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Abstract. A unified family of PJ-hierarchies (J=I, II, IV, 34) with a
large parameter is introduced and we construct general formal solutions which
are called instanton-type solutions for the system.

1. Introduction.

In the pioneering works of [6]–[14], [16]–[18], some of Painlevé hierarchies and the

Noumi–Yamada system with a large parameter have been studied by the exact WKB

analysis and important results have been established. The results established in these

papers suggest that there are common structures in analyzing Painlevé hierarchies and

the exact WKB analysis is an effective method to study these Painlevé hierarchies and

completely integrable systems. Motivated by these works, the aim of this article is

to study the common structures between PJ-hierarchies (J=I, II, IV, 34). For that

purpose, we introduce a unified family of PJ-hierarchies (J=I, II, IV, 34) with a large

parameter. A key idea for the formulation of the unified family of the hierarchies is to

use generating functions. The papers [2], [20] and [21] introduce an additional variable

θ to the m-th member of PJ-hierarchies (J=I, II, IV, 34), which will be denoted by

(PJ)m (m = 1, 2, · · · ), and (PJ)m is written in terms of generating functions of unknown

functions. Our system (13) given in this article is of a naturally extended form by the

common structures of (PJ)m described in [2], [20] and [21]. Note that, although we have

succeeded in construction of the unified family of PJ-hierarchies, it is still unknown if it

contains other known Painlevé hierarchies or essentially new equations. It is our future

problem to answer this question.

Once we have obtained the unified family of systems, the next important step of

our study is to extend the results of [2], [20] and [21] to the unified family. When we

discuss the connection problem for our system by the exact WKB analysis based on Borel

resummation, we need a usual formal solution (which is called a 0-parameter solution)

and a formal solution of instanton-type with sufficiently many free parameters which can

describe the Stokes phenomenon of the Borel sum of a 0-parameter solution. In general,

for a non-linear differential equation, the existence of a formal solution of instanton-type

is non-trivial. In this paper, we show the existence of instanton-type formal solutions

for non-linear differential equations derived from the unified family of PJ-hierarchies by
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using the method given in [2], [20] and [21]. As a matter of fact, our system (13) given

in Section 3 is expressed by a proper generating function with arbitrary coefficients (see

(14)). Because of the arbitrariness of coefficients, many systems of non-linear differential

equations can be derived from our system. One can see in Section 4 that the method of

[2] is applicable to the systems which are derived from (13).

The paper is organized in the following way. In Section 2 we recall expressions of

(PJ)m (J=I, II, IV, 34) by generating functions of their unknown functions and we rewrite

(PJ)m in the unified form (11). In Section 3 we introduce the explicit form of a unified

family of (PJ)m (J=I, II, IV, 34) with a large parameter. As one can see in (16), the

coefficients f1 and f2 in (13) have special forms, and the reason why they take such forms

is explained in Section 4.1. In Section 4.2, we have the concrete form of a 0-parameter

solution. In Section 4.3 and Section 4.4, we investigate the algebraic structures associated

with our system. Firstly, we derive the linearized equation along the leading term of a

0-parameter solution, and then, we derive a suitable partial differential equation (33)

for the construction of instanton-type solutions. In Section 4.4, we define the map Q

which is a key to describe the system (33). The structure of (33) varies depending on

Case I and Case II which are explained in Section 4.4.1 and Section 4.4.2. Note that, in

subsequent discussions, we consider Case I and Case II separately. The most interesting

result here is Lemma 4.1 showing that eigenvectors of Q have important multiplicative

relations. At the end of Section 4, we give the main theorem, and successive Sections 5,

6 and 7 are devoted to its proof. In the procedure of the construction of instanton-type

formal solutions, we need to solve the non-secularity conditions. The solvability of the

non-secularity conditions for our system is also studied in Sections 5, 6 and 7.

Acknowledgements. This research is inspired by the pioneering works of [1]

and [2]. The author would like to express her sincere gratitude to Professor Naofumi

Honda and Professor Takashi Aoki for many helpful suggestions and discussions. The

author would like to thank the referee for reading this paper completely and for giving

her valuable advices.

2. PJ-hierarchies (J=I, II, IV, 34) by generating functions.

In this section, we rewrite the general members (PJ)m (m = 1, 2, . . . ) of PJ-

hierarchies (J=I, II, IV, 34) with a large parameter η in a unified form. The objects

discussed here are essentially the same as the PJ-hierarchies studied by Kudryashov [15],

Gordoa–Joshi–Pickering [5] and Clarkson–Joshi–Pickering [3].

In what follows, θ denotes an independent variable and the notation A ≡ B means

that A−B is zero module θm+2. For any formal power series x of θ, we define σθ
i (x) by

the coefficient of θi in x.

(i) The m-th member (PJ)m of PJ-hierarchy with a large parameter η (J=I, 34):

We define generating functions of uk, vk and ck−1 (k = 1, 2, . . . ) by

U(θ) :=
∞∑
k=1

ukθ
k, V (θ) :=

∞∑
k=1

vkθ
k and C(θ) :=

∞∑
k=1

ck−1θ
k, (1)

respectively. Here uk, vk are unknown functions of the variable t and ck−1 is a constant.
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(a) (PI)m is written in the following form (see [2]).

η−1 d

dt

(
Uθ

V θ

)
≡

 2V θ

−(1 + 2u1θ)(1− U) + 2tθm+1 +
1 + 2C − V 2θ

1− U

 (2)

with σθ
m+1(U) = 0, σθ

m+1(V ) = 0 and c0 = 0.

Let us define H and fi by

H(U, V ) := 1 + 2C − V 2θ and f1 := 0, f2 := −(1 + 2u1θ) + 2tθm+1, (3)

respectively. Using (3), we rewrite (2) as follows.

η−1 d

dt

(
Uθ

V θ

)
≡
(
f1
f2

)
× (1− U) +

(
0−1

1 0

)(
∂H/∂U

∂H/∂V

)
+

(
0

H(U, V )/(1− U)

)
(4)

with σθ
m+1(U) = 0, σθ

m+1(V ) = 0 and c0 = 0.

(b) Let γ(̸= 0) and κ be constants. The paper [21] showed that (P34)m studied by [3]

and [14] is essentially equivalent to the system

η−1 d

dt

(
Uθ

V θ

)
≡

 2V θ

−(1 + 2(u1 + c0)θ)(1− U) +
1 + 2C − V 2θ

1− U


+

(
0

2γtθm(1 + (u1 + 2c0)θ)

)
(5)

with

σθ
m+1(U) = −σθ

m+1(W ) + c0σ
θ
m(U) +

(σθ
m(V ))2 − κ2

2σθ
m(U)

, σθ
m+1(V ) = 0. (6)

Here W is defined by

W ≡ U2 − θV 2 + 2C

2(1− U)
− c0θ(1− U) + γtθm(1 + (u1 + 2c0)θ). (7)

Set H and fi by

H(U, V ) := 1 + 2C − V 2θ and f1 := 0, f2 := − (1 + 2(u1 + c0)θ) (1− 2γtθm) ,

respectively. Then the system (5) is transformed into the same form as (4) with conditions

(6) for (P34)m.

(ii) The m-th member (PJ)m of PJ-hierarchy with a large parameter η (J=II, IV):

Let us define generating functions of uk, vk and ck (k = 1, 2, . . . ) by

U(θ) :=
∞∑
k=1

ukθ
k, V (θ) :=

∞∑
k=1

vkθ
k and C(θ) :=

∞∑
k=1

ckθ
k,
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respectively. Here uk, vk are unknown functions of the variable t and ck is a constant.

