
689(1)

c⃝2019 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 71, No. 3 (2019) pp. 689–708
doi: 10.2969/jmsj/79597959

Superharmonic functions of Schrödinger operators

and Hardy inequalities

By Yusuke Miura

(Received Jan. 14, 2018)

Abstract. Given a Dirichlet form with generator L and a measure µ,
we consider superharmonic functions of the Schrödinger operator L + µ. We

probabilistically prove that the existence of superharmonic functions gives rise
to the Hardy inequality. More precisely, the L2-Hardy inequality is derived
from Itô’s formula applied to the superharmonic function.

1. Introduction.

Let M = (Xt,Px) be an m-symmetric Hunt process on a locally compact separable

metric space E. Here m is a positive Radon measure with full topological support.

(E ,D(E)) denotes the Dirichlet form on L2(E;m) generated by M.

Let µ be a positive smooth measure and Dloc(E) the set of functions locally in D(E)
in the ordinary sense. A function h ∈ Dloc(E) is said to be superharmonic with respect

to the Schrödinger operator Lµ := L+ µ if

E(h, φ)−
∫
E

hφdµ ≥ 0 for all φ ∈ D(E) ∩ C0(E) with φ ≥ 0.

Here L is the generator of the process M and C0(E) is the set of continuous functions

with compact support. We remark that E(h, φ) is not well-defined for h ∈ Dloc(E) and

φ ∈ D(E) ∩ C0(E) in general if (E ,D(E)) has a jumping part. For this reason, we

assume that every superharmonic function belongs to the subclass D†
loc(E) of Dloc(E)

(see Section 2 for the definition). The class D†
loc(E) was introduced by Kuwae [16] and

satisfies the following property: for any u ∈ D†
loc(E) and φ ∈ D(E) ∩ C0(E), E(u, φ) is

well-defined by

E(u, φ) = E(c)(u, φ) +

∫
E×E

(u(x)− u(y))(φ(x)− φ(y))J(dx, dy) +

∫
E

uφdκ

(the definitions of E(c), J and κ are found in Section 2).

It is known that superharmonic functions play an important role in the study of

(L2-)Hardy’s inequality:
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u2dµ ≤ E(u, u), u ∈ D(E)

(see [4] and [9] for example). One of objectives is to show that if there exists a superha-

monic function h of Lµ, then the following equality holds true

E(u, u)−
∫
E

u2dµ = Eh
(u
h
,
u

h

)
+

∫
E

u2

h
dν, u ∈ D(E). (1)

Note that the equality (1) is a refinement of L2-Hardy’s inequality because the right-

hand side is nonnegative. Here Eh is the Dirichlet form generated by the Girsanov

transformed process defined by h (see Section 4 for details) and ν is a positive smooth

measure satisfying the relation

E(h, φ)−
∫
E

hφdµ =

∫
E

φdν, φ ∈ D(E) ∩ C0(E).

Our proof is obtained by applying Itô’s formula to Fukushima’s decompositions of

superharmonic functions. Kuwae [16] and [17] proves that every u ∈ D†
loc(E) admits

Fukushima’s decomposition: u(Xt) − u(X0) is decomposed into a martingale additive

functional locally of finite energy and a continuous additive functional locally of zero

energy. It is known that the 0-energy part in Fukushima’s decomposition is not always

of bounded variation, in particular, Itô’s formula is not always applicable. From [13,

Chapter 5], we know sufficient conditions for the 0-energy part of a function in D(E)
being of locally bounded variation. We extend those conditions to the class D†

loc(E)
(Theorem 3.2, Corollary 3.3) and show that the 0-energy part of superharmonic function

in D†
loc(E) is of locally bounded variation (Lemma 4.1). By combining this result with

Itô’s formula, we prove that the equality (1) holds whenever there exists a positive

continuous superharmonic function in D†
loc(E).

We consider the Dirichlet form (E(α),D(Eα)) associated with the symmetric α-stable

process on Rd. Assume 0 < α < 2 ∧ d, that is, (E(α),D(Eα)) is transient. We show that

|x|−p, p ∈ (0, (d/2)∧(d−α)) is a superharmonic function of −1/2(−∆)α/2+Cd,α,p ·|x|−α,
and derive the following equality as an application of (1):

E(α)(u, u)− Cd,α,p

∫
Rd

u(x)2

|x|α
dx

=
1

2
A(d, α)

∫∫
Rd×Rd

(
u(x)

|x|−p
− u(y)

|y|−p

)2 |x|−p|y|−p

|x− y|d+α
dxdy, u ∈ D(E(α))

(2)

(the definitions of constants Cd,α,p, A(d, α) are found in Section 6). The representation

(2) has been already proved by Bogdan, Dyda and Kim [5] (see also [2], [12]). We would

like to emphasize that although the proof in [5] is analytic, our proof is probabilistic,

that is, L2-Hardy’s inequality follows from Itô’s formula.

We can characterize superharmonic functions by using excessive functions. Let µ

be a positive measure in the local Kato class and {pµt }t≥0 the Feynman–Kac semigroup

defined by
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pµt f(x) = Ex[exp(Aµt )f(Xt)],

where {Aµt }t≥0 is a positive continuous additive functional with Revuz measure µ. Takeda

[20] shows that under the local property assumption, a strictly positive function h in

Dloc(E)∩C(E) is superharmonic with respect to Lµ if and only if h is pµt -excessive, that

is, pµt h ≤ h. We extend this result to more general Dirichlet forms with non-local part

(Theorem 5.1).

2. Preliminaries on Dirichlet forms.

Let E be a locally compact separable metric space and m a positive Radon measure

with full topological support on E. Denote by E∆ := E ∪ {∆} the one point compactifi-

cation of E. Let (E ,D(E)) be a regular Dirichlet form on L2(E;m). We denote De(E) by
the family of m-measurable functions u on E such that |u| < ∞ m-a.e. and there exists

an E-Cauchy sequence {un} of D(E) such that limn→∞ un = u m-a.e. We call De(E) the
extended Dirichlet space of (E ,D(E)).

