments of the proofs of [15, Lemma 3.5] and [10, Lemma 3.4], we

can check the condition (e): the family
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G(j + 1) = {f−p(bd(D(j + 1)i)) | 0 ≤ p ≤ k − 1, 1 ≤ i ≤M}

∪

{
f−k

[
bd(D(j + 1)i) ∩

(
j+1∪
s=0

Os

)] ∣∣∣∣∣ 1 ≤ i ≤M

}

is in general position.

If we continue this procedure, we obtain D(mk) (= C′(k)) which is the desired open

cover of X. □

Lemma 3.12 (cf. [10, Lemma 3.5]). Suppose that f : X → X is a two-sided zero-

dimensional map of a compactum X such that dimX = n < ∞ and dimP (f) ≤ 0. Let

F be an Fσ-set of X with dimF ≤ 0. Then, for each j ∈ N, there is a finite open cover

C(j) = {C(j)i | 1 ≤ i ≤ mj} of X such that

(1) mesh(C(j)) < 1/j,

(2) ord(G) ≤ n, where G = {f−p(bd(C(j)i)) | 1 ≤ i ≤ mj , j ∈ N and p ∈ Z+}, and
(3) F ∩ L = ∅, where L =

∪
{bd(C(j)i) | 1 ≤ i ≤ mj , j ∈ N}.

Proof. We put F =
∪∞

j=1 Fj , where Fj is a zero-dimensional closed set of X. For

each j ∈ N, we take a finite open cover D(j) of X such that mesh(D(j)) < 1/j. We put

D(j) = {D(j)i | 1 ≤ i ≤ mj}.

Also we take an open shrinking B(j) = {B(j)i | 1 ≤ i ≤ mj} of D(j) such that B(j) =
{cl(B(j)i) | 1 ≤ i ≤ mj} is a closed shrinking of D(j). For each j ∈ N and each k ∈ N
with k ≥ j, we will find an open shrinking D(j, k) = {D(j, k)i | 1 ≤ i ≤ mj} (k ≥ j) of

D(j) and a closed shrinking B(j, k) = {B(j, k)i | 1 ≤ i ≤ mj} (k ≥ j) of D(j, k) such

that

(a) D(j, j) = D(j), B(j, j) = B(j),
(b) cl(B(j)i) = B(j, j)i ⊂ B(j, j + 1)i ⊂ B(j, j + 2)i ⊂ · · · ⊂ D(j, j + 2)i ⊂

D(j, j + 1)i ⊂ D(j, j)i = D(j)i, i.e., {B(j, k)i}∞k=j is an increasing sequence

of sets and {D(j, k)i}∞k=j is a decreasing sequence of sets such that B(j, k)i ⊂
D(j, k)i for k ≥ j,

(c) ord{cl(f−p(D(j, k+1)i−B(j, k+1)i)) | 1 ≤ i ≤ mj , 1 ≤ j ≤ k, 0 ≤ p ≤ k} ≤ n,

and

(d) [D(j, k + 1)i −B(j, k + 1)i] ∩
∪k+1

j=1 Fj = ∅.

We proceed by induction on k. Suppose that we have

D(1, k), . . . ,D(k − 1, k),D(k, k) = D(k)

and

B(1, k), . . . ,B(k − 1, k),B(k, k) = B(k)

satisfying the desired conditions. We will construct D(1, k + 1), . . . ,D(k, k + 1) and

B(1, k + 1), . . . ,B(k, k + 1). Note that {D(j, k)i | 1 ≤ j ≤ k and 1 ≤ i ≤ mj} is a finite

open cover of X and {B(j, k)i | 1 ≤ j ≤ k and 1 ≤ i ≤ mj} is a closed shrinking of

{D(j, k)i | 1 ≤ j ≤ k and 1 ≤ i ≤ mj}. By Lemma 3.11, there is an open shrinking
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{D(j, k + 1)i | 1 ≤ j ≤ k and 1 ≤ i ≤ mj} of {D(j, k)i | 1 ≤ j ≤ k and 1 ≤ i ≤ mj} such
that

(1’) B(j, k)i ⊂ D(j, k + 1)i ⊂ D(j, k)i,

(2’) {f−p(bd(D(j, k + 1)i)) | 1 ≤ i ≤ mj , 1 ≤ j ≤ k and 0 ≤ p ≤ k} is in general

position, and

(3’) bd(D(j, k + 1)i) ∩
∪k+1

j=1 Fj = ∅.

Since

{f−p(bd(D(j, k + 1)i)) | 1 ≤ i ≤ mj , 1 ≤ j ≤ k and 0 ≤ p ≤ k}

is a finite collection of closed subsets of X with ord ≤ n, there is an open swelling

O(j, k + 1) = {O(j, k + 1)i | 1 ≤ i ≤ mj}

of {bd(D(j, k + 1)i) | 1 ≤ i ≤ mj} such that

(4’) O(j, k + 1)i ∩B(j, k)i = ∅,
(5’) ord{f−p(cl(O(j, k + 1)i)) | 1 ≤ i ≤ mj , 1 ≤ j ≤ k and 0 ≤ p ≤ k} ≤ n, and

(6’) O(j, k + 1)i ∩
∪k+1

j=1 Fj = ∅.

For each 1 ≤ i ≤ mj and j ∈ N, we put

B(j, k + 1)i = cl(D(j, k + 1)i)−O(j, k + 1)i.

Then D(j, k + 1) and B(j, k + 1) satisfy the conditions (a)–(c).

Finally we put

C(j)i = int

( ∞∩
k=j

D(j, k)i

)
and C(j) = {C(j)i | 1 ≤ i ≤ mj}.