(c) (PII)m introduced by [5] is equivalent to the following system (see [13], [20]):

η−1 d

dt

(
Uθ

V θ

)
≡ 2

 u1(1− U + C)θ − U − V θ

−v1(1− U + C)θ +
2UV + V 2θ

2(1− U + C)
+ V

 (8)

with σθ
m+1(U) = γt and σθ

m+1(V ) = κ. Here γ(̸= 0) and κ are constants.

(d) (PIV)m introduced by [5] is equivalent to the following system (see [13], [20]):

η−1 d

dt

(
Uθ

V θ

)
≡ 2

 u1(1− U + C)θ − U − V θ − γtθm

−v1(1− U + C)θ +
2UV + V 2θ

2(1− U + C)
+ V + γtv1θ

m+1

 (9)

with σθ
m+1(U) = −α1 and σθ

m+1(V ) = −σθ
m+1(W )−

(
((σθ

m(V )−α1)
2 −α2

2)/(2(σ
θ
m(U)−

σθ
m(C)))

)
.

Here W is defined by W ≡ ((2UV + θV 2)/2(1− U +C)) + γtv1θ
m+1 and γ(̸= 0), α1, α2

are constants. In parallel with (i), we can rewrite (8) and (9) as follows.

η−1 d

dt

(
Uθ

V θ

)
≡
(
f1
f2

)
× (1−U+C) +

(
0

H(U, V )/(1−U+C)

)
+

(
0−1

1 0

)(
∂H/∂U

∂H/∂V

)
,

(10)

where H, f1 and f2 are defined by the table below. Note that the conditions of σθ
m+1(U)

and σθ
m+1(V ) are given in (8) and (9) respectively.

(PII)m (PIV)m
H(U, V ) := 2UV + V 2θ H(U, V ) := 2UV + V 2θ

f1 := 2u1θ f1 := 2u1θ − 2γtθm(1 + (u1 − c1)θ)

f2 := −2v1θ f2 := −2v1θ + 2γtv1θ
m+1

Moreover, by replacing 1 − U + C in (10) with 1 − U , we can transform (10) into the

form of (4).

Summing up, each (PJ)m (J=I, II, IV, 34) is reduced to the following form

η−1 d

dt

(
Uθ

V θ

)
≡
(
f1
f2

)
× (1− U) +

(
0

H(U, V )/1− U

)
+

(
0−1

1 0

)(
∂H/∂U

∂H/∂V

)
(11)

with the conditions below.

(PI)m (P34)m

H(U, V ) := 1 + 2C − V 2θ H(U, V ) := 1 + 2C − V 2θ

f1 := 0 f1 := 0

f2 := −(1 + 2u1θ) + 2tθm+1 f2 := − (1 + 2(u1 + c0)θ) (1− 2γtθm)

σθ
m+1(U) = 0 σθ

m+1(U) = −σθ
m+1(W ) + c0σ

θ
m(U) +

(σθ
m(V ))2 − κ2

2σθ
m(U)

σθ
m+1(V ) = 0 σθ

m+1(V ) = 0 Here W is defined by (7).
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(PII)m (PIV)m

H(U, V ) := 2UV + 2CV + V 2θ H(U, V ) := 2UV + 2CV + V 2θ

f1 := 2(u1 + c1)θ f1 := 2(u1 + c1)θ − 2γtθm(1 + u1θ)

f2 := −2v1θ f2 := −2v1θ + 2γtv1θ
m+1

σθ
m+1(U) = γt σθ

m+1(U) = −α1

σθ
m+1(V ) = κ σθ

m+1(V ) = −σθ
m+1(W )− (σθ

m(V )− α1)
2 − α2

2

2σθ
m(U)

.

Here W ≡ 2(U + C)V + θV 2

2(1− U)
+ γtv1θ

m+1.

3. A unified family of PJ-hierarchies.

We extend the results presented by [2] and [20] to our unified family of PJ-

hierarchies. Let uk and vk be unknown functions of the variable t, and let ck be a

constant. Such as (PJ)m (J=I, II, IV, 34), we consider a system with 2m unknown

functions uk, vk (1 ≤ k ≤ m). Define U , V and C by

U(θ) :=
∞∑
k=1

ukθ
k, V (θ) :=

∞∑
k=1

vkθ
k and C(θ) :=

∞∑
k=1

ckθ
k, (12)

respectively. Here θ denotes an independent variable and um+1, vm+1 are arbitrary poly-

nomials of the variables (u1, . . . , um, v1, . . . , vm) with coefficients in holomorphic func-

tions of t, i.e., um+1, vm+1 ∈ O(t)[u1, . . . , um, v1, . . . , vm]. Note that um+1 and vm+1

are independent of η, and cm+1 = 0. By A ≡ B we mean that A − B is zero modulo

θm+2 and consider

η−1 d

dt

(
Uθ

V θ

)
≡
(
f1
f2

)
× (1− U) +

(
0−1

1 0

)(
∂H/∂U

∂H/∂V

)
+

(
0

H(U, V )/(1− U)

)
, (13)

where H(U, V ) is a polynomial in U and V of degree at most 2 with arbitrary complex

constants pi of the following form

H(U, V ) := (p1U
2 + p2V

2)θ + p3UV + p4CU + p5CV + p6U + p7V + p8C + p9 (14)

and f1 and f2 are defined by

f1 := x1, 0+x1, 1θ+x1,mθ
m+x1,m+1θ

m+1, f2 := x2, 0+x2, 1θ+x2,mθ
m+x2,m+1θ

m+1.

(15)

Here the coefficients x1, i and x2, i of f1 and f2 are determined later in Section 4. As its

consequence, the explicit forms of f1 and f2 become the following.

f1 = p7 + (αu1 + p5c1) θ + y1θ
m + (y1u1 + y2)θ

m+1,

f2 = −β − (2βu1 + αv1 + εc1) θ + z1θ
m + (2z1u1 − y1v1 + z2)θ

m+1,
(16)

where yi, zi are arbitrary holomorphic functions of t and α, β, ε are given by

α := p3 + p7, β := p6 + p9 and ε := p4 + p8, (17)
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respectively.

Remark that (13) is a unified family of (PJ)m (J=I, II, IV, 34). Indeed,

• if p2 = −1, p8 = 2, p9 = 1, z2 = 2t and the others are zero, we have (PI)m.

• if p2 = 1, p3 = p5 = 2 and the others are zero, we have (PII)m.

• if p2 = 1, p3 = p5 = 2, y1 = −2γt (γ ̸= 0) and the others are zero, we have (PIV)m.

• if p2 = −1, p8 = 2, p9 = 1, z1 = 2γt, z2 = 4γtc0 (γ ̸= 0) and the others are zero,

we have (P34)m.

For the cases of (PI)m and (P34)m, the constants ck (k ≥ 1) in C(θ) of (12) is replaced

with ck−1 (see (1)). Note that α ̸= 0 when J=II, IV, while α = 0 and β ̸= 0 when

J=I, 34. Roughly speaking, the main result of this paper is the following.

Main result. We have general formal solutions (called instanton-type solutions) with

2m free parameters for (13) in the cases I, II:

Case I: α = p3 + p7 ̸= 0, p2 ̸= 0.

