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Abstract. According to the Kouchnirenko Theorem, for a generic
(meaning non-degenerate in the Kouchnirenko sense) isolated singularity f
its Milnor number µ(f) is equal to the Newton number ν(Γ+(f)) of a com-

binatorial object associated to f , the Newton polyhedron Γ+(f). We give
a simple condition characterizing, in terms of Γ+(f) and Γ+(g), the equal-
ity ν(Γ+(f)) = ν(Γ+(g)), for any surface singularities f and g satisfying
Γ+(f) ⊂ Γ+(g). This is a complete solution to an Arnold problem (No. 1982-
16 in his list of problems) in this case.

1. Introduction.

Let f : (Cn, 0) → (C, 0) be a holomorphic isolated singularity (that is f possesses

an isolated critical point at 0 ∈ Cn), in the sequel: a singularity , in short. The Milnor

number µ(f) (see [10]) of a generic f can be expressed, as proved by Kouchnirenko [8],

using a combinatorial object associated to f , the Newton polyhedron Γ+(f) ⊂ Rn
≥0.

More precisely, under an appropriate non-degeneracy condition imposed on f , it holds

µ(f) = ν(Γ+(f)), where ν(Γ+(f)) is the Newton number of Γ+(f). For Γ+(f) convenient

(which means that the Newton polyhedron contains a point on each coordinate axis) the

latter number is equal to

ν(Γ+(f)) := n! Vn − (n− 1)! Vn−1 + . . . + (−1)n−1 1! V1 + (−1)n V0,

where Vn is the n-dimensional volume of the (usually non-convex) polyhedron “under”

Γ+(f), Vn−1 is the sum of (n− 1)-dimensional volumes of the polyhedra “under” Γ+(f)

on all hyperplanes {xi = 0}, Vn−2 is the sum of (n − 2)-dimensional volumes of the

polyhedra “under” Γ+(f) on all {xi = xj = 0}, i ̸= j, and so on.

In his acclaimed list of problems, Arnold posed the following ([1, pp. 198–216]):

‘Consider a Newton polyhedron ∆ in Rn and the number µ(∆) = n!V −
Σ(n − 1)!Vi + Σ(n − 2)!Vij − · · · , where V is the volume under ∆, Vi is the

volume under ∆ on the hyperplane xi = 0, Vij is the volume under ∆ on the

hyperplane xi = xj = 0, and so on.

Then µ(∆) grows (non strictly monotonically) as ∆ grows (whenever ∆ re-

mains coconvex and integer? ). There is no elementary proof even for n = 2.’
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The last sentence means that if ∆ ⊂ ∆′ then µ(∆) ≤ µ(∆′). Here, Arnold’s ter-

minology slightly differs from ours: ∆ should be understood as Rn
≥0 \ Γ+(f) for a

singularity f , and then µ(∆) = ν(Γ+(f)).

In the comment to the problem, Lando [1, p. 417] wrote: ‘A proof of a stronger

statement, the semicontinuity of the spectrum of a singularity, exploiting mixed Hodge

structures, was given by Varchenko in [15] and by Steenbrink in [14]. In the case n = 2 an

elementary proof of the semicontinuity was given by the author of the present comment in

1981 (unpublished). I do not know whether an elementary proof in arbitrary dimension

has ever been written.’

A proof of monotonicity (for n = 2) was eventually published by Lenarcik [9]. In

the case of an arbitrary n, other proofs were offered by Furuya [5], Gwoździewicz [7] and

Bivià-Ausina [4].

In the present paper we essentially complete the solution of the problem for surface

singularities, i.e. for n = 3. More precisely, we prove not only the monotonicity but also

we characterize when the equality holds. The characterization is a simple geometrical

condition (Theorem 1), which we may describe in the following intuitive way: for any

f, g : (C3, 0) → (C, 0) such that Γ+(f) ⊂ Γ+(g) one has ν(Γ+(f)) = ν(Γ+(g)) if, and only

if, Γ+(f) and Γ+(g) differ by (possibly several) pyramids with bases in the coordinate

planes and heights equal to 1. The proof we propose is purely geometrical and elementary.

We believe that a similar result should be valid in the n-dimensional case (replacing in

the assertion coordinate planes by (n− 1)-dimensional coordinate hyperplanes).

Our result has interesting applications. For example, if f is a non-degenerate sin-

gularity then we may decide for which monomials zi lying under Γ+(f), elements of the

deformation ft = f + t · zi for t small, have the same Milnor numbers and in conse-

quence (by the particular case of Lê-Ramanujam Theorem given by Parusiński [13]) are

topologically equivalent.