Let M = (Ω,F , {Ft}t≥0, {Px}x∈E , {Xt}t≥0, ζ) be the symmetric Hunt process gen-

erated by (E ,D(E)), where {Ft}t≥0 is the augmented filtration and ζ := inf{t ≥ 0 | Xt =

∆} is the lifetime of M. Denote by {pt}t≥0 and {Rβ}β≥0 the semigroup and resolvent of

M:

ptf(x) = Ex[f(Xt)], Rβf(x) =

∫ ∞

0

e−βtptf(x)dt, f ∈ Bb(E),

where Bb(E) is the space of bounded Borel functions on E.

For a closed subset F of E, we define

D(E)F := {u ∈ D(E) | u = 0 m-a.e. on E \ F}.

An increasing sequence {Fn}n≥1 of closed sets of E is said to be an E-nest if
∪
n≥1 D(E)Fn

is dense in D(E) with respect to the norm
√
E1

(
:=

√
E(·, ·) + (·, ·)m

)
, where (·, ·)m

denotes the inner product on L2(E;m).

A subset N of E is said to be E-exceptional if there is an E-nest {Fn}n≥1 such that

N ⊂
∩
n≥1(E \ Fn). A statement depending on x ∈ E is said to hold quasi-everywhere

(q.e. in abbreviation) on E if there exists an E-exceptional set N such that the statement

is true for every x ∈ E \N . A function u is said to be quasi-continuous if there exists an

E-nest {Fn}n≥1 such that u|Fn is finite and continuous on Fn for each n. Here u|Fn is

the restriction of u to Fn. Each function u ∈ De(E) admits a quasi-continuous m-version

ũ, that is u = ũ m-a.e. In the sequel, we always take a quasi-continuous m-version for

every element of De(E).
A positive Borel measure ν on E is said to be smooth if it satisfies the following two

conditions:

(i) ν charges no E-exceptional set,

(ii) there exists an E-nest {Fn}n≥1 such that ν(Fn) <∞ for each n.
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A function u is said to be locally in D(E) in the ordinary sense (u ∈ Dloc(E) in

notation) if for any relatively compact open set G, there exists a function v ∈ D(E) such
that u = v m-a.e. on G.

We define the family Θ of finely open sets by

Θ =
{
{Gn}n≥1

∣∣Gn is finely open and Borel for all n,Gn ⊂ Gn+1,
∪∞
n=1Gn = E q.e.

}
.

(The definition of a finely open set is found in [13].) For two subsets A,B of E, A = B

q.e. means A∆B := (A \B) ∪ (B \A) is E-exceptional. Note that for an E-nest {Fn} of

closed sets, {Gn} ∈ Θ by setting Gn := F f-intn , where F f-intn means the fine interior of

Fn. A function u on E is said to be locally in D(E) in the broad sense (u ∈ Ḋloc(E) in

notation) if there exists {Gn} ∈ Θ and {un} ⊂ D(E) such that u = un m-a.e. on Gn for

each n ∈ N. Clearly, Dloc(E) ⊂ Ḋloc(E).
For u, v ∈ De(E), the following Beurling–Deny formula holds:

E(u, v) = E(c)(u, v) +

∫
E×E

(u(x)− u(y))(v(x)− v(y))J(dx, dy) +

∫
E

uv dκ (3)

([13, Theorem 4.5.2]). Here J is a symmetric Radon measure on E × E and κ is a

Radon measure on E. E(c) is a symmetric form possessing the strong local property, i.e.,

E(c)(u, v) = 0 whenever u has a compact support and v is constant on a neighborhood

of supp[u]. Moreover, we see by [13, Lemma 3.2.3] that for u, v ∈ De(E), there exists a

signed measure µc⟨u,v⟩ such that E(c)(u, v) = 2−1µc⟨u,v⟩(E). Set µc⟨u⟩ := µc⟨u,u⟩. We can

extend µc⟨u,v⟩ to u, v ∈ Ḋloc(E).

Lemma 2.1. For any {Gn} ∈ Θ, there exists an E-nest {Fn} such that Fn ⊂ Gn
q.e. and J(Fn × (E \Gn)) <∞ for each n.

Proof. The proof is based on an idea in the proof of [16, Lemma 2.2]. Take

g ∈ L2(E;m) with 0 < g ≤ 1 on E and define

RGn
1 g(x) := Ex

[∫ τGn

0

e−sg(Xs)ds

]
,

where τGn is the first exit time from the set Gn. Then RGn
1 g(x) > 0 on Gn and RGn

1 g

is quasi-continuous for each n. Take a common E-nest {Kj} such that all RGn
1 g, n ≥ 1

are continuous on each Kj . Set Fn := {x ∈ Kn | RGn
1 g(x) ≥ 1/n}. Then since Bn :=

{RGn
1 g > 1/n} is increasing and E \

∪
n≥1Bn is E-exceptional, {Fn} is an E-nest by [15,

Lemma 3.3]. For each n, (E \Gn)r ⊂ E \Fn, where (E \Gn)r = {x ∈ E | RGn
1 g(x) = 0}

is the set of regular points for E \Gn. Hence,

Fn \Gn ⊂ Fn ∩
(
(E \Gn) \ (E \Gn)r

)
.

Since ((E \ Gn) \ (E \ Gn)r) is E-exceptional, we see Fn ⊂ Gn q.e. Moreover, since

RGn
1 g ≥ 1/n on Fn and RGn

1 g = 0 q.e. on E \Gn, it holds that
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J
(
Fn × (E \Gn)

)
≤ n2

∫
Fn×(E\Gn)

(
RGn

1 g(x)−RGn
1 g(y)

)2
J(dx, dy).

The right-hand side is finite because RGn
1 g is an element of D(E). Hence, {Fn} is a

desired one. □

For u ∈ Ḋloc(E), we define a Borel measure µj⟨u⟩ on E by

µj⟨u⟩(B) :=

∫
B×E

(u(x)− u(y))2J(dx, dy).

We introduce subclasses D†
loc(E) of Dloc(E) and Ḋ†

loc(E) of Ḋloc(E) defined by

D†
loc(E) := {u ∈ Dloc(E) | µj⟨u⟩ is a Radon measure on E},

Ḋ†
loc(E) := {u ∈ Ḋloc(E) | µj⟨u⟩ is a smooth measure on E}.