Case II: α = p3 + p7 = 0, β = p6 + p9 ̸= 0, p2 ̸= 0.

See Theorem 4.2 in Section 4 for more details. In the rest of this article, we prove

the main result by the method given in [2], [20].

4. A construction of instanton-type solutions by multiple-scale analysis.

The purpose of Section 4 is to obtain a system of partial differential equations

associated with (13) in order to apply the multiple-scale method to (13). In the procedure

of getting the system, the explicit forms of f1 and f2 will be also determined.

4.1. The forms of f1 and f2.

Firstly, we set f1 and f2 by (15) so that (13) becomes (PJ)m (J=I, II, IV, 34) as a

special case. Substitute (15) for (13). Then the constant terms (with respect to θ) and

the terms which contain θ1 in the right-hand side of (13) become(
x1, 0 + (x1, 1 − x1, 0u1)θ − p7 − (p3u1 + p5c1)θ

x2, 0 + (x2, 1 − x2, 0u1)θ + p9 + ((p6 + p9)u1 + p7v1 + p8c1) θ + p6 + (p3v1 + p4c1)θ

)
.

Note that the coefficients of θ0 and θ1 in the left-hand side of (13) are zero. Hence we

have

x1, 0 = p7, x1, 1 = αu1 + p5c1, x2, 0 = −β, x2, 1 = − (2βu1 + αv1 + εc1) ,

where α, β and ε are defined by (17) respectively.

Next let us consider x1, j , x2, j (j = m, m + 1) of (15). Noticing that introduction

of x1, j and x2, j (j = m, m + 1) to f1 affects the terms of θm+1 of (13), we adjust x1, j
and x2, j so that (13) becomes equivalent to (PJ)m (J=II, IV) as follows. The coefficients

of θm+1 in the second and third terms of the right-hand side of (13) have the following

relations between u1, v1, x1,m, x2,m:
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c1,mθ
m

1− U
≡ c1,m(1 + u1θ)θ

m,
c1,mθ

m(p7V + p8C)

1− U
≡ c1,m(p7v1 + p8c1)θ

m+1

for a constant c1,m. Thus we set f1 and f2 by

f1 = p7 + (αu1 + p5c1)θ + y1θ
m + (au1 + bv1 + y2)θ

m+1,

f2 = −β − (2βu1 + αv1 + εc1)θ + z1θ
m + (du1 + ev1 + z2)θ

m+1.
(18)

Here a, b, d, e, yi, zi (i = 1, 2) are arbitrary holomorphic functions of t and they are

independent of unknown functions uj , vj . Remark that a, b, d and e will be determined

later by assuming further conditions (32) below.

4.2. Generating functions of 0-parameter solutions for (13).

The first step of the construction of instanton-type solutions is to consider a lin-

earized equation of (13) along a special solution (û0, v̂0). The solution (û0, v̂0) takes the

following form

û0(θ) :=
∞∑
i=1

ûi, 0(t)θ
i and v̂0(θ) :=

∞∑
i=1

v̂i, 0(t)θ
i. (19)

Here û0, v̂0 are generating functions of the leading term ûi, 0 and v̂i, 0 of a formal solution

(called a “0-parameter solution”) in η−1. Since (û0, v̂0) does not contain η, we see that

(û0, v̂0) satisfies(
f̂1
f̂2

)
× (1− û0) +

(
0−1

1 0

)(
∂H/∂U(û0, v̂0)

∂H/∂V (û0, v̂0)

)
+

(
0

H(û0, v̂0)/(1− û0)

)
≡
(
0

0

)
. (20)

Here f̂1 and f̂2 are defined by

f̂1 := p7 + (αû1, 0 + p5c1) θ + y1θ
m + (aû1, 0 + bv̂1, 0 + y2)θ

m+1,

f̂2 := −β − (2βû1, 0 + αv̂1, 0 + εc1) θ + z1θ
m + (dû1, 0 + ev̂1, 0 + z2)θ

m+1,

where α, β and ε are given by (17).

Now we explain the existence of (û0, v̂0). By (20), (û0, v̂0) satisfies

2p2v̂0θ ≡ f̂1(1− û0)− (p3û0 + p5C + p7), (21)

f̂2(1− û0) +
H(û0, v̂0)

1− û0
+
∂H

∂U
(û0, v̂0) ≡ 0. (22)

In what follows we always assume p2 ̸= 0. Using (21), we eliminate v̂0 in (22) and obtain

(1− û0)
2L(θ) ≡ K(θ),

where

L(θ) := (f̂1 + p3)
2 + 4p2f̂2θ − 4p1p2θ

2,

K(θ) := (α+ p5C)
2 − 4p2(εC + β)θ − 4p1p2θ

2.
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Here L(θ) and K(θ) have expansions with respect to θ in the forms

L(θ) = α2 + (2α(αû1, 0 + p5c1)− 4p2β) θ + · · · ,
K(θ) = α2 + (2αp5c1 − 4p2β) θ + · · · .

Therefore, in both cases of α ̸= 0 and α = 0, β ̸= 0, we have

û0 ≡ 1−

√
K(θ)

L(θ)
, v̂0θ ≡

1

2p2

(
−α− p5C +

(
f̂1 + p3

)√K(θ)

L(θ)

)
. (23)

Remark that the right-hand sides of (23) are expressed by û1, 0 and v̂1, 0. Hence ûj, 0,

v̂j, 0 (j ≥ 2) are written only by û1, 0 and v̂1, 0. Let ûm+1 (resp. v̂m+1) denote um+1

(resp. vm+1) with uj and vj being replaced by ûj, 0 and v̂j, 0. Note that um+1 and vm+1

are independent of η. The conditions that the coefficients of θm+1 in û0 and v̂0 of (23)

are equal to ûm+1 and v̂m+1, that is σθ
m+1(û0) = ûm+1 and σθ

m+1(v̂0) = v̂m+1, become

the equations for unknown functions û1, 0, v̂1, 0. Hence we determine û1, 0 and v̂1, 0 by

the conditions.

Moreover, in the case of α = β = 0, if leading terms ((p5c1)
2 − 4p2εc1 − 4p1p2)θ

2 of

L(θ) and K(θ) do not vanish, then û0 and v̂0 are also determined.

4.3. A linearized equation of (13) along (û0, v̂0).

We look for a solution to (13) of the form

(U, V ) =
(
û0 + (1− û0)u, v̂0 + (1− û0)v

)
(24)

with

u =

∞∑
i=1

∞∑
j=1

ui, jℓ(t) θ
i ηjℓ, v =

∞∑
i=1

∞∑
j=1

vi, jℓ(t) θ
i ηjℓ. (25)

Here ℓ = −1/k with an integer k ≥ 2 (see Lemma 2.3 in [19]), ui, jℓ and vi, jℓ (i, j ≥ 1)

denote new unknown functions of t, and (û0, v̂0) is given by (19) (also (23)).

Under the conditions σθ
m+1((1− û0)u) = σθ

m+1((1− û0)v) = 0, let us construct u, v.