Note that B(j)i ⊂ C(j)i ⊂ D(j)i. Since (1) is obvious, we must check (2). It suffices to

show that for each k ∈ N,

G(k) = {f−p(bd(C(j)i) | 1 ≤ i ≤ mj , 1 ≤ j ≤ k and 0 ≤ p ≤ k}

is ord ≤ n. However, since

bd(C(j)i) ⊂ cl(D(j, k + 1)i −B(j, k + 1)i) and

ord{cl(f−p(D(j, k + 1)i −B(j, k + 1)i)) | 1 ≤ i ≤ mj , 1 ≤ j ≤ k and 0 ≤ p ≤ k} ≤ n,

we see that (2) holds. Also by (d), we see that F ∩ L = ∅. Consequently, we obtain the

desired open cover C(j) = {C(j)i | 1 ≤ i ≤ mj} of X for each j ∈ N. □

Lemma 3.13. Let f : X → X be a map of a compactum X and let H be a subset

of X. Suppose that for j ∈ N, C(j) = {C(j)i | 1 ≤ i ≤ mj} is a finite open cover of X

such that mesh(C(j)) < 1/j, H ∩
∪
G = ∅ and ord(G) ≤ n, where

G = {f−p(bd(C(j)i)) | 1 ≤ i ≤ mj , j ∈ N and p ∈ Z+}.
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Then, for j ∈ N there is a finite regular closed partition D(j) of X such that the following

properties hold ;

(1) mesh(D(j)) ≤ 1/j,

(2) D(j + 1) is a refinement of D(j),
(3)

∏∞
p=0 ordfp(x)D(j) ≤ 2n for each x ∈ X, and

(4) if x ∈ H, then
∏∞

p=0 ordfp(x)D(j) = 1.

Proof. Let j ∈ N. Put

c(j)1 = cl(C(j)1),

c(j)i = cl

(
int

[
(C(j)i)−

(∪
i′<i

C(j)i′

)])

for 2 ≤ i ≤ mj . Then C′(j) = {c(j)i | 1 ≤ i ≤ mj} is a finite regular closed partition of

X. Let

D(j) = @1≤i≤j(C′(i)).

We will show that D(j) is a desired partition. Since (1), (2) and (4) are obvious, we only

need to check (3).

Let x ∈ X. For each j ∈ N and p ∈ Z+, put

mj,p = ordfp(x){bd(C(j)i) | 1 ≤ i ≤ mj}.

Since ordxG ≤ n, we have ∑
j∈N
p∈Z+

mj,p ≤ n.

We will show that ordfp(x)C′(j) ≤ mj,p + 1.

Put i0 = min{i ≤ mj | fp(x) ∈ C(j)i}. By [2, Lemma 13], we can see the following;

ordfp(x)C′(j) = ordfp(x)({c(j)i | 1 ≤ i < i0} ∪ {c(j)i0} ∪ {c(j)i | i > i0})
≤ ordfp(x)({cl(C(j)i)− C(j)i | i < i0} ∪ {c(j)i0})
≤ mj,p + 1.

Note that ord(A@B) ≤ ord(A) · ord(B) for each regular closed partitions A and B
of X. Since m+ 1 ≤ 2m for each m = 0, 1, 2, . . . ,

∞∏
p=0

ordfp(x)D(j) =
∞∏
p=0

ordfp(x)[@1≤i≤jC′(i)] ≤
∞∏
p=0

∏
1≤i≤j

ordfp(x)C′(i)

≤
∞∏
p=0

∏
1≤i≤j

(mi,p + 1) ≤
∞∏
p=0

∏
1≤i≤j

2mi,p = 2
∑

mi,p ≤ 2n.

Therefore, D(j) is the desired partition. □
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Let Yk = {1, 2, . . . , k} (k ∈ N) be the discrete space having k-elements and let

Y
Z+

k =
∏∞

0 Yk be the product space. Then the shift map σ : Y
Z+

k → Y
Z+

k is defined by

σ(x)i = xi+1 for x = (x0, x1, x2, . . .) ∈ Y
Z+

k .

Lemma 3.14. Let f : X → X be a map of a compactum X and let H be a subset

of X. Suppose that there is m ∈ N and a sequence of finite regular closed partitions

D(j) (j ∈ N) of X such that

(1) mesh(D(j)) ≤ 1/j,

(2) D(j + 1) is a refinement of D(j),
(3)

∏∞
p=0 ordfp(x)D(j) ≤ m for each x ∈ X, and

(4) H ∩D = ∅, where D =
∪
{f−p(bd(d)) | d ∈ D(j), j ∈ N, p ∈ Z+}, i.e., if x ∈ H,

∞∏
p=0

ordfp(x)D(j) = 1.

Then there is a zero-dimensional cover (Z, f̃) of (X, f) via an at most m-to-one map

p : Z → X such that |p−1(x)| = 1 for x ∈ H. Moreover, if X is perfect, then Z can be

taken as a Cantor set C.

Proof. We put

D(j) = {d(j)1, d(j)2, . . . , d(j)kj}.

Let Ykj
= {1, 2, . . . , kj} (j ∈ N) be the discrete space having kj-elements and let Y

Z+

kj
=∏∞

0 Ykj (= Ykj × Ykj × · · · ) be the product space. For each j ∈ N, we consider the shift

map σj : Y
Z+

kj
→ Y

Z+

kj
and the sets

Σj =

{
a = (ap)

∞
p=0 ∈ Y

Z+

kj

∣∣∣∣∣
∞∩
p=0

f−p(d(j)ap) ̸= ∅

}
.

Note that Σj is a zero-dimensional compactum. Since D(j + 1) is a refinement of D(j),
there is the unique map h : Ykj+1 = {1, 2, . . . , kj+1} → Ykj = {1, 2, . . . , kj} defined by

d(j)h(k) ⊃ d(j + 1)k for 1 ≤ k ≤ kj+1. Let hj,j+1 : Σj+1 → Σj be the map defined by

hj,j+1(a)p = h(ap) for a = (ap)
∞
p=0 ∈ Σj+1.