Clearly, D†
loc(E) ⊂ Ḋ†

loc(E). It is noted in [16] that D(E) ∪ l(Dloc(E))b ⊂ D†
loc(E) and

De(E) ∪ (Ḋloc(E))b ⊂ Ḋ†
loc(E). Here (Dloc(E))b (resp. (Ḋloc(E))b) is the set of bounded

functions in Dloc(E) (resp. Ḋloc(E)). For any v ∈ D(E) with compact support and

u ∈ D†
loc(E), the value of E(u, v) defined by (3) is finite ([11, Theorem 3.5]).

3. Continuous additive functionals locally of zero energy.

A stochastic process {At}t≥0 is said to be an additive functional (AF in abbreviation)

if it satisfies the following conditions:

(i) At(·) is Ft-measurable for all t ≥ 0,

(ii) there exists a set Λ ∈ F∞ = σ(
∪
t≥0 Ft) such that Px(Λ) = 1 for q.e. x ∈ E,

θtΛ ⊂ Λ for all t > 0, and for each ω ∈ Λ, A·(ω) is a function satisfying: A0(ω) = 0,

At(ω) < ∞ for t < ζ(ω), At(ω) = Aζ(ω) for t ≥ ζ(ω), and At+s(ω) = At(ω) +

As(θtω) for s, t ≥ 0.

An AF {At}t≥0 is said to be continuous additive functional (CAF in abbreviation) if

t 7→ At(ω) is continuous on [0,∞[ for each ω ∈ Λ. A [0,∞[-valued CAF is called

a positive continuous additive functional (PCAF in abbreviation). The family of all

smooth measures and the set of all PCAF’s are in one-to-one correspondence (Revuz

correspondence) as follows: for each smooth measure ν, there exists a unique PCAF

{At}t≥0 such that for any nonnegative Borel function f and γ-excessive function h, that

is, e−γtpth ≤ h,

lim
t↓0

1

t
Ehm

[∫ t

0

f(Xs)dAs

]
=

∫
E

f(x)h(x)ν(dx)

([13, Theorem 5.1.4]). Here Ehm[ · ] =
∫
E
Ex[ · ]h(x)m(dx). For a smooth measure ν, we

denote by {Aνt }t≥0 the PCAF corresponding to ν.

We see from [17, Theorem 1.2] that for u ∈ Ḋ†
loc(E), the additive functional u(Xt)−

u(X0) admits the following decomposition (Fukushima’s decomposition):
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u(Xt)− u(X0) =M
[u]
t +N

[u]
t , for t ∈ [0, ζ[,

where M
[u]
t is a martingale additive functional locally of finite energy and N

[u]
t is a CAF

locally of zero energy (see [16] and [17] for more details). A CAF {At}t≥0 is said to be

of bounded variation if At can be expressed as a difference of two PCAF’s:

At = A
(1)
t −A

(2)
t , t < ζ.

It is known that the 0-energy part N
[u]
t in Fukushima’s decomposition is not necessary

of bounded variation. For u ∈ De(E), sufficient conditions for N
[u]
t being of bounded

variation are given in [13, Chapter 5]. Our aim in this section is to extend those results

to the class Ḋ†
loc(E).

Recall that for a closed subset F of E, D(E)F is the space defined by

D(E)F = {u ∈ D(E) | u = 0 m-a.e. on F c := E \ F}.

De(E)F and Db(E)F are defined similarly, where Db(E) is a set of bounded functions in

D(E). For a function f and a Borel set B ⊂ E, define

HBf(x) := Ex[f(XσB
); σB <∞],

where σB is the first hitting time of B.

Following the argument in the proof of [7, Lemma 6.2.10], we have the next lemma.

Lemma 3.1. For any u ∈ Ḋ†
loc(E), there exists an E-nest {Fn} such that for each

n, Fn satisfies the following three properties :

(i) µc⟨u⟩(Fn) +

∫
Fn×E

(u(x)− u(y))2J(dx, dy) +

∫
Fn

u2 dκ <∞,

in particular, the value of E(u, v) defined by (3) is finite for all v ∈
∪
n≥1 D(E)Fn ,

(ii) u−HF c
n
u ∈ De(E)Fn and

E(u−HF c
n
u, u−HF c

n
u) ≤ 1

2
µc⟨u⟩(Fn) +

∫
Fn×Fn

(u(x)− u(y))2J(dx, dy)

+ 2

∫
Fn×F c

n

(u(x)− u(y))2J(dx, dy) +

∫
Fn

u2 dκ,

(iii) HF c
n
u ∈ Ḋ†

loc(E) and E(HF c
n
u, v) = 0 for any v ∈ Db(E)Fn .

Proof. Note that HF c
n
u = u q.e. on F cn.

First we show that (i)–(iii) are satisfied for any u ∈ De(E) and closed set F instead

of Fn. Clearly, (i) holds. u−HF c
n
u ∈ De(E)Fn and (iii) follow from [13, Theorem 4.6.5].

Since

E(u−HF cu, u−HF cu) = E(u, u)− E(HF cu,HF cu)
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and

E(HF cu,HF cu) ≥ 1

2
µc⟨HFcu⟩(F

c) +

∫
F c×F c

(
HF cu(x)−HF cu(y)

)2
J(dx, dy)

+

∫
F c

(
HF cu

)2
dκ

=
1

2
µc⟨u⟩(F

c) +

∫
F c×F c

(u(x)− u(y))2J(dx, dy) +

∫
F c

u2 dκ,

we attain (ii).

Suppose u ∈ Ḋ†
loc(E). From the definition of Ḋ†

loc(E), there exists an E-nest {F (1)
n }

such that ∫
F

(1)
n ×E

(u(x)− u(y))2J(dx, dy) <∞

for every n. By the regularity of (E ,D(E)), we may assume that all F
(1)
n , n ≥ 1 are

compact. Take sequences {Gn} ∈ Θ and {un} ⊂ D(E) such that u = un q.e. on Gn for

each n. From Lemma 2.1, there exists an E-nest {F (2)
n } such that F

(2)
n ⊂ Gn q.e. and

J(F
(2)
n ×Gcn) < ∞ for each n. We define an E-nest {Fn} by Fn := F

(1)
n ∩ F (2)

n . Clearly,

{Fn} satisfies (i).