Put (24) into (13). By an argument similar to that employed in deriving (18) in [20], we

obtain a system for u, v:

η−1

(
−
(
ϱ

δ

)
+ ϱ

(
u

v

)
+
d

dt

(
u

v

))
θ

≡ −u

(
f̂1
f̂2

)
+

(
ασθ

1(u)

−(2βσθ
1(u) + ασθ

1(v))

)
(1− u)θ

+

(
aσθ

1(u) + bσθ
1(v)

dσθ
1(u) + eσθ

1(v)

)
θm+1 +

 0
uH(û0, v̂0)

(1− û0)2(1− u)
+

I

(1− u)(1− û0)


+

(
−∂V ∂UH(û0, v̂0)−∂V ∂VH(û0, v̂0)

∂U∂UH(û0, v̂0) ∂V ∂UH(û0, v̂0)

)(
u

v

)
(26)
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with ∂V = ∂/∂V and ∂U = ∂/∂U . Here ϱ and δ are defined by

ϱ :=
d

dt
(log(1− û0)) and δ :=

d/dt(−v̂0)
1− û0

, (27)

respectively. The equation (20) implies

∂VH(û0, v̂0)v + ∂UH(û0, v̂0)u

(1− û0)
+
uH(û0, v̂0)

(1− û0)2
≡ f̂1v − f̂2u.

Therefore the fourth term in the right-hand side of (26) is equal to(
0

f̂1v − f̂2u

)
+

u

1− u

(
0

f̂1v − f̂2u

)
+

1

1− u

(
0

(1/2)∂V ∂VH(û0, v̂0)v
2 + (1/2)∂U∂UH(û0, v̂0)u

2 + ∂V ∂UH(û0, v̂0)uv

)
.

Putting the above equation into the right-hand side of (26) and taking the first-order

terms with respect to the variables u and v, we define the map Q : (Θθ)2 −→ Θ2 by

Q

(
x θ

y θ

)
=

−
(
∂2H/∂V ∂U(û0, v̂0) + f̂1

)
−∂2H/∂V 2(û0, v̂0)(

∂2H/∂U2(û0, v̂0)− 2f̂2

) (
∂2H/∂V ∂U(û0, v̂0) + f̂1

)(x
y

)

+

(
ασθ

1(x)

−2βσθ
1(x)− ασθ

1(y)

)
θ +

(
aσθ

1(x) + bσθ
1(y)

dσθ
1(x) + eσθ

1(y)

)
θm+1 (28)

for any x, y ∈ Θ. Here Θ denotes the set of formal power series of θ without constant

terms. By the definition of Q, (26) is transformed into

η−1

(
−
(
ϱ

δ

)
+ ϱ

(
u

v

)
+
d

dt

(
u

v

))
θ

≡ Q

(
uθ

vθ

)
+

(
−ασθ

1(u)u

2βσθ
1(u)u+ ασθ

1(v)u

)
θ

+
1

2(1− u)

 0

(−v, u)Q
(
uθ

vθ

)
+ (ασθ

1(u)v + 2βσθ
1(u)u+ ασθ

1(v)u)θ

 . (29)

Moreover, multiplying both sides of (29) by (1−u), we obtain the system for u, v. Before

describing the system, we shall consider the definition of map Q. By (28), we have

Q

(
x θ

y θ

)
≡

−
(
∂2H/∂V ∂U(û0, v̂0) + f̃1

)
−∂2H/∂V 2(û0, v̂0)(

∂2H/∂U2(û0, v̂0)− 2f̃2

) (
∂2H/∂V ∂U(û0, v̂0) + f̃1

)(x
y

)

+

(
ασθ

1(x)

−2βσθ
1(x)− ασθ

1(y)

)
θ +

(
a− y1 b

d− 2z1 e+ y1

)(
σθ
1(x)

σθ
1(y)

)
θm+1, (30)

where
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f̃1 := f̂1 − y1θ
m − (aû1, 0 + bv̂1, 0 + y2)θ

m+1 = p7 + (αû1, 0 + p5c1) θ,

f̃2 := f̂2 − z1θ
m − (dû1, 0 + ev̂1, 0 + z2)θ

m+1 = −β − (2βû1, 0 + αv̂1, 0 + εc1) θ.
(31)

Here, in order that the key lemma (Lemma 4.1 below) for the construction of instanton-

type solutions may hold, we assume that the coefficients of θm+1 in the third term of the

right-hand side of (30) vanish, that is,

a = y1, b = 0, d = 2z1, e = −y1. (32)

Remark that, substituting (32) for (18), we see that f1 and f2 are given explicitly by

(16).

We now summarize the results obtained so far. Let Q : (Θθ)2 −→ Θ2 denote the

map defined by

Q

(
x θ

y θ

)
:=

−
(
∂2H/∂V ∂U(û0, v̂0) + f̃1

)
−∂2H/∂V 2(û0, v̂0)(

∂2H/∂U2(û0, v̂0)− 2f̃2

) (
∂2H/∂V ∂U(û0, v̂0) + f̃1

)(x
y

)

+

(
ασθ

1(x)

−2βσθ
1(x)− ασθ

1(y)

)
θ

for any x, y ∈ Θ. Here f̃j (j = 1, 2) are defined by (31). Then, by (24), (13) is

transformed into the following system of non-linear equations for (u, v):(
η−1 d

dt
−Q

)(
uθ

vθ

)
≡
((

−ασθ
1(u)uθ

S(u, v)

)
+ η−1

(
ϱ

δ

)
θ − uQ

(
uθ

vθ

))
−
(
u2
(
−ασθ

1(u)

2βσθ
1(u) + ασθ

1(v)

)
+ η−1

(
2ϱu

δu+ ϱv

))
θ

+ η−1u

(
ϱ+

d

dt

)(
u

v

)
θ, (33)

where ϱ and δ are defined by (27) respectively and S(u, v) has the form

S(u, v) :=
1

2
(−v, u)Q

(
uθ

vθ

)
+

1

2
ασθ

1(u)vθ +
3

2

(
ασθ

1(v) + 2βσθ
1(u)

)
uθ. (34)

4.4. Some essential properties associated with the map Q.

Similar to the results of [2] and [20], we construct a solution (u, v) for (33) so

that (u, v) is expressed by a linear combination of eigenvector A(λ)’s of Q in the sense

of Q(A(λ)θ) = λA(λ)θ. As is shown below, the form of A(λ)’s depends on relations

between coefficient pj ’s in (14).

Let x, y ∈ Θ. The equation Q

(
xθ

yθ

)
= λ

(
xθ

yθ

)
is equivalent to

{(
α 0

2β α

)
+Mλθ

}(
x

y

)
=

(
α 0

2β α

)(
σθ
1(x)

σθ
1(y)

)
θ, (35)
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where

Mλ =

(
λ+ σθ

1(f̂1) 2p2
2(p1 − σθ

1(f̂2))−(λ− σθ
1(f̂1))

)
.

We have

det

{(
α 0

2β α

)
+Mλθ

}
= α2 + 2

(
ασθ

1(f̂1)− 2p2β
)
θ

−
{
λ2 − σθ

1(f̂1)
2 + 4p2(p1 − σθ

1(f̂2))
}
θ2. (36)

Therefore we need to consider separately the cases where α ̸= 0 or α = 0.

4.4.1. Case I : α = p3 + p7 ̸= 0, p2 ̸= 0.

When α ̸= 0, the structure of system is almost the same as that of (PII)m except for

the existence of β. By calculating in a similar way to [20], we find that the eigenvector

A(λ) corresponding to an eigenvalue λ of Q has the form

A(λ) =

(
a(λ)

ρ(λ)a(λ)

)
with a(λ) :=

θ

1− θg(λ)
.