Consider the inverse limit of the inverse sequence {Σj , hj,j+1}∞j=1:

Z = lim←−{Σj , hj,j+1} =

{
(zj)∞j=1 ∈

∞∏
j=1

Σj

∣∣∣∣∣ zj = hj,j+1(z
j+1) for j ∈ N

}
⊂

∞∏
j=1

Σj

which has the topology inherited as a subspace of the product space
∏∞

j=1 Σj . Let

qj : Z = lim←−{Σj , hj,j+1} → Σj be the natural projection. Then for each j ∈ N, we know

that the following diagram (a) is commutative:
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Σj

hj,j+1

←− Σj+1

↓ σj ↓ σj+1

Σj

hj,j+1

←− Σj+1 .

(a)

Note that Z is a zero-dimensional compactum and the sequence {σj}j∈N induces the map

f̃ : Z = lim←−{Σj , hj,j+1} → Z, i.e.,

f̃(z) = f̃(z1, z2, . . .) = (σ1(z
1), σ2(z

2), . . .)

for z = (z1, z2, . . .) ∈ Z (= lim←−{Σj , hj,j+1}). Also, we define the natural projection

p : Z → X by p(z) = x ∈ X, where z = (z1, z2, . . .) ∈ Z(= lim←−{Σj , hj,j+1}), zj =

(zj0, z
j
1, . . .) ∈ Σj and

x =
∩
{d(j)zj

0
| j ∈ N}.

We easily see that p is onto. We will show that p is an at most m-to-one map. Let x ∈ X.

Note that

qj(p
−1(x)) = {a = (ap)

∞
p=0 ∈ Σj | fp(x) ∈ d(j)ap}.

By (3), |qj(p−1(x))| ≤ m for each j ∈ N. This implies that |p−1(x)| ≤ m. By (4),

we see that |p−1(x)| = 1 for x ∈ H. Also, by (a) we see that the following diagram is

commutative:

Z
f̃−→ Z

↓ p ↓ p

X
f−→ X .

Also, we see that if X is perfect, then Z is a Cantor set (= zero-dimensional perfect

compactum). This completes the proof. □

Now, we need the definition of topological entropy by Bowen [5]. Let f : X → X be

any map of a compactum X. A subset E of X is (n, ϵ)-separated if for any x, y ∈ E with

x ̸= y, there is an integer j such that 0 ≤ j < n and d(f j(x), f j(y)) > ϵ. If K is any

nonempty closed subset of X, sn(ϵ;K) denotes the largest cardinality of any set E ⊂ K

which is (n, ϵ)-separated. Also we define

s(ϵ;K) = lim sup
n→∞

1

n
log sn(ϵ;K),

h(f ;K) = lim
ϵ→0

s(ϵ;K).

It is well known that the topological entropy h(f) of f is equal to h(f ;X) (see [5]).

By use of the above results, we will prove the following theorem.

Theorem 3.15. Suppose that f : X → X is a two-sided zero-dimensional map of

a compactum X with dimX = n <∞. If dimP (f) ≤ 0, then there exist a dense Gδ-set
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H of X and a zero-dimensional cover (Z, f̃) of (X, f) via an at most 2n-to-one onto map

p such that P (f) ⊂ H and |p−1(x)| = 1 for x ∈ H. Moreover, if X is perfect, then Z

can be chosen as a Cantor set. In particular, h(f) = h(f̃).

Proof. By Lemma 3.12 and Lemma 3.13, for j ∈ N there is a finite regular closed

partition D(j) of X such that

(1) mesh(D(j)) ≤ 1/j,

(2) D(j + 1) is a refinement of D(j),
(3)

∏∞
p=0 ordfp(x)D(j) ≤ 2n for each x ∈ X, and

(4) P (f) ∩D = ∅, where D =
∪
{f−p(bd(d)) | d ∈ D(j), j ∈ N, p ∈ Z+}.

Put H = X − D. By Lemma 3.14, we can conclude that there exists a zero-

dimensional cover (Z, f̃) of (X, f) via an at most 2n-to-one onto map p such that P (f) ⊂
H and |p−1(x)| = 1 for x ∈ H. By Bowen’s theorem (e.g., see [18, Theorem 7.1]), we

have

h(f) ≤ h(f̃) ≤ h(f) + sup{h(f̃ ; p−1(x)) | x ∈ X}.

Since p−1(x) is a finite set, hence h(f̃ ; p−1(x)) = 0. This implies h(f) = h(f̃). □

Remark 1.

(1) In Theorem 3.15, the desired dynamical system (Z, f̃) is obtained by the “inverse

sequence” of symbolic dynamics

{(Σj , σj) | j ∈ N}.

(2) For any dynamical system (X, f), there are finite regular closed partitions D(j) (j ∈
N) of X such that (i) mesh(D(j)) ≤ 1/j, and (ii) D(j + 1) is a refinement of D(j).
By the proof of Lemma 3.14, there exists a zero-dimensional cover (Z, f̃) of (X, f)

via a map p, where p is not necessarily finite-to-one. Moreover, if f is a homeomor-

phism, then by a small modification of the proof of Lemma 3.14, we can take f̃ as a

homeomorphism. This result was proved by Anderson [1].