In the remainder of the proof, we fix n ≥ 1 and put F := Fn, G := Gn. For k > n

andM > 0, we set u
(M)
k := (−M)∨uk∧M , u(M) := (−M)∨u∧M . We have by applying

(ii) to u
(M)
k ∈ D(E)

E
(
u
(M)
k −HF cu

(M)
k , u

(M)
k −HF cu

(M)
k

)
≤ 1

2
µc
⟨u(M)

k ⟩
(F ) +

∫
F×F

(
u
(M)
k (x)− u

(M)
k (y)

)2
J(dx, dy)

+ 2

∫
F×F c

(
u
(M)
k (x)− u

(M)
k (y)

)2
J(dx, dy) +

∫
F

(
u
(M)
k

)2
dκ.

Noting that u
(M)
k = u(M) q.e. on G and u(M) is a normal contraction of u, the right-hand

side is dominated by

1

2
µc⟨u⟩(F ) +

∫
F×F

(
u(x)− u(y)

)2
J(dx, dy)

+ 2

∫
F×(F c∩G)

(
u(x)− u(y)

)2
J(dx, dy)

+ 2

∫
F×(F c∩Gc)

(
u(M)(x)− u

(M)
k (y)

)2
J(dx, dy) +

∫
F

u2 dκ.

Since J(F ×Gc) <∞, we have by the bounded convergence theorem
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lim sup
k→∞

E
(
u
(M)
k −HF cu

(M)
k , u

(M)
k −HF cu

(M)
k

)
≤ 1

2
µc⟨u⟩(F ) +

∫
F×F

(u(x)− u(y))2J(dx, dy) (4)

+ 2

∫
F×F c

(u(x)− u(y))2J(dx, dy) +

∫
F

u2 dκ <∞.

We see from the Banach–Saks theorem ([7, Theorem A.4.1]) that there exists a subse-

quence {u(M)
kj

}j≥1, k1 > n such that

ψj :=
1

j

j∑
ℓ=1

(
u
(M)
kℓ

−HF cu
(M)
kℓ

)
is an E-Cauchy sequence. Hence, we see that {ψj} E-converges to u(M) − HF cu(M) ∈
De(E)F ∩ L∞(E;m). Since F is compact, the space De(E)F ∩ L∞(E;m) is contained in
L2(E;m), and thus it coincides with Db(E)F by [13, Theorem 1.5.2]. Moreover,

E
(
u(M) −HF cu(M), u(M) −HF cu(M)

)
= lim
j→∞

E(ψj , ψj)

≤ lim sup
k→∞

E
(
u
(M)
k −HF cu

(M)
k , u

(M)
k −HF cu

(M)
k

)
.

From the inequality (4), the right-hand side is uniformly bounded in M > 0. By using

the Banach–Saks theorem again, we can choose an increasing sequence {Mj}j≥1 such

that

φj :=
1

j

j∑
ℓ=1

(
u(Mℓ) −HF cu(Mℓ)

)
is an E-approximating sequence of u−HF cu, which proves (ii).

Finally, we show (iii). From (ii) and the fact De(E) ⊂ Ḋ†
loc(E), we see HF cu ∈

Ḋ†
loc(E). For M > 0, we take the sequences {u(M)

kj
}j≥1, {ψj}j≥1 defined in the last

paragraph and put u
(M)
j := (1/j)

∑j
ℓ=1 u

(M)
kℓ

. Note that u
(M)
j = u(M) q.e. on G. For

v ∈ Db(E)F , the value of E(u(M)
j , v) equals

1

2
µc⟨u(M),v⟩(F ) +

∫
F×F

(
u(M)(x)− u(M)(y)

)
(v(x)− v(y))J(dx, dy)

+ 2

∫
F×(F c∩G)

(
u(M)(x)− u(M)(y)

)
(v(x)− v(y))J(dx, dy)

+ 2

∫
F×(F c∩Gc)

(
u(M)(x)− u

(M)
j (y)

)
(v(x)− v(y))J(dx, dy) +

∫
F

u(M)v dκ.

Hence, E(u(M)
j , v) converges to E(u(M), v) as j → ∞ by the bounded convergence theo-

rem, and thus
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E
(
HF cu(M), v

)
= lim
j→∞

(
E
(
u
(M)
j , v

)
− E(ψj , v)

)
= lim
j→∞

1

j

j∑
ℓ=1

E
(
HF cu

(M)
kℓ

, v
)
= 0.

Take the sequences {u(Mj)}j≥1, {φj}j≥1 defined in the last paragraph and put uj :=

(1/j)
∑j
ℓ=1 u

(Mℓ). Since uj is a normal contraction of u, E(uj , v) converges to E(u, v) as
j → ∞. Consequently, we have

E(HF cu, v) = lim
j→∞

(
E(uj , v)− E(φj , v)

)
= lim
j→∞

1

j

j∑
ℓ=1

E
(
HF cu(Mℓ), v

)
= 0. □

We can now give a sufficient condition for u ∈ Ḋ†
loc(E) that the 0-energy part N [u]

in Fukushima’s decomposition is of bounded variation.

Theorem 3.2. Let ν = ν+− ν− be a difference of positive smooth measures on E.

If u ∈ Ḋ†
loc(E) satisfies

E(u, v) =
∫
E

v dν for all v ∈
∞∪
n=1

Db(E)Fn (5)

for an E-nest {Fn} associated with ν and µj⟨u⟩, then

Px
(
N

[u]
t = −A+

t +A−
t , t < ζ

)
= 1 q.e. x ∈ E,

where A±
t is a PCAF with Revuz measure ν±.