Here ρ(λ) and g(λ) are given by

ρ(λ) := − 1

2p2

(
λ+

2p2β

α
± αG(λ)

)
, g(λ) :=

2p2β − ασθ
1(f̂1)

α2
±G(λ), (37)

where G(λ) is defined by

G(λ) :=

√
α2λ2 + 4p2

(
p2β2 − αβσθ

1(f̂1)− α2
(
σθ
1(f̂2)− p1

))
α2

and both upper or both lower signs should be chosen in the double signs.

Now we explain how to determine λ. By the assumption σθ
m+1((1− û0)u) = 0, the

coefficient of θm+1 in (1− û0)A(λ) must be zero. Thus the following equation holds.

g(λ)m −
m∑

k=1

ûk, 0g(λ)
m−k = 0, (38)

where ûk, 0 is the coefficient of θk in û0 given by (19). Note that g(λ) must satisfy

α2g(λ)2 + 2
(
ασθ

1(f̂1)− 2p2β
)
g(λ)− λ2 + σθ

1(f̂1)
2 + 4p2(σ

θ
1(f̂2)− p1) = 0. (39)

Noticing (38) and (39), we define Λ(λ, t) by the resultant of the following two polynomials

of X:

Xm −
m∑

k=1

ûk, 0X
m−k = 0,
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α2X2 + 2
(
ασθ

1(f̂1)− 2p2β
)
X − λ2 + σθ

1(f̂1)
2 + 4p2(σ

θ
1(f̂2)− p1) = 0.

We determine λ so that Λ(λ, t) equals zero.

Finally, we remark the important relations which will be used several times in the

following discussions. (
a(λ)

0

)
=
p2
λ

(
ρ(−λ)A(λ)− ρ(λ)A(−λ)

)
,(

0

a(λ)

)
= −p2

λ

(
A(λ)−A(−λ)

) (40)

and

ρ(λ)− ρ(−λ) = − λ

p2
. (41)

4.4.2. Case II : α = p3 + p7 = 0, β = p6 + p9 ̸= 0, p2 ̸= 0.

When α = 0, we assume β ̸= 0 so that the second term in the right-hand side of

(36) does not vanish. By solving (35), we have

x =
θ

1− g(λ)θ
σθ
1(x), y = ρ(λ)x.

Here g(λ) and ρ(λ) are defined by

g(λ) :=
λ2 − (σθ

1(f̂1))
2 + 4p2

(
p1 − σθ

1(f̂2)
)

−4p2β
and ρ(λ) := −λ+ σθ

1(f̂1)

2p2
,

respectively. The eigenvalue λ of Q is a root of the following algebraic equation

Λ(λ, t) := g(λ)m −
m∑

k=1

ûk, 0 g(λ)
m−k = 0,

where ûk, 0 denotes the coefficient of θk in û0 of (19). Then the eigenvector A(λ) corre-

sponding to an eigenvalue λ has the form

A(λ) =

(
a(λ)

ρ(λ)a(λ)

)
with a(λ) :=

θ

1− θg(λ)
=

∞∑
j=0

g(νk)
jθj+1.

Remark that (40) and (41) also hold in the case II.

The rest of argument in Section 4.4 deals with case I and case II simultaneously.

In the both cases, Λ(λ, t) is an even function of λ. Let ν±1(t), . . . , ν±m(t) be the roots

of the algebraic equation Λ(λ, t) = 0 of λ with convention νk = −ν−k (1 ≤ k ≤ m).

Throughout this paper we always suppose

(S1) The roots νi(t)’s (1 ≤ |i| ≤ m) are mutually distinct for each t in Ω, i.e. t is neither

a turning point of the first kind nor a turning point of the second kind.
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(S2) The function p1ν1(t) + · · · + pmνm(t) does not vanish identically on Ω for any

(p1, . . . , pm) ∈ Zm \ {0}.

The multiplicative relations in the following Lemma 4.1 are common to (PJ)m (J=I, II,

IV, 34) (see [2], [20] and [21]). We claim that they also hold for our system (13) and

Lemma 4.1 is a key of success in the construction of instanton-type solutions. For the

proof, we refer the reader to Appendix A in [2].

Lemma 4.1. 1. For any k ̸= j (1 ≤ k, j ≤ m), we have

a(νk)a(νj) =
1

g(νk)− g(νj)
(a(νk)− a(νj)) . (42)

Furthermore, for any integers 1 ≤ i1 < i2 < · · · < ik ≤ m, we get

a(νi1) · · · a(νik) =
k∑

l=1

a(νil)

(g(νil)− g(νi1)) · · · (g(νil)− g(νil−1
))(g(νil)− g(νil+1

)) · · · (g(νil)− g(νik))
.

Note that these equations are strict (not ≡).

2. For any 1 ≤ k ≤ m, we have

a(νk)
2 ≡

m∑
j=1

hk, ja(νj), (43)

where hk, j are defined by

hk, j =

∏
1≤l≤m,
l ̸=k, j

(g(νk)− g(νl))

∏
1≤l≤m,

l ̸=j

(g(νj)− g(νl))
(j ̸= k), hk, k =

m∑
l=1,
l ̸=k

1

g(νk)− g(νl)
. (44)

3. We have

∂a(νk)

∂t
≡ g(νk)

′
m∑
j=1

hk, ja(νj),

where g(νk)
′
denotes the derivative of g(νk(t)) with respect to t.

4.5. Main theorem.

We denote by Ω an open subset in Ct satisfying (S1) and (S2) in the previous

subsection and by M(Ω)[[θ]] the set of formal power series in θ with coefficients in multi-

valued holomorphic functions with a finite number of branching points and poles on Ω.

In what follows, we consider the case of ℓ = −1/2 in (25). Let τ := (τ1, . . . , τm) be

m-independent variables. Then we define the rings
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Aℓ(Ω) := (M(Ω)[[θ]])

[[
ηℓeτ1 , . . . , ηℓeτm , ηℓe−τ1 , . . . , ηℓe−τm

]]
.

We also define Âℓ(Ω) by the subset in Aℓ(Ω) consisting of a formal power series of order

less than or equal to ℓ with respect to η. We construct a solution in Aℓ(Ω) for the system

below. The operator P is defined by

P := ν1
∂

∂τ1
+ · · ·+ νm

∂

∂τm
−Q.

Then we obtain a partial differential equation associated with (33).

P

(
uθ

vθ

)
≡
((

−ασθ
1(u)uθ

S(u, v)

)
+ η−1

(
ϱ

δ

)
θ + uP

(
uθ

vθ

))
−
(
u2
(
−ασθ

1(u)

2βσθ
1(u) + ασθ

1(v)

)
+ η−1

((
2ϱu

δu+ ϱv

)
+
∂

∂t

(
u

v

)))
θ

+ η−1u

(
ϱ+

∂

∂t

)(
u

v

)
θ. (45)

Here S(u, v), ϱ and δ have been given by (34) and (27).

By solving (45), we have the main result. Let us define the morphism ι by

ι(ψ) = ψ

(
η

∫ t

ν1(s)ds, . . . , η

∫ t

νm(s)ds, t, θ, η

)
for ψ(τ1, . . . , τm, t, θ, η) ∈ Âℓ(Ω). The main theorem of this paper is the following.