(3) For any onto map f : X → X on a compactum X, the dynamical system (X, f)

has a zero-dimensional cover (Y, g) such that g : Y → Y is a homeomorphism. We

consider the inverse sequence:

{X, f} = {X f← X
f← X

f← · · · }

of f . Then there is the shift homeomorphism σf : lim←−{X, f} → lim←−{X, f} defined by

σf (x1, x2, . . .) = (f(x1), x1, x2, . . .) such that for any n ∈ N, the following diagram is

commutative:

lim←−{X, f} σf−→ lim←−{X, f}
↓ qn ↓ qn

X
f−→ X
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where qn : lim←−{X, f} → Xn = X is the n-th coordinate projection. Note that

h(f) = h(σf ), limn→∞diam (q−1
n (x)) = 0 for each x ∈ X, but q−1

n (x) may be

uncountable. Also the dynamical system (lim←−{X, f}, σf ) has a zero-dimensional cover

(Y, g) such that g : Y → Y is a homeomorphism.

Now, we consider the case that f : X → X is a positively expansive map of a

compactum X. A map f : X → X of a compactum X is positively expansive if there is

ϵ > 0 such that for any x, y ∈ X with x ̸= y, there is k ∈ Z+ such that d(fk(x), fk(y)) ≥ ϵ.

Similarly, a map f : X → X of a compactum X is positively continuum-wise expansive if

there is ϵ > 0 such that for any nondegenarate subcontinuum A of X, there is a k ∈ Z+

such that diam(fk(A)) ≥ ϵ (see [12]). Such an ϵ > 0 is called an expansive constant for

f . Note that any positively expansive map is two-sided zero-dimensional and positively

continuum-wise expansive. In [12, Theorem 5.3], we know that if a compactum X admits

an positively continuum-wise expansive map f onX, then dimX <∞ and every minimal

set of f is zero-dimensional.

For a map f : X → X, we consider the following subset of X;

I0(f) =
∪
{M |M is a zero-dimensional f -invariant closed set of X}.

Proposition 3.16 (cf. [13, Proposition 2.5]). Let f : X → X be a positively

continuum-wise expansive map of a compact metric space X. Then I0(f) is a zero-

dimensional Fσ-set of X. In particular, dimP (f) ≤ 0.

Proof. The proof is similar to the proof of [13, Proposition 2.5]. Let ϵ > 0 be an

expansive constant for f . We choose a countable open base B of X such that if U ∈ B,
then diam(U) ≤ ϵ. Put

B̃ = {∪B′ | B′ ⊂ B, |B′| <∞,diam(∪B′) < ϵ}.

For each n ∈ N, we put

Wn = {(U1, . . . , Un) | Ui ∈ B̃, cl(Ui) ∩ cl(Uj) = ∅ (i ̸= j)}

and W =
∪∞

n=1Wn. For each (U1, . . . , Un) ∈ W, we consider the set

W (U1, . . . , Un) =

{
x ∈ X

∣∣∣∣∣ {fp(x)| p ∈ Z+}(= O(x)) ⊂
n∪

i=1

cl(Ui)

}
.

Then W (U1, . . . , Un) is an f -invariant closed subset of X. Since f is a positively

continuum-wise expansive map, each component of W (U1, . . . , Un) is a one point set

and hence we see dimW (U1, . . . , Un) ≤ 0. Note that if A is f -invariant closed set of X

with dimA ≤ 0, then we can find (U1, . . . , Un) ∈ W such that A ⊂
∪n

i=1 Ui. By use of

this fact, we see that

I0(f) =
∪
{W (U1, . . . , Un) | (U1, . . . , Un) ∈ W}.

By Proposition 3.1, I0(f) is a zero-dimensional Fσ-set of X. Note that
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P (f) ⊂ I0(f). □

Recall Yk = {1, 2, . . . , k} and the shift map σ : Y
Z+

k → Y
Z+

k defined by σ(x)j = xj+1.

Note that σ is the typical positively expansive map.

The following theorem is a more precise result than [16, Proposition 20].

Theorem 3.17. Let f : X → X be a positively expansive map of a compactum

X with dimX = n < ∞. Then there exist k ∈ N and a closed σ-invariant set Σ of

σ : Y
Z+

k → Y
Z+

k such that (Σ, σ) is a zero-dimensional cover (= symbolic extension) of

(X, f) via an at most 2n-to-one map p : Σ → X satisfying that |p−1(x)| = 1 for any

x ∈ I0(f).

Σ
σ−→ Σ

↓ p ↓ p

X
f−→ X

Proof. Note that f is a two-sided zero-dimensional map. Let ϵ > 0 be an expan-

sive constant for f . Since dim I0(f) ≤ 0, by Lemma 3.12 there is a finite open cover C(ϵ)
of X such that

(1) mesh(C(ϵ)) < ϵ,

(2) ord(G) ≤ n, where G = {f−p(bd(C)) | C ∈ C(ϵ), p ∈ Z+},
(3) bd(C) ∩ I0(f) = ∅ for each C ∈ C(ϵ).

Let C(ϵ) = {C1, C2, . . . , Ck} and we consider the following partition

c1 = cl(C1), ci = cl(Ci − (C1 ∪ C2 ∪ · · · ∪ Ci−1)) (i ≥ 2).

Consider the set

Σ =

{
(ip)

∞
p=0 ∈ Y

Z+

k

∣∣∣∣∣
∞∩
p=0

f−p(cip) ̸= ∅

}
.

Note that
∩∞

p=0 f
−p(cip) is a one point set for each (ip)p ∈ Σ, because f is a positively

expansive map. Define a map p : Σ→ X by

p((ip)p) =

∞∩
p=0

f−p(cip).