Proof. Suppose that u satisfies (5) for an E-nest {F (1)
n }. Take another E-nest

{F (2)
n } satisfying conditions in Lemma 3.1. Set Fn := F

(1)
n ∩F (2)

n . By repeating computa-

tions in the proof of the previous lemma, we can check that the E-nest {Fn} also satisfies

the statements in Lemma 3.1. On account of Lemma 3.1 (iii) and [17, Theorem 1.2],

HF c
n
u(Xt)−HF c

n
u(X0) has Fukushima’s decomposition:

HF c
n
u(Xt)−HF c

n
u(X0) =M

[HFc
n
u]

t +N
[HFc

n
u]

t , t < ζ.

By an argument similar to that in the proof of [7, Lemma 5.5.5], we can show that

Px
(
N

[HFc
n
u]

t = 0, t < τFn

)
= 1 q.e. x ∈ E. (6)

Here τFn is the first exit time from Fn. Note that u−HF c
n
u ∈ De(E)Fn and

E(u−HF c
n
u, v) =

∫
E

v dν for all v ∈ Db(E)Fn
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by Lemma 3.1. We then see from [13, Lemma 5.4.4] and (6) that

Px(N [u]
t = −A+

t +A−
t , t < τFn) = 1 q.e. x ∈ E.

We have the assertion by letting n→ ∞. □

By the same argument as that in the proof of [13, Corollary 5.4.1], we have the next

corollary.

Corollary 3.3. Let ν = ν+ − ν− be a difference of positive smooth Radon mea-

sures on E. Suppose u ∈ D†
loc(E) satisfies

E(u, v) =
∫
E

v dν for all v ∈ C

for some special standard core C. Then

Px
(
N

[u]
t = −A+

t +A−
t , t < ζ

)
= 1 q.e. x ∈ E,

where A±
t is a PCAF with Revuz measure ν±.

4. Hardy inequalities.

Let µ be a smooth measure (denote by µ ∈ S). In this section, we consider the

Hardy-type inequality : ∫
E

u2 dµ ≤ E(u, u) for all u ∈ D(E).

We shall show that if there exists a function in the space H̃+(µ) below, then the inequality

above holds.

Define

Θ0 = {G | G is open and E \G is E-exceptional}.

Take G ∈ Θ0 and let MG = (XG
t ,Px) be the part process on G:

XG
t =

{
Xt, t < τG,

∆, t ≥ τG.

Define the Dirichlet form (EG,D(EG)) on L2(G,m) by{
EG = E ,
D(EG) = D(E)G.

Then (EG,D(EG)) is a regular Dirichlet form generated by MG ([13, Theorem 4.4.3]).

Note that D(EG) = D(E) because E \G is E-exceptional.
For µ ∈ S, we set a function space of superharmonic functions:
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H̃+(µ)

:=

{
h

∣∣∣∣∣there exists G ∈ Θ0 such that h ∈ D†
loc(EG) ∩ C(G ∪ {∆}), h > 0 on G

and EG(h, φ)−
∫
E
hφdµ ≥ 0 for all φ ∈ D(E) ∩ C+

0 (G)

}
.

Here C+
0 (G) is a set of nonnegative continuous functions on G whose supports are

compact and contained in G. Note that v ∈ D†
loc(EG) implies v ∈ Ḋ†

loc(E) and

EG(v, φ) = E(v, φ) holds for any φ ∈ D(E) ∩ C0(G).

The next lemma tells us that h(Xt) is a semimartingale for any h ∈ H̃+(µ).

Lemma 4.1. For h ∈ H̃+(µ), there exists a smooth measure νh such that

N
[h]
t = −

∫ t

0

h(Xs)dA
µ
s −Aνht , t < ζ, Px-a.s. q.e. x ∈ E,

where N
[h]
t is the 0-energy part in Fukushima’s decomposition of h(Xt)− h(X0).

Proof. Define a functional I on Λ := D(E) ∩ C0(G) by

I(φ) = EG(h, φ)−
∫
E

hφdµ, φ ∈ Λ.

Note that Λ is a Stone vector lattice, i.e., u∧v ∈ Λ, u∧1 ∈ Λ for any u, v ∈ Λ. Moreover,

I is pre-integral on the space Λ, that is, I(φk) ↓ 0 whenever φk ∈ Λ and φk(x) ↓ 0 for

all x ∈ E. Indeed, let ψ ∈ D(E) ∩ C+
0 (G) such that ψ = 1 on supp[φ1]. Then since

∥φk∥∞ψ − φk ∈ D(E) ∩ C+
0 (G), it holds that

I(φk) ≤ ∥φk∥∞ · I(ψ) ↓ 0 as k → ∞

by Dini’s theorem. We see from [8, Theorem 4.5.2] that there exists a Borel measure ν

on G such that

I(φ) =

∫
G

φdν, φ ∈ Λ. (7)

We extend ν to a measure on E by setting ν (E \G) = 0.

We shall prove that ν is a smooth measure on E. Let K ⊂ G be a compact set

of zero capacity and take a relatively compact open set D such that K ⊂ D ⊂ G. On

account of [7, Theorem 3.3.8(iii)], there exists a sequence {φn}n≥1 ⊂ D(E)∩C+
0 (D) such

that φn ≥ 1 on K and E1(φn, φn) → 0 as n → ∞. Let ψ ∈ D(E) ∩ C0(G) such that

ψ = 1 on D and 0 ≤ ψ ≤ 1 on E. Then note that hψ ∈ D(E)∩C0(G) and hψ = h on D.

Hence,

E(hψ, φn) =
1

2

∫
E

dµc⟨h,φn⟩ +

∫
D×D

(h(x)− h(y))(φn(x)− φn(y))J(dx, dy)

+ 2

∫
D×(E\D)

(h(x)− hψ(y))φn(x)J(dx, dy) +

∫
E

hφn dκ

≥ EG(h, φn).
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Therefore,

ν(K) ≤
∫
E

φn dν = EG(h, φn)−
∫
E

hφn dµ ≤ E(hψ, φn)

and the right-hand side is dominated by

E(hψ, hψ)1/2 · E(φn, φn)1/2.

Since E(φn, φn)1/2 tends to 0 as n → ∞, the measure ν charges no E-exceptional set.
For any compact subset K of G, we can see ν(K) < ∞ as proved above. Let {Kj} be

an E-nest of compact sets satisfying E \ G ⊂
∩∞
j=1K

c
j . Then ν(Kj) < ∞ implies the

smoothness of ν.