Theorem 4.2. Let Ω be an open subset satisfying (S1) and (S2). Then we have

instanton-type solutions for (13) with 2m free parameters (β−m, . . . , βm) ∈ C2m[[η−1]]

in the case I and case II respectively :

(U, V ) = (û0, v̂0) + (1− û0)(ι(u), ι(v)),

where (u, v) is a solution in Â2
ℓ(Ω) for (45) of the form

(
u

v

)
=

∑
1≤|k|≤m

∞∑
j=1

 ∑
ℓ≥0, p∈Zm, 2ℓ+|p|=j

fk,p,ℓ(t)e
p·τ

 η−j/2A(νk).

Here νk and A(νk) are defined by the eigenvalue and the corresponding eigenvector of Q

described in Section 4.4.

5. Proof for Theorem 4.2.

We apply the method of [2] and [20] by multiple-scale analysis for our system. As

is described in [19], we derive non-secularity conditions (Ek) (k = 1, 2, · · · ) and by

solving non-secularity conditions (Ek) we construct a solution with sufficiently many free

parameters. Note that (E1) is a system of non-linear equations and (Ek) (k ≥ 2) is a
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system of linear equations. If (E1) is solved and has a solution with 2m free parameters

in C2m, then we can construct a solution for (45) with 2m free parameters in C2m[[η−1]].

Therefore the proof of Theorem 4.2 is completed by showing the solvability of the first

member (E1) of non-secularity conditions.

Assume that an element (u, v) in Â2
ℓ(Ω) has the expansion(

u

v

)
=

∑
1≤|k|≤m

fk(τ, t; η)A(νk) with fk(τ, t; η) :=

∞∑
j=1

fk, jℓ(τ, t)η
jℓ. (46)

Here A(νk)’s contain θ and fk’s are independent of θ.

Substituting (46) for (45) and looking at the coefficient of ηℓ in both sides, we obtain

P

 ∑
1≤|k|≤m

fk, ℓ(τ, t)A(νk)θ

 =

(
0

0

)
. (47)

The following lemma is proved as KerP is equivalent to the subspace generated by the

vectors ηℓeτiA(νi) over M(Ω)[[η−1]].

Lemma 5.1. We have a solution to (47) of the form

fk, ℓ = ω
(1)
k eτk (1 ≤ |k| ≤ m),

where ω
(1)
k (t)’s (1 ≤ |k| ≤ m) are arbitrary functions of t.

The ω
(1)
k ’s are determined by the first member (E1) of the non-secularity condi-

tions and the forms of (E1) corresponding to the cases I, II are given in the subsequent

subsections.

5.1. Case I : α = p3 + p7 ̸= 0, p2 ̸= 0.

Theorem 5.2. The first member (E1) of the non-secularity conditions is the fol-

lowing system of non-linear equations with 2m unknown functions ωk (1 ≤ |k| ≤ m) :

dωk

dt
=

1

νk

 m∑
j=1

ψ(k, j)ωjω−j + Jk − νkRk

ωk, (48)

dω−k

dt
= − 1

νk

 m∑
j=1

ψ(−k, j)ωjω−j + J−k + νkR−k

ω−k (49)

for 1 ≤ k ≤ m. Here ψ(k, j)’s are rational functions of the variables νi’s, Jk and Rk are

multi-valued functions of finite determination in Ω. They satisfy the conditions :

ψ(k, j) = ψ(−k, j) (1 ≤ j ≤ m), Jk = J−k, Rk = R−k. (∗)

Remark that ψ(k, j), Jk and Rk are given in Lemma 6.10. The proof will be done

in Section 6 as it is lengthy. Since the equations (48) and (49) imply
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d(ωk(t)ω−k(t))

dt
= −2Rkωk(t)ω−k(t),

(E1) is solved globally and the leading term of t(u, v) is given as follows.

Proposition 5.3. The concrete form of the leading term of t(u, v) with respect to

η is written as

η−1/2
m∑

|k|=1

ω
(1)
k eτkA(νk).

Here ω
(1)
k , ω

(1)
−k (1 ≤ k ≤ m) are multi-valued holomorphic functions on Ω in the form

ω
(1)
k = β

(1)
k exp

∫ t 1

νk

 m∑
j=1

ψ(k, j)β
(1)
j β

(1)
−j exp

(
−2

∫ t

Rjdt

)
+ Jk − νkRk

 dt

 ,

ω
(1)
−k = β

(1)
−k exp

∫ t

− 1

νk

 m∑
j=1

ψ(k, j)β
(1)
j β

(1)
−j exp

(
−2

∫ t

Rjdt

)
+ Jk + νkRk

 dt


for 1 ≤ k ≤ m with 2m free parameters (β

(1)
−m, . . . , β

(1)
m ) ∈ C2m.

In what follows, for simplicity, we use the notation below.

ρk, j := ρ(νk) + ρ(νj), (50)

where ρ(νk)’s have been defined by (37). We also have the following.

Lemma 5.4. The concrete form of the sub-leading term of t(u, v) with respect to η

is written as

η−1
m∑

|k|=1

fk,−1A(νk),

where

fk,−1 :=− p2
∑

1≤|j|≤m,
k+j ̸=0

(
2νk + νj

νkνj(νk + νj)
(αρk, j + 2β) +

α

p2νj

)
ω
(1)
k ω

(1)
j eτk+τj

+ p2
∑

1≤|j|≤m,
k+j ̸=0

1

νk(νk + νj)
(αρ−k,−j + 2β)ω

(1)
−kω

(1)
−j e

−τk−τj

− p2
ν2k

 m∑
j=1

ν2j
p2
hj, kω

(1)
j ω

(1)
−j −

(
3αρk,−k + 6β +

ανk
p2

)
ω
(1)
k ω

(1)
−k


− p2
ν2k

(γkρ(ν−k)− δk) .
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Here hj, k’s are defined by (44) with convention hj, k := h|j|, |k| and γk, δk (1 ≤ k ≤ m)

are determined by

ϱ ≡
m∑

k=1

γk(t)a(νk) and δ ≡
m∑

k=1

δk(t)a(νk) (51)

with ϱ, δ of (27) and γ−k := γk, and δ−k := δk.

Remark that the explicit forms of γk and δk can be calculated by the same way as

Appendix B in [20]. For the proof of Lemma 5.4, we refer the reader to Section 6.

5.2. Case II : α = p3 + p7 = 0, β = p6 + p9 ̸= 0, p2 ̸= 0.

Theorem 5.5. The first member (E1) of the non-secularity conditions is the fol-

lowing system of non-linear equations with 2m unknown functions ωk (1 ≤ |k| ≤ m) :

dωk

dt
=

 1

νk

 m∑
j=1

φ(k, j)ωjω−j +Φk

− hk

ωk,

dω−k

dt
=

− 1

νk

 m∑
j=1

φ(−k, j)ωjω−j +Φ−k

− h−k

ω−k

for 1 ≤ k ≤ m. Here φ(k, j)’s are rational functions of the variables νi’s, Φk and hk are

multi-valued functions of finite determination in Ω. They satisfy the conditions :

φ(k, j) = φ(−k, j) (1 ≤ j ≤ m), Φk = Φ−k, hk = h−k. (∗)

The concrete forms of φ(k, j)’s, Φk and hk can be calculated as in Case I. See

Section 7. A key of the global solvability of (E1) is the following relation:

d(ωk(t)ω−k(t))

dt
= −2hkωk(t)ω−k(t). (52)

By using (52), we have the explicit form of the leading term of t(u, v).

Proposition 5.6. The concrete form of the leading term of t(u, v) with respect to

η is written as

η−1/2
m∑

|k|=1

ω
(1)
k eτkA(νk).