By (2) and the proof of Lemma 3.13, we see that |p−1(x)| ≤ 2n for each x ∈ X. Also,

by (3), we see that p : Σ → X is the desired map such that |p−1(x)| = 1 for any

x ∈ I0(f). □

Remark 2. For the case that f : X → X is an expansive homeomorphism of a

compactum X with dimX = n <∞ (see [12] for the definition of expansive homeomor-

phism), there exist k ∈ N and a closed σ-invariant set Σ of σ : Y Z
k → Y Z

k such that (Σ, σ)

is a zero-dimensional cover (= symbolic extension) of (X, f) via an at most 2n-to-one

map p : Σ→ X, where σ : Y Z
k → Y Z

k is the shift homeomorphism (see [10] and [15]).
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Now we consider a generalization of Theorem 3.15. For a map f : X → X on a

compactum X, let

D0(f) = {x ∈ X | dim f−1(x) ≤ 0}

and

D+(f) = {x ∈ X | dim f−1(x) ≥ 1} (= X −D0(f)).

Note that a map f : X → X is a zero-dimensional map if and only if D+(f) = ∅. The

following theorem is a generalization of Theorem 3.15.

Main Theorem 3.18 (a generalization of Theorem 3.15). Let f : X → X be a

map on an n-dimensional compactum X (n < ∞). Suppose that f is a zero-dimension

preserving map, dimD+(f) ≤ 0 and dimEP (f) ≤ 0. Then there exist a dense Gδ-set H

of X and a zero-dimensional cover (Z, f̃) of (X, f) via an at most 2n-to-one onto map

p such that EP (f) ⊂ H and |p−1(x)| = 1 for x ∈ H. Moreover, if X is perfect, then Z

can be chosen as a Cantor set. In particular, h(f) = h(f̃).

Proof. Note that for p ∈ N, D+(f
p) is an Fσ-set of X because that

D+(f
p) =

∪
{D(1/k) | k ∈ N}

and D(1/k) is a closed set of X, where D(1/k) is the set of all points x of X such

that f−p(x) contains a continuum whose diameter ≥ 1/k. By induction on p (p ∈ N),
we will prove that for any p ∈ N, dimD+(f

p) ≤ 0. By the assumption, if p = 1

then dimD+(f
p) = dimD+(f) ≤ 0. Assume that dimD+(f

p) ≤ 0. We will prove

dimD+(f
p+1) ≤ 0. Suppose on the contrary that dimD+(f

p+1) ≥ 1. Since D+(f
p+1)

is an Fσ-set of X, by Proposition 3.1 D+(f
p+1) contains a closed subset A of X with

dimA ≥ 1. Let

B = D+(f
p) ∩ f−1(A).

Then dimB ≤ 0 and dim f(B) ≤ 0 because that B is an Fσ-set of X and f is a zero-

dimension preserving map. We will prove A = f(B) ∪ A1, where A1 = A ∩D+(f). Let

x ∈ A. Since dim f−(p+1)(x) ≥ 1, there is a nondegenerate continuum K in f−(p+1)(x).

If fp(K) is a one point y, then y ∈ B and hence x = f(y) ∈ f(B). If fp(K) is

nondegenerate, then x = f(fp(K)) ∈ A1. Hence we see A = f(B) ∪A1. Since f(B) and

A1 are zero-dimensional Fσ-sets of X, we see dimA ≤ 0. This is a contradiction. Hence

dimD+(f
p+1) ≤ 0.

Put

F =
∪
{D+(f

p) | p ∈ N}.

Then F is a zero-dimensional Fσ-set of X. Note that for any q ∈ N,

f−q(X − F ) ⊂ X − F. (b)
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In fact, suppose on the contrary that there is x ∈ X − F with f−q(x) ∩ F ̸= ∅. Let

y ∈ F ∩ f−q(x). Then y ∈ D+(p) for some p ∈ N and hence x ∈ D+(f
p+q) ⊂ F . This is

a contradiction.

Recall the proof of Lemma 3.11. Under the condition of this theorem (Theorem 3.18),

if B is a closed subset of X contained in an open set C of X, then we can choose an open

set C ′ of X such that B ⊂ C ′ ⊂ C and bd(C ′)∩ (EP (f)∪F ) = ∅. By (b), we see that if

p ∈ N, f−p(bd(C ′))∩(EP (f)∪F ) = ∅. Also note that if S ⊂ X−F , dim f−p(S) ≤ dimS

because that S ⊂ D0(f
p).

If we use the above facts and observe the proofs of Lemmas 3.11, 3.12 and 3.13

for Theorem 3.15, we can also construct a sequence of finite regular closed partitions

D(j)(j ∈ N) of X as in Lemma 3.14. This completes the proof. □

In the special case that X is a graph G (= compact connected 1-dimensional poly-

hedron) and f : G → G is a piece-wise monotone map, we can omit the condition

dimP (f) ≤ 0. A map f : G→ G is piece-wise monotone (with respect to some triangu-

lation K) if for any edge E of K (i.e., E ∈ K1), the restriction f |E : E → G of f to the

edge E is injective. We need the following result.

Lemma 3.19. Suppose that f : X → X is a semi-open map of a compactum X and

{C(j) | j ∈ N} is a sequence of finite regular closed partitions of X such that

(i) there is m ∈ N such that ord(C(j)) ≤ m for each j ∈ N,
(ii) C(j + 1) refines f−1(C(j))@C(j),
(iii) limj→∞ mesh C(j) = 0.

Then there is a zero-dimensional cover (Z, f̃) of (X, f) via an at most m-to-one map

p : Z → X. Moreover, if X is a perfect, then Z can be taken as a Cantor set C.

Proof. We may assume that each element of each C(j) is nonempty. Put

C =

{
(c1, c2, . . . ) ∈

∞∏
j=1

C(j)

∣∣∣∣∣ c1 ⊃ c2 ⊃ · · · and
∞∩
j=1

cj ̸= ∅

}

and suppose that each C(j) is a discrete space, i.e., {c} is open in C(j) for each c ∈ C(j).
By (iii), we see that

∩∞
j=1 cj is a one point set for each (c1, c2, . . . ) ∈ C. Since the product

space
∏∞

j=1 C(j) is a zero-dimensional compactum and so is C. Moreover, if X is perfect,

we see that C is perfect and hence C is a Cantor set.