We see from (7) that

EG(h, φ) =
∫
G

φ (h dµ+ dν) for all φ ∈ D(E) ∩ C0(G).

Recall that h ∈ D†
loc(EG) implies h ∈ Ḋ†

loc(E). By applying Theorem 3.2 to M, it holds

that

N
[h]
t = −

∫ t

0

h(Xs)dA
µ
s −Aνt , t < ζ, Px-a.s. q.e. x ∈ E.

We have the assertion by setting νh := ν. □

Lemma 4.2. ∫
E

u2 dµ+

∫
E

u2

h
dνh ≤ E(u, u) for any u ∈ D(E).

Proof. We first show the following claim:∫
E

φdµ+

∫
E

φ

h
dνh = E

(
h,
φ

h

)
for any φ ∈ D(E) ∩ C0(G). (8)

Let K = supp[φ] and D a relatively compact open set satisfying K ⊂ D ⊂ D ⊂ G. Put

c := 1/(infx∈D h(x)). Then for (x, y) ∈ D ×D∣∣∣∣φh (x)
∣∣∣∣ ≤ c|φ(x)|,∣∣∣∣φh (x)− φ

h
(y)

∣∣∣∣ ≤ 2c|φ(x)− φ(y)|+ c2|h(x)φ(x)− h(y)φ(y)|.

Since φ, hφ ∈ D(E)∩C0(G), the function φ/h also belongs to D(E)∩C0(G). Hence, the

claim follows from (7).

Secondary, we shall show

E
(
h,
φ2

h

)
≤ E(φ,φ) for any φ ∈ D(E) ∩ C0(G). (9)
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Put ψ = φ/h. By the derivation property, E(h, φ2/h) is equal to

E(h, hψ2) =
1

2

∫
E

ψ2dµc⟨h⟩ +

∫
E

hψ dµc⟨h,ψ⟩ + E(j)(h, hψ2) +

∫
E

(hψ)2dκ,

where

E(j)(f, g) :=

∫
E×E

(f(x)− f(y))(g(x)− g(y))J(dx, dy).

On the other hand, E(φ,φ) equals

E(hψ, hψ) = 1

2

∫
E

ψ2dµc⟨h⟩ +

∫
E

hψ dµc⟨h,ψ⟩ +
1

2

∫
E

h2dµc⟨ψ⟩ + E(j)(hψ, hψ) +

∫
E

(hψ)2dκ.

Since

E(j)(hψ, hψ)− E(j)(h, hψ2) =

∫
E×E

(ψ(x)− ψ(y))2h(x)h(y)J(dx, dy),

we have

E(hψ, hψ)− E(h, hψ2) =
1

2

∫
E

h2dµc⟨ψ⟩ +

∫
E×E

(ψ(x)− ψ(y))2h(x)h(y)J(dx, dy).

Obviously, the right-hand side is nonnegative, and thus (9) holds.

Remark that D(E)∩C0(G) is E1/2
1 -dense in D(EG) = D(E). For any u ∈ D(E), there

exists {un} ⊂ D(E) ∩ C0(G) such that, un → u q.e. and E(un, un) → E(u, u) as n → ∞
([13, Theorem 2.1.4]). By Fatou’s lemma and (8), we have∫

E

u2 dµ+

∫
E

u2

h
dνh ≤ lim inf

n→∞
E
(
h,
u2n
h

)
.

On account of (9), the right-hand side is dominated by

lim inf
n→∞

E(un, un) = E(u, u). □

Suppose H̃+(µ) ̸= ∅ and take h ∈ H̃+(µ). Define a local martingale on the random

interval [[0, ζh[[ by Mt =
∫ t
0
(h(Xs−))

−1dM
[h]
s , where

ζh := ζ ∧ σh, σh := inf
{
t > 0 |Xt ∈ {h = 0 or h = ∞}

}
and M

[h]
t is the martingale part in Fukushima’s decomposition of h(Xt)−h(X0). Let L

h
t

be the solution to the following stochastic differential equation:

Lht = 1 +

∫ t

0

Lhs− dMs, t < ζh.

It is known from the Doláns-Dade formula ([14, Theorem 9.39]) that
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Lht = exp

(
Mt −

1

2
⟨M c⟩t

) ∏
0<s≤t

h(Xs)

h(Xs−)
exp

(
1− h(Xs)

h(Xs−)

)
.

Since Lht is a positive local martingale on the random interval [[0, ζh[[, so is a positive

supermartingale. Define a family of probability measures on (Ω,F ) by

dPhx := Lht dPx on Ft ∩ {t < ζh}.

It follows from [19, (62.19)] that under new measures {Phx}, {Xt}t≥0 is a right Markov

process on {0 < h <∞}. It is known thatMh := (Ω,Ft, Xt,Phx, ζh) is an h2m-symmetric

process (cf. [6], [18]). Let (Eh,D(Eh)) be the Dirichlet form generated by Mh.

On account of Lemma 4.1, we have the decomposition

h(Xt)− h(X0) =M
[h]
t −

∫ t

0

h(Xs)dA
µ
s −Aνht , t < ζ, Px-a.s. q.e. x ∈ E.

By Itô’s formula applied to the semimartingale h(Xt) with the function log x, we have

Lht =
h(Xt)

h(X0)
exp

(
−
∫ t

0

1

h(Xs−)
dN [h]

s

)
=
h(Xt)

h(X0)
exp

(
Aξt

)
, t < ζ, Px-a.s. q.e. x ∈ E,

(10)

where ξ(dx) := µ(dx) + (1/h(x))νh(dx). Hence, the transition semigroup pht of Mh is

expressed by

pht f(x) = Ex
[
Lht f(Xt) ; t < ζh

]
=

1

h(x)
Ex

[
exp(Aξt )h(Xt)f(Xt) ; t < ζ

] (11)

for q.e. x ∈ E. By using these expressions, we will prove the following equality. This

gives a refinement of Hardy’s inequality.