Here ω
(1)
k , ω

(1)
−k (1 ≤ k ≤ m) are multi-valued holomorphic functions on Ω in the form
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ω
(1)
k = β

(1)
k exp

∫ t

 1

νk

m∑
j=1

φ(k, j)β
(1)
j β

(1)
−j exp

(
−2

∫ t

hjdt

)
+

1

νk
Φk − hk

 dt

 ,

ω
(1)
−k = β

(1)
−k exp

∫ t

−

 1

νk

m∑
j=1

φ(k, j)β
(1)
j β

(1)
−j exp

(
−2

∫ t

hjdt

)
+

1

νk
Φk + hk

 dt


with 2m free parameters (β

(1)
−m, . . . , β

(1)
m ) ∈ C2m, and φ(k, j), Φk, hk are given in The-

orem 5.5.

We also have the following.

Lemma 5.7. The explicit form of the sub-leading term of t(u, v) with respect to η

is written as

η−1
m∑

|k|=1

fk,−1A(νk),

where

fk,−1 :=
∑

1≤|j|≤m,
k+j ̸=0

−2p2β

νkνj(νk + νj)

(
(2νk + νj)ω

(1)
k ω

(1)
j eτk+τj − νjω

(1)
−kω

(1)
−j e

−τk−τj
)

− 1

ν2k

 m∑
j=1

ν2j hj, kω
(1)
j ω

(1)
−j − 6p2βω

(1)
k ω

(1)
−k

− p2
ν2k

(γkρ(ν−k)− δk) .

Here hj, k’s are defined by (44) with convention hj, k := h|j|, |k| and γk, δk (1 ≤ k ≤ m)

are determined by the same forms as (51) with ϱ, δ of (27) and γ−k := γk, and δ−k := δk.

For the method to obtain the explicit forms of γk and δk, we refer the reader to the

proof for Appendix B in [20].

6. Proof of Theorem 5.2 in Case I.

Before we enter the proof of Theorem 5.2 in Case I, we prepare some lemmas. Thanks

to (42) and (43), we can apply similar arguments as Lemma 3.4 in [20] to our case and

we have Lemma 6.1.

Lemma 6.1. We have(
−ασθ

1(u)u θ

S(u, v)

)
≡

∑
1≤|k|≤m

−p2
νk

Λk(t)A(νk)θ,

where Λk(t) is expressed by
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Λk(t) :=
∑

1≤|j|≤m,
k+j ̸=0

2νk + νj
νk + νj

((αρk, j + 2β)fkfj + (ρ−k,−j + 2β)f−kf−j)

+
α

p2

∑
1≤|j|≤m,
k+j≠0

νkfkfj −
1

p2

m∑
j=1

ν2j hj, kfjf−j +

(
3αρk,−k + 6β +

ανk
p2

)
fkf−k.

Here ρk, j is defined by (50).

A straightforward computation as Appendix B in [20] shows that ρ and δ of (27)

can be written in (51) with multi-valued functions γk and δk of t. The following lemma

follows from (51).

Lemma 6.2. We obtain(
ϱ

δ

)
≡

∑
1≤|k|≤m

p2
νk

(γkρ(ν−k)− δk)A(νk),

where γk, δk (1 ≤ k ≤ m) are defined by (51) and γ−k, δ−k are given by

γ−k := γk, δ−k := δk (1 ≤ k ≤ m).

Proposition 6.3 is proved by Lemmas 6.1 and 6.2.

Proposition 6.3. We have(
−ασθ

1(u)uθ

S(u, v)

)
+ η−1

(
ϱ

δ

)
θ

≡
∑

1≤|k|≤m

−p2
νk

(
Λk(t)− η−1(γkρ(ν−k)− δk)

)
A(νk)θ. (53)

Using Lemma 5.1 and Proposition 6.3, we can find the form of fk, 2ℓ.

Lemma 6.4. The fk, 2ℓ satisfies

P

 ∑
1≤|k|≤m

fk, 2ℓA(νk)θ

 ≡
∑

1≤|k|≤m

−p2
νk

Λk, 2ℓ(t)A(νk)θ. (54)

Here Λk, 2ℓ is defined by
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Λk, 2ℓ(t) :=
∑

1≤|j|≤m,
k+j ̸=0

(
2νk + νj
νk + νj

(αρk, j + 2β) +
α

p2
νk

)
ω
(1)
k ω

(1)
j eτk+τj

+
∑

1≤|j|≤m,
k+j ̸=0

2νk + νj
νk + νj

(αρ−k,−j + 2β)ω
(1)
−kω

(1)
−j e

−τk−τj

−
m∑
j=1

ν2j
p2
hj, kω

(1)
j ω

(1)
−j +

(
3αρk,−k + 6β +

ανk
p2

)
ω
(1)
k ω

(1)
−k − γkρ(ν−k) + δk.

(55)

Therefore, by the same argument as Lemma 4.4 in [20], Lemma 5.4 is immediately

proved.

In what follows, we shall prove Theorem 5.2. Firstly, we prepare a proposition whose

proof is given by Appendix C in [20].

Proposition 6.5. We have

u

(
ϱ

δ

)
≡

∑
1≤|k|≤m

p2
νk

(
m∑
j=1

(γjρ(ν−k)− δj)(fj + f−j)hj, k

+
m∑

j=1,
j ̸=±k

(γjρ(ν−k)− δj)(fk + f−k) + (γkρ(ν−k)− δk)(fj + f−j)

g(νk)− g(νj)

)
A(νk) (56)

and

∂

∂t

(
u

v

)
≡

∑
1≤|k|≤m

(
p2
νk

Λ̃k +
∂fk
∂t

)
A(νk). (57)

with

Λ̃k :=
∑

1≤|j|≤m,
j ̸=±k

(ρ(ν−k)− ρ(νj))g(νj)
′
hj, kfj +

(
−∂ρ(νk)

∂t
+
νk
p2
g(νk)

′
hk, k

)
fk

− ∂ρ(ν−k)

∂t
f−k. (58)

The first member of the non-secularity conditions is derived by looking at the right-

hand side of the equation for fk, 3ℓ. Let us compare the coefficients of η3ℓ in both sides

of (45). Firstly, we have the following lemma.

Lemma 6.6. We have

(−v̄ℓ, ūℓ)Q
(
ū2ℓ θ

v̄2ℓ θ

)
+
ūℓ
2

(−v̄ℓ, ūℓ)Q
(
ūℓ θ

v̄ℓ θ

)
+
α

2
ūℓ

(
σθ
1(ūℓ)v̄ℓ + σθ

1(v̄ℓ)ūℓ

)
θ + βū2ℓσ

θ
1(ūℓ)θ
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= ϱv̄ℓ − δūℓ +
∑

1≤|k|≤m,
1≤|j|≤m

∑
1≤|i|≤m,
i ̸=±k

α2

νj
(ρ(νk)− ρ(νi))a(νk)fi, ℓfj, ℓfk, ℓθ (59)

with ūjℓ := ση
jℓ(u) and v̄jℓ := ση

jℓ(v) (j = 1, 2). Here ση
jℓ(u) denotes the coefficient of ηjℓ

in u.

It follows from Lemma 6.6 that

P

 ∑
1≤|k|≤m

fk, 3ℓA(νk)θ


≡ α

(
−σθ

1(ūℓ)ū2ℓ − σθ
1(ū2ℓ)ūℓ

σθ
1(ū2ℓ)v̄ℓ + σθ

1(v̄ℓ)ū2ℓ + 2σθ
1(v̄2ℓ)ūℓ

)
θ

+ 2β

(
0

σθ
1(ūℓ)ū2ℓ + 2σθ

1(ū2ℓ)ūℓ

)
θ − ūℓ

(
ϱ

δ

)
θ − ∂

∂t

(
ūℓ
v̄ℓ

)
θ

+
∑

1≤|k|≤m

∑
1≤|j|≤m

∑
1≤|i|≤m,
i ̸=±k

α2p2
νkνj

(
(ρ(νi)− ρ(νk))fi, ℓfj, ℓfk, ℓ

− (ρ(ν−i)− ρ(ν−k))f−i, ℓf−j, ℓf−k, ℓ

)
A(νk)θ. (60)

Moreover, by some direct calculations, we obtain the concrete form of the right-hand side

of (60). Set

l(j, i) :=
1

νj + νi
(αρ−j,−i + 2β), µ(j, i) := ν2i hi, j ,

n(j) := 3αρj,−j + 6β +
ανj
p2

, r(j) := γjρ(ν−j)− δj .

Lemma 6.7 is proved in a way similar to that for Lemma E.1 in [20].

Lemma 6.7. For any k (1 ≤ |k| ≤ m), there exist functions φ1(k, j) of the variables

νi’s and multi-valued functions Jk, 1 of finite determination in Ω satisfying

φ1(k, j) = φ1(−k, j) (1 ≤ j ≤ m), Jk, 1 = J−k, 1 (∗)

such that the coefficient of eτkA(νk) in the first and the fifth terms of the right-hand side

of (60) is given by

p2α

νk

 m∑
j=1

φ1(k, j)ω
(1)
j ω

(1)
−j + Jk, 1

ω
(1)
k . (61)

Moreover we have concrete forms of the coefficients of (61):
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φ1(k, j) :=
m∑

i=1,
i ̸=|k|

2p2
ν2i

(ρk,−k + ρi,−i)µ(i, j)−
6p2
ν2j

(ρk,−k + ρj,−j)(αρj,−j + 2β)

+
p2α

ν2j − ν2k
(ρk,−k + ρj,−j)

2 − 8p22β

ν2j − ν2k

(
2β

α
+ ρk,−k + ρj,−j

)
+

6p2
ν2k

ρk,−kµ(k, j) +
3α

p2
(j ̸= |k|),

φ1(k, |k|) :=
m∑

i=1,
i ̸=|k|

2p2
ν2i

(ρk,−k + ρi,−i)µ(i, k)−
16p2α

ν2k
(ρk,−k)

2
+

4p2α

ν2k
ρ(νk)ρ(ν−k)

+
6p2
ν2k

ρk,−kµ(k, k)−
28p2β

ν2k
ρk,−k +

4α

p2

and

Jk, 1 :=
m∑

j=1,
j ̸=|k|

p2
ν2j

((
ρk, j + ρ−k, j)r(j) + (ρk,−j + ρ−k,−j

)
r(−j)

)

+
3p2γk
ν2k

(ρk,−k)
2 − 6p2δk

ν2k
ρk,−k − γk

p2
.

Similarly, we can prove the following lemma.

Lemma 6.8. For any k (1 ≤ |k| ≤ m), there exist functions φ2(k, j) of the variables

νℓ’s and multi-valued functions Jk, 2 of finite determination in Ω satisfying

φ2(k, j) = φ2(−k, j) (1 ≤ j ≤ m), Jk, 2 = J−k, 2 (∗)

such that the coefficient of eτkA(νk) in the second term of the right-hand side of (60) is

given by

2p2β

νk

 m∑
j=1

φ2(k, j)ω
(1)
j ω

(1)
−j + Jk, 2

ω
(1)
k .

The concrete forms of φ2(k, j) and Jk, 2 are given by

φ2(k, j) =
2p2

ν2j − ν2k
(α(ρk,−k + ρj,−j) + 4β) +

2p2
ν2k

µ(k, j) +
m∑
i=1

4p2
ν2i

µ(i, j)

− 12p2
ν2j

(αρj,−j + 2β) (j ̸= |k|),

φ2(k, |k|) = −15p2
ν2k

(αρk,−k + 2β) +
2p2
ν2k

µ(k, k) +
m∑
j=1

4p2
ν2j

µ(j, k)

and
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Jk, 2 =
p2
ν2k

(γkρk,−k − 2δk) +
m∑
j=1

2p2
ν2j

(γjρj,−j − 2δj) ,

respectively.

Proposition 6.5 implies Lemma 6.9.

Lemma 6.9. For any k (1 ≤ |k| ≤ m), there exist multi-valued functions Jk, 2 and

Rk of finite determination in Ω satisfying

Jk, 3 = J−k, 3, Rk = R−k (∗)

such that the coefficient of eτkA(νk) in the third and fourth terms of the right-hand side

of (60) is given by (
p2
νk
Jk, 3 −Rk

)
ωk − dωk

dt
.

The concrete forms of Jk, 3 and Rk are given by

Jk, 3 :=
m∑

j=1,
j ̸=|k|

1

g(νk)− g(νj)

(
δj −

γj
2
ρk,−k

)
+
(
δk − γk

2
ρk,−k

)
hk, k +

1

2
(ρk,−k)

′
,

Rk :=
ν

′

k

2νk
+

m∑
j=1,
j ̸=|k|

γj
2

1

g(νk)− g(νj)
+

1

2
γkhk, k + (g(νk))

′
hk, k.

As a consequent of Lemmas 6.7, 6.8 and 6.9, the proof of Theorem 5.2 is now

completed. Finally, we give the remark below.

Lemma 6.10. The coefficients appearing in Theorem 5.2 are explicitly given by

ψ(k, j) = p2 (αφ1(k, j) + 2βφ2(k, j)) ,

Jk = p2(αJk, 1 + 2βJk, 2 + Jk, 3),

Rk =
ν

′

k

2νk
+

m∑
j=1,
j ̸=|k|

γj
2

1

g(νk)− g(νj)
+

1

2
γkhk, k + (g(νk))

′
hk, k.

Here φ1, φ2 and Jk, i (i = 1, 2, 3) are defined in Lemmas 6.7, 6.8 and 6.9.

7. Proof of Theorem 5.5 in Case II.

Note that we do not use the concrete form of ρ(νk) in (53)–(60) but use the relations

of (40), (41) and Lemma 4.1. Therefore, we substitute α = 0 for the equations from (53)

to (60). Putting α = 0 into (60), we have
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P

 ∑
1≤|k|≤m

fk, 3ℓA(νk)θ


≡ 2β

(
0

σθ
1(ūℓ)ū2ℓ + 2σθ

1(ū2ℓ)ūℓ

)
θ − ūℓ

(
ϱ

δ

)
θ − ∂

∂t

(
ūℓ
v̄ℓ

)
θ.

To obtain the coefficients in the first member (E1) of non-secularity conditions, we need

the concrete form of ρ(νk). One of the differences between Case I and Case II is the

form of ρ(νk). Taking this fact into account and using the computation in the proof of

Lemmas 6.8 and 6.9, we can confirm Theorem 5.5. The details of the computations are

omitted here.
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the first Painlevé hierarchy I, Adv. Math., 235 (2013), 496–524.

[ 3 ] P. A. Clarkson, N. Joshi and A. Pickering, Bäcklund transformations for the second Painlevé
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