We also expect that our result (and its potential multidimensional generaliza-

tion) will find applications in effective singularity theory, e.g.: for computation of the

 Lojasiewicz exponent, jumps of the Milnor numbers in deformations of singularities,

searching for tropisms of “partial” gradient ideals (∂f/∂z1, . . . , ∂̂f/∂zi, . . . , ∂f/∂zn)On

of an isolated singularity f , etc.

In a similar spirit, the problem of characterizing those f for which µ(f) is minimal

(and equal to ν(Γ+(f))) among all singularities with the same Newton polyhedron Γ+(f)

is given in the recent paper by Mondal [11].

2. Polyhedra.

According to the standard definitions (see e.g. Berger [3]), a convex n-polyhedron

in Rn is an intersection of a finite family of closed half-spaces of Rn, having non-empty

interior. An n-polyhedron in Rn is a union of finitely many convex n-polyhedra in Rn.

Let k ≤ n; a k-polyhedron in Rn is a finite union of k-polyhedra in k-dimensional affine

subspaces of Rn. A compact connected k-polyhedron in Rn is called a k-polytope in Rn.

For convenience, we introduce the following notations. Let P,Q ⊂ Rn be two k-

polyhedra. The polyhedral difference (p-difference) of P and Q is the closure of their

set-theoretical difference, in symbols
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P−Q := P \Q.

One can check that P−Q is also a k-polyhedron in Rn, or an empty set.

Let N0 = N∪{0} be the set of non-negative integers. We define the Newton polyhedra

in an abstract way, without any relation to singularities. A subset Γ+ ⊂ Rn
≥0 is said to

be a Newton polyhedron when there exists a subset A ⊂ Nn
0 such that

Γ+ = conv

(∪
i∈A

(i + Rn
≥0)

)
,

where conv(X) for X ⊂ Rn means the convex hull of X. For such an A we will write

Γ+ = Γ+(A). In the sequel we will assume that there are no superfluous points in A,

implying A is precisely the set of all the vertices of Γ+.

Remark 1. In the context of singularity theory, we take A = supp f , where

f =
∑

i∈Nn
0
aiz

i around 0 and supp f := {i ∈ Nn
0 : ai ̸= 0}.

A Newton polyhedron Γ+ is called convenient if Γ+ intersects all coordinate axes

of Rn. Since Nn
0 is a lattice in Rn

≥0, the boundary of a convenient polyhedron Γ+ is a

finite union of convex (n − 1)-polytopes (compact facets) and a finite union of convex

unbounded (n− 1)-polyhedra (unbounded facets) lying in coordinate hyperplanes. By Γ

we will denote the set of these compact facets, and sometimes – depending on the context

– also their set-theoretic union. The closure of the complement of Γ+ in Rn
≥0 will be

denoted by Γ−, i.e.

Γ− := Rn
≥0 − Γ+.

It is an n-polytope in Rn provided Γ− ̸= ∅. Hence, Γ− has finite n-dimensional volume (in

short n-volume). Similarly, for any ∅ ̸= I ⊂ {1, . . . , n}, Γ− restricted to the coordinate

hyperplane RI
≥0 := {(x1, . . . , xn) ∈ Rn

≥0 : xi = 0 for i ̸∈ I}, that is ΓI
− := Γ− ∩ RI

≥0,

has finite (#I)-volume. Consequently, we may define the Newton number ν(Γ+) of

convenient Γ+ by the formula

ν(Γ+) := n!Vn − (n− 1)! Vn−1 + . . . + (−1)n−1 1! V1 + (−1)n V0,

where Vi denotes the sum of i-volumes of ΓI
−, for all I ⊂ {1, . . . , n} satisfying #I = i.

Note that V0 = 1 if Γ− ̸= ∅ and V0 = 0 if Γ− = ∅. Hence ν(Rn
≥0) = 0. Clearly, we may

also extend the domain of this definition to any n-polytope P in Rn; thus ν(P) makes

sense. Then for any Newton polyhedron Γ+ we have ν(Γ+) = ν(Γ−). We will use both

notations interchangeably.

The following notions will be useful in our proof. Let B be a compact (n − 1)-

polyhedron in an (n− 1)-dimensional hyperplane H ⊂ Rn and Q ∈ Rn \H. A pyramid

Pyr(B,Q) with apex Q and base B is by definition the (compact) cone with vertex Q

and base B. By [3, 12.2.2, p. 13], the n-volume of Pyr(B,Q) can be computed using the

elementary formula
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voln Pyr(B,Q) =
voln−1(B) dist(Q,H)

n
, (1)

where voln(X) means n-volume of X.

3. The Main Theorem.

Let Γ+, Γ̃+ be two convenient Newton polyhedra such that Γ+ ⊊ Γ̃+. Then

Γ̃+ = conv(Γ+ ∪ {P1, . . . , Pk}),

for some points P1, . . . , Pk lying