Theorem 4.3. Suppose H̃+(µ) ̸= ∅. Then for any h ∈ H̃+(µ),

E(u, u)−
∫
E

u2dµ = Eh
(u
h
,
u

h

)
+

∫
E

u2

h
dνh, u ∈ D(E).

In addition, the value of Eh(u/h, u/h) is equal to

1

2

∫
E

h2dµc⟨u/h⟩ +

∫
E×E

(u
h
(x)− u

h
(y)

)2

h(x)h(y)J(dx, dy) + h(∆)

∫
E

u2

h
dκ. (12)

Proof. Let ξ(dx) = µ(dx) + (1/h(x))νh(dx) and

Eδ(u, u) := E(u, u) + δ

∫
E

u2 dξ, δ > 0.

Then it follows from Lemma 4.2 that
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E

u2 dξ ≤ 1

1 + δ
Eδ(u, u), u ∈ D(E),

and thus ξ belongs to the Hardy class associated with Eδ. Define the subprocess Pδx by

Pδx = exp(−δAξt )Px. On account of the relation (10),

Eδx
[
eA

ξ
t f(Xt)

]
= h(x)Ehx

[
e−δA

ξ
t

(
f

h
(Xt)

)]
.

We see from [10] that for u ∈ D(E),

lim
t↓0

1

t

(
u− Eδ·

[
eA

ξ
tu(Xt)

]
, u

)
m

= Eδ(u, u)−
∫
E

u2 dξ.

On the other hand, we see from [18] that

lim
t↓0

1

t

(
u− hEh·

[
e−δA

ξ
t

(u
h
(Xt)

)]
, u

)
m

= lim
t↓0

1

t

(u
h
− Eh·

[
e−δA

ξ
t

(u
h
(Xt)

)]
,
u

h

)
h2m

= Eh
(u
h
,
u

h

)
+ δ

∫
E

(u
h

)2

h2 dξ.

Moreover, it is noted in [18] that Eh(u/h, u/h) equals (12). □

Assume M is transient. For µ ∈ S, we define its potential by Rµ(x) = Ex
[
Aµζ

]
. We

introduce

S† :=

{
µ ∈ S

∣∣∣∣∣there exists G ∈ Θ0 such that µ is a Radon measure on G,

Rµ > 0 on G and Rµ ∈ D†
loc(EG) ∩ C(G ∪ {∆})

}
.

For µ ∈ S†, the potential Rµ satisfies

EG(Rµ,φ)−
∫
E

φdµ = 0 for all φ ∈ D(E) ∩ C0(G).

Since
∫
E
φdµ =

∫
E
Rµ ·φ (1/Rµ) dµ, we see that Rµ is in the space H̃+((1/Rµ) · µ). By

applying the previous theorem, we get

Corollary 4.4. Let µ ∈ S†. Then

E(u, u)−
∫
E

u2

Rµ
dµ = ERµ

(
u

Rµ
,
u

Rµ

)
, u ∈ D(E).

5. pµ
t -excessive functions.

We introduce some subclasses of smooth measures S. A positive measure ν in S is

said to be in the Kato class (K in abbreviation) if

lim
β→∞

∥∥∥∥E·

[∫ ∞

0

e−βtdAνt

] ∥∥∥∥
∞

= 0.
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A positive measure ν in S is said to be in the local Kato class (Kloc in abbreviation) if

ν(· ∩K) ∈ K for any compact set K.

Let µ ∈ Kloc and define the Feynman–Kac semigroup {pµt }t≥0 by

pµt f(x) = Ex[exp (Aµt )f(Xt)].

Let us introduce the function space of pµt -excessive functions.

H+(µ) :=

{
h

∣∣∣∣∣there exists G ∈ Θ0 such that h ∈ D†
loc(EG) ∩ C(G ∪ {∆}),

h > 0 on G and pµt h ≤ h m-a.e.

}
.

The next theorem gives a characterization of pµt -excessive functions in H+(µ).

Theorem 5.1. Let µ ∈ Kloc. Then

H+(µ) = H̃+(µ)

Proof. (H+(µ) ⊃ H̃+(µ)): Let {pht }t≥0 be the transition semigroup of Mh given

by (11). Then

pµt h(x) ≤ h(x) · pht 1(x) ≤ h(x), q.e. x ∈ E,

and thus h is pµt -excessive.

(H+(µ) ⊂ H̃+(µ)): Let φ ∈ D(E) ∩ C+
0 (G). Take an increasing sequence {Gn} of

relatively compact open sets such that K := supp[φ] ⊂ G1 and Gn ↑ G. From the

regularity of E , there exists a sequence {ψn} ⊂ D(E) ∩ C0(G) such that 0 ≤ ψn ≤ 1 on

G and ψn = 1 on Gn. Then hψn ∈ D(E) and

E(hψn, φ)−
∫
E

hψnφdµ̂ ≥ 0 for all n ≥ 1,

where µ̂ := µ(· ∩K). Indeed, on account of µ̂ ∈ K, the left-hand side is equal to

lim
t↓0

1

t

(
hψn − pµ̂t (hψn), φ

)
m

= lim
t↓0

1

t

((
h, φ

)
m
−
(
pµ̂t (hψn), φ

)
m

)
.

This limit is nonnegative because pµ̂t (hψn) ≤ pµt h ≤ h. Since hψn = h on G1, the value

of E(hψn, φ) is equal to

1

2

∫
E

dµc⟨h,φ⟩ +

∫
K×K

(h(x)− h(y))(φ(x)− φ(y))J(dx, dy)

+ 2

∫
K×(Kc∩G1)

(h(x)− h(y))(φ(x)− φ(y))J(dx, dy)

+ 2

∫
K×(Kc∩Gc

1)

(h(x)− hψn(y)) · φ(x) J(dx, dy) +
∫
E

hφdκ.

Noting that J(K ×Gc1) <∞, the fourth term tends to
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2

∫
K×(Kc∩Gc

1)

(h(x)− h(y)) · φ(x)J(dx, dy)

as n→ ∞ by the dominated convergence theorem. Consequently, we have

E(h, φ)−
∫
E

hφdµ = E(h, φ)−
∫
E

hφdµ̂

= lim
n→∞

(
E(hψn, φ)−

∫
E

hψnφdµ̂

)
≥ 0. □

6. Applications and examples.

In this section, we treat the case where the Dirichlet form has the jumping part.