Define p : C → X by p(c1, c2, . . . ) =
∩∞

j=1 cj . It is easy to see that p is a continuous

onto map. First, we will show that p is at most m-to-one. Suppose, on the contrary, that

there is x ∈ X and pairwise distinct m+ 1 elements

(c(1)1, c(1)2, . . . ), (c(2)1, c(2)2, . . . ), . . . , (c(m+ 1)1, c(m+ 1)2, . . . )

of C such that

∞∩
j=1

c(1)j = · · · =
∞∩
j=1

c(m+ 1)j = {x}.
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For each 1 ≤ i < i′ ≤ m + 1, let ri,i′ = min{j ∈ N | c(i)j ̸= c(i′)j}. Note that

c(i)j ̸= c(i′)j for each j ≥ ri,i′ . Put

r = max{ri,i′ | 1 ≤ i < i′ ≤ m+ 1}.

Then c(1)r, . . . , c(m + 1)r are pairwise distinct elements of C(r) satisfying x ∈ c(1)r ∩
· · · ∩ c(m+ 1)r. Thus, ord(C(r)) ≥ m+ 1. This is a contradiction.

Next, we will construct a desired map f̃ : C → C. By (ii), we see that f(C(j + 1))

is a refinement of C(j) and since f is a semi-open map, for each cj+1 ∈ C(j +1), f(cj+1)

contains a nonempty open set. Thus there is a unique map f̃j : C(j+1)→ C(j) given by

f̃j(cj+1) = cj,f if f(cj+1) ⊂ cj,f . Now define f̃ : C → C by

f̃(c1, c2, . . . ) = (f̃1(c2), f̃2(c3), . . . ).

We show that the following conditions (a) and (b) are satisfied: (a) f̃ is continuous

and (b) pf̃ = fp. (a) is obvious since each f̃j is continuous. We will prove (b). Let

(c1, c2, . . . ) ∈ C. Then

pf̃(c1, c2, . . . ) = p(f̃1(c2), f̃2(c3), . . . ) =

∞∩
j=1

f̃j(cj+1) ⊃
∞∩
j=1

f(cj+1),

and

fp(c1, c2, . . . ) = f

( ∞∩
j=1

cj

)
⊂

∞∩
j=1

f(cj) =

∞∩
j=1

f(cj+1).

Therefore, pf̃(c1, c2, . . . ) ⊃ fp(c1, c2, . . . ). Note that pf̃(c1, c2, . . . ) and fp(c1, c2, . . . )

are one point sets in X. Thus pf̃ = fp. □

Theorem 3.20. If f : G → G is a piece-wise monotone map on a graph G, then

there is a zero-dimensional cover (C, f̃) of (G, f) via an at most 2-to-one map, where C

is a Cantor set.

Proof. The proof is similar to a proof of the theorem of Misiurewics and Szlenk

(e.g., see [18, Theorem 7.2]). Let K be a triangulation of G such that for any edge E of

K, the restriction f |E : E → G of f to the edge E is injective. Let B(G) be the set of

all branch points of G, i.e., B(G) = {v ∈ K0 | ordv{E | E ∈ K1} ≥ 3}. Consider the set

EO(B(G)) =
∪
{EO(v) | v ∈ B(G)},

where EO(v) denotes the eventual orbit of v. Note that the set EO(B(G)) is a countable

set. Since f is piece-wise monotone, f−1(x) is a finite set for any x ∈ G. By use of this

fact and induction on j ∈ N, we can find a sequence of finite regular closed partitions

C(j) (j ∈ N) of G such that

(1) each element c of C(j) (j ∈ N) is a closed connected set,

bd(c) ∩ EO(B(G)) = ∅,
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and in particular, if v ∈ B(G), then there is the unique cv ∈ C(j) with v ∈
int(cv),

(2)
∪
{bd(c) | c ∈ C(j + 1)} ⊃ f−1

(∪
{bd(c′) | c′ ∈ C(j)}

)
and C(j) is a family of the elements cv (v ∈ B(G)) and closed subintervals

contained in some edges E ∈ K1, and hence ord(C(j)) ≤ 2,

(3) mesh(C(j)) ≤ 1/j for j ∈ N,
(4) C(j + 1) is a refinement of f−1(C(j))@C(j).

Also, since f is piece-wise monotone, we see that f is semi-open. By Lemma 3.19, we

have the desired zero-dimensional cover (C, f̃) of (G, f). □

Remark 3.

(1) If X is an n-dimensional simplicial manifold and f : X → X is a map such that f

is injective on each simplex, then f is a two-sided zero-dimensional and semi-open

map of X.

(2) Theorem 3.20 is not true for 2-dimensional polyhedra. Recall that there is a dy-

namical system (X, f) such that f : X = I2 → X is a homeomorphism on X with

dimP (f) = 1 and (X, f) has no zero-dimensional cover via a finite-to-one map (see

Example 2.2 of [15]).

(3) In Lemma 3.19, it can occur that
∏∞

p=0 ordfp(x)C(j) =∞ for some x ∈ X.

4. Zero-dimensional decompositions of dynamical systems.

In dimension theory, the following decomposition theorem is well-known [6, Theo-

rem 1.5.8]: A separable metric space X is dimX ≤ n (n ∈ Z+) if and only if X can be

represented as the union of n + 1 subspaces Z0, Z1, . . . , Zn of X such that dimZi ≤ 0

for each i = 0, 1, . . . , n. In this section, we study the similar dynamical decomposition

theorems of two-sided zero-dimensional maps (cf. [7]). We consider bright spaces and

dark spaces of maps except n times, and by use of these spaces we prove some dynamical

decomposition theorems of spaces related to given maps.

Let f : X → X be a map. A subset Z of X is a bright space of f except n

times (n ∈ Z+) if for any x ∈ X,

|{p ∈ Z+ | fp(x) /∈ Z}| ≤ n.

Also we say that L = X − Z is a dark space of f except n times. Note that for any

x ∈ X, |O(x) ∩ L| ≤ n and L ∩ P (f) = ∅. For each z ∈ X, put

t(z) = |{p ∈ Z+ | fp(z) ∈ L}|.

Also we put

T (x) = max{t(z) | z ∈ EO(x)}

for each x ∈ X. For a dark space L of f except n times and 0 ≤ j ≤ n, we put
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Af (L, j) = {x ∈ X | T (x) = j}.

Note that Af (L, j) is f -invariant, i.e., f(Af (L, j)) ⊂ Af (L, j) and Af (L, i)∩Af (L, j) = ∅
if i ̸= j. Hence we have the f -invariant decomposition related to the dark space L as

follows;

X = Af (L, 0) ∪Af (L, 1) ∪ · · · ∪Af (L, n).

The following theorem is an extension of [7, Theorem 2.4].

Theorem 4.1. Suppose that f : X → X is a two-sided zero-dimensional map of a

compactum X with dimX = n <∞. Then there is a bright space Z of f except n times

such that Z is a zero-dimensional dense Gδ-set of X and the dark space L = X − Z of

f is an (n− 1)-dimensional Fσ-set of X if and only if dimP (f) ≤ 0.

Proof. Suppose dimP (f) ≤ 0. Then dimEP (f) ≤ 0. Since X is separable,

there is a dense countable set D of X. Also we choose a zero-dimensional Fσ-set H of

X with dim (X −H) ≤ n − 1 (see Proposition 3.2). Then the set F = D ∪H is also a

zero-dimensional Fσ-set of X. By Lemma 3.12, we have a countable base {Bi | i ∈ N} of
X such that ord(G) ≤ n and L ∩ F = ∅, where G = {f−p(bd(Bi)) | i ∈ N, p ∈ Z+} and
L =

∪
{bd(Bi) | i ∈ N}. Put Z = X − L. Note that D ⊂ Z and L ⊂ X − F . Then Z is

dense in X and dimL ≤ n− 1 and hence Z and L are the desired spaces. Conversely, we

assume that there exists a zero-dimensional bright space Z of f except n times. Then

we see P (f) ⊂ Z, which implies that dimP (f) ≤ 0. □

The following corollary is an extension of [7, Corollary 2.5].

Corollary 4.2. Suppose that X is a compactum with dimX = n (<∞) and f :

X → X is a two-sided zero-dimensional onto map. Then there exists a zero-dimensional

Gδ-dense set Z of X such that for any n+ 1 integers k0 < k1 < · · · < kn (ki ∈ Z),

X = fk0(Z) ∪ fk1(Z) ∪ · · · ∪ fkn(Z)

if and only if dimP (f) ≤ 0.

Proof. First, we assume dimP (f) ≤ 0. By Theorem 4.1, there is a bright space

Z of f except n times such that Z is a zero-dimensional dense Gδ-set of X. Let k0 <

k1 < · · · < kn (ki ∈ Z) be any integers and let x ∈ X. Consider three cases as follows.

• Case (i): 0 ≤ k0. Since f is onto, we can find z ∈ X with fkn(z) = x. Since

|{i ∈ {0, 1, 2, . . . , n} | fkn−ki(z) /∈ Z}| ≤ n,

there is an i such that fkn−ki(z) (= y) ∈ Z and hence fki(y) = x. This implies

x ∈ fki(Z) and hence

X = fk0(Z) ∪ fk1(Z) ∪ · · · ∪ fkn(Z).
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• Case (ii): kn ≤ 0. Note that for each i, −ki ≥ 0. Since

|{i ∈ {0, 1, 2, . . . , n} | f−ki(x) /∈ Z}| ≤ n,

there is an i such that f−ki(x) ∈ Z and hence x ∈ fki(Z). This implies

X = fk0(Z) ∪ fk1(Z) ∪ · · · ∪ fkn(Z).

• Case (iii): There is some j (0 < j ≤ n) with kj−1 < 0 ≤ kj . Since f is onto, we can

find z ∈ X with fkn(z) = x. Since

|{i ∈ {0, 1, 2, . . . , n} | fkn−ki(z) /∈ Z}| ≤ n,

there is an i such that fkn−ki(z) = y ∈ Z. If j ≤ i, ki ≥ 0 and hence x = fkn(z) =

fki(y) ∈ fki(Z). If i < j, we see that ki < 0 and y = fkn−ki(z) = f−ki(x). Then

x ∈ fki(y) ⊂ fki(Z). Consequently we see

X = fk0(Z) ∪ fk1(Z) ∪ · · · ∪ fkn(Z).

Conversely, we assume that there is such Z satisfying the condition of this corollary.

We will show P (f) ⊂ Z. Let x ∈ P (f) and let fk(x) = x for some k ∈ N. Put

ki = i · k (i = 0, 1, . . . , n). Since X = f−k0(Z) ∪ f−k1(Z) ∪ · · · ∪ f−kn(Z), we can find i

such that x ∈ f−ki(Z). Then x = fki(x) ∈ Z and hence P (f) ⊂ Z. Since dimZ = 0, we

see dimP (f) ≤ 0. □

By use of Fσ-dark spaces, we have the following decomposition theorem which is an

extension of [7, Theorem 2.6].

Theorem 4.3. Suppose that X is a compactum with dimX = n (< ∞) and

f : X → X is a two-sided zero-dimensional map on X with dimP (f) ≤ 0. If L is a

dark space of f except n times such that L is an Fσ-set of X and dim (X − L) ≤ 0,

then dimAf (L, j) = 0 for each j = 0, 1, 2, . . . , n. In particular, we have the f -invariant

zero-dimensional decomposition of X related to the dark space L :

X = Af (L, 0) ∪Af (L, 1) ∪ · · · ∪Af (L, n).

Proof. Note that Af (L, 0) ⊂ X − L (= Z) and hence Af (L, 0) is an f -

invariant zero-dimensional subset of X. We will prove that dimAf (L, j) = 0 for each

j = 1, 2, . . . , n. Since L is an Fσ-set of X, we can put L =
∪∞

i=1 Li, where Li is a closed

subset of X. Let 1 ≤ j ≤ n. For any j nonnegative integers 0 ≤ k1 < k2 < · · · < kj and

natural numbers i1, i2, . . . , ij ∈ N, we consider the set

A(k1, k2, . . . , kj : Li1 , Li2 , . . . , Lij ) = {x ∈ X | fkp(x) ∈ Lip (p = 1, 2, . . . , j)}.

Then we can easily see that A(k1, k2, . . . , kj : Li1 , Li2 , . . . , Lij ) is closed in X and A(L, j)

is represented as the following countable union of closed sets of A(L, j):



843(171)

Finite-to-one zero-dimensional covers 843∪
α∈Λ

f−q[fp(A(k1, . . . , kj : Li1 , . . . , Lij )) ∩A(L, j)],

where Λ = {(k1, . . . , kj ; i1, . . . , ij ; p, q) | 0 ≤ k1 < · · · < kj , i1, . . . , ij ∈ N, p, q ∈ Z+}.
Note that for any p ∈ Z+,

fkj+1[fp(A(k1, . . . , kj : Li1 , . . . , Lij )) ∩A(L, j)] ⊂ Z.

Since fkj+1 is a zero-dimensional map, by Theorem 3.4 we see that

fp(A(k1, . . . , kj : Li1 , . . . , Lij )) ∩A(L, j)

is zero-dimensional. By Proposition 3.1, we see that

dimAf (L, j) = 0. □

In the case of positively expansive maps, we obtain decomposition theorem for a

compact dark space L. We need the following lemma.

Lemma 4.4 ([12, lemma 5.6]). Suppose that f : X → X is a positively continuum-

wise expansive map on a compactum X. Then there exists a δ > 0 satisfying the con-

dition : for any γ > 0 there is N ∈ N such that if A is a subcontinuum of X with

diam A ≥ γ, then diam fn(A) ≥ δ for all n ≥ N .

The following theorem is an extension of [7, Theorem 2.8].

Theorem 4.5. Suppose that X is a compactum with dimX = n (< ∞) and

f : X → X is a positively expansive map. Then there exists a compact (n−1)-dimensional

dark space L of f except n times such that dimAf (L, j) = 0 for each j = 0, 1, 2, . . . , n.

In particular, there is the f -invariant zero-dimensional decomposition of X related to the

compact dark space L :

X = Af (L, 0) ∪Af (L, 1) ∪ · · · ∪Af (L, n).

Proof. Note that f is a two-sided zero-dimensional map. Also, since f is a

positively continuum-wise expansive map, we have a positive number δ as in Lemma 4.4.

Since dimP (f) ≤ 0, by Lemma 3.12 there is a finite open cover C of X such that

(1) mesh(C) < δ,

(2) ord(G) ≤ n, where G = {f−p(bd(C)) | C ∈ C, p ∈ Z+},
(3) bd(C) ∩ EP (f) = ∅ for each C ∈ C and

(4) dimH ≤ n− 1, where H =
∪
{bd(C) | C ∈ C}.

Let C = {C1, C2, . . . , Cm} and put

c1 = cl(C1), ci+1 = cl(int[Ci+1 − ∪k≤iCk]) (1 ≤ i ≤ m− 1).

Then C′ = {c1, c2, . . . , cm} is a finite partition of X. Let L =
∪
{bd(c) | c ∈ C′}. Then

L ⊂ H and we can easily see that L is a compact (n − 1)-dimensional dark space of

f except n times. We will show that dimAf (L, j) = 0 for each j = 0, 1, 2, . . . , n. Let
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1 ≤ j ≤ n. For any j nonnegative integers k1 < k2 < · · · < kj , we consider the set

A(k1, k2, . . . , kj) = {x ∈ Af (L, j) | fkp(x) ∈ L (p = 1, 2, . . . , j)}.

Then we see that A(k1, k2, . . . , kj) is closed in the subspace Af (L, j). We will show that

dimA(k1, k2, . . . , kj) = 0. Let x ∈ A(k1, k2, . . . , kj) and let γ > 0 be any positive number.

Then there is a sufficiently large natural number N such that N > |ki| (i = 1, 2, . . . , j)

and N satisfies the condition of Lemma 4.4. Note that

A(k1, k2, . . . , kj) ⊂
m∪
i=1

f−N (int(ci))

and f−N (int(ci)) (1 ≤ i ≤ m) are mutually disjoint open sets of X. We can choose 1 ≤
i ≤ m such that fN (x) ∈ int(ci). Then the diameters of components of the compactum

f−N (ci) are less than γ. Since f−N (ci) can be covered by finite mutually disjoint open

sets of X whose diameters are less than γ, there is a closed and open neighborhood V

of x in the subspace A(k1, k2, . . . , kj) such that V ⊂ f−N (int(ci)) and diam V < γ.

This implies that dimA(k1, k2, . . . , kj) = 0. By the proof of Theorem 4.3, we see that

dimAf (L, j) = 0. By the similar arguments to the case j ≥ 1, we see that the case j = 0

is true, i.e., dimAf (L, 0) = 0. □
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