Let d(·, ·) be the metric which induces the original topology of E. We impose the next

assumption on M.

(J): For some Radon measure m∗ on E and non-increasing [0,∞)-valued function Φ on

(0,∞), the jumping measure J(dx, dy) on E × E \ d is expressed as

J(dx, dy) = Φ(d(x, y))m∗(dx)m∗(dy),

where d is the diagonal set.

Firstly, we give sufficient conditions for a function in Dloc(E) belonging to D†
loc(E).

Lemma 6.1. Let u ∈ Dloc(E) ∩C(E). Then u belongs to D†
loc(E) if and only if for

any compact set K, there exists a constant c > 0 such that∫
K×{|u|>c}

(u(x)− u(y))2J(dx, dy) <∞.

Proof. The “only if” part is trivial.

We prove the “if” part. Take a relatively compact open set D such that K ⊂ D.

Note that J(K ×Dc) <∞ because of the regularity of E . We shall show that∫
K×E

(u(x)− u(y))2J(dx, dy) <∞.

The integral is decomposed as∫
K×D

(u(x)− u(y))2J(dx, dy) +

∫
K×Dc

(u(x)− u(y))2J(dx, dy).

The first term is finite because there exists v ∈ D(E) such that u = v q.e. on D. The
second term is less than or equal to∫

K×(Dc∩{|u|≤c})
(u(x)− u(y))2J(dx, dy) +

∫
K×(Dc∩{|u|>c})

(u(x)− u(y))2J(dx, dy)

≤ 2
(
∥1K · u∥2∞ + c2

)
· J(K ×Dc) +

∫
K×{|u|>c}

(u(x)− u(y))2J(dx, dy) <∞. □
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Lemma 6.2. Let u ∈ Dloc(E) ∩ C(E). If there exists c > 0 such that∫
{|u|>c}

u2dm∗ <∞,

then u ∈ D†
loc(E).

Proof. By considering the decomposition u = (u∨ 0)− (−u∨ 0), we may assume

u ≥ 0. Fix a compact set K and putM := c∨(maxx∈K u(x)). On account of Lemma 6.1,

it is sufficient to prove that∫
K

m∗(dx)

∫
{u>2M}

(u(y)− u(x))2Φ(d(x, y))m∗(dy) <∞.

Since |u(y)− u(x)| ≤ u(y) for (x, y) ∈ K × {u > 2M}, the left-hand side is bounded by∫
K

m∗(dx)

∫
{u>2M}

u(y)2Φ(d(x, y))m∗(dy). (13)

Let d(x) := inf{d(x, y) | y ∈ {u > 2M}} and δ := inf{d(x) |x ∈ K}. Then we easily see

that δ is strictly positive. Hence, (13) is dominated by∫
K

m∗(dx)

∫
{u>2M}

u(y)2Φ(δ)m∗(dy) ≤ Φ(δ)m∗(K)

∫
{u>c}

u2dm∗ <∞. □

Example 6.3 (α-stable process). Let Mα = (Xt,Px), 0 < α < 2, be a symmetric

α-stable process on Rd generated by the fractional Laplacian −1/2(−∆)α/2. Assume

α < d, that is, Mα is transient. Then its Green function R(x, y) is given by

R(x, y) = C(d, α) · |x− y|α−d,

where C(d, α) = 2−απ−d/2Γ((d − α)/2)Γ(α/2)−1 and Γ is the Gamma function. For a

Borel function f , the 0-potential of f is written as

Rf(x) =

∫
Rd

R(x, y)f(y)dy.

The Dirichlet form generated by Mα is given by
E(α)(u, v) =

1

2
A(d, α)

∫∫
Rd×Rd

(u(x)− u(y))(v(x)− v(y))

|x− y|d+α
dxdy,

D(E(α)) =

{
u ∈ L2(Rd; dx)

∣∣∣ ∫∫
Rd×Rd

(u(x)− u(y))2

|x− y|d+α
dxdy <∞

}
,

where A(d, α) = α2α−1π−d/2Γ((α+ d)/2)Γ(1− (α/2))−1.

Let w(x) = |x|−p. If p ∈ (0, d/2), then∫
{w>c}

w(x)2dx <∞
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for any c > 0, and thus w ∈ D†
loc(EG) ∩ C(G ∪ {∆}), G := Rd \ {0} by Lemma 6.2. Let

v(x) = |x|−(p+α), 0 < p < (d/2) ∧ (d− α). Then it follows from [3, Lemma 2.1] that

Rv(x) = C−1
d,α,p · |x|

−p, where Cd,α,p := 2α
Γ((p+ α)/2)Γ((d− p)/2)

Γ((d− (p+ α))/2)Γ(p/2)
.

By applying Corollary 4.4 to Rv, we have the equality

E(α)(u, u)− Cd,α,p

∫
Rd

u(x)2

|x|α
dx

=
1

2
A(d, α)

∫∫
Rd×Rd

(
u(x)

|x|−p
− u(y)

|y|−p

)2 |x|−p|y|−p

|x− y|d+α
dxdy, u ∈ D(E(α)).

The equality above has been already shown by Bogdan, Dyda and Kim [5, Proposition 5]

in an analytic way. The case p = (d − α)/2 is treated in [2] and [12]. We see from [3,

Lemma 2.2] that the maximum of a function

F (p) := 2α
Γ((p+ α)/2)Γ((d− p)/2)

Γ((d− (p+ α))/2)Γ(p/2)

(
= Cd,α,p

)
, p ∈ (0, d− α),

is achieved at p = (d−α)/2. It is known in [1] that Cd,α,(d−α)/2 = 2αΓ((d+α)/4)2Γ((d−
α)/4)−2 is the best constant for Hardy’s inequality, that is, for any C > Cd,α,(d−α)/2,

there exists u ∈ D(E(α)) such that

E(α)(u, u) < C

∫
Rd

u(x)2

|x|α
dx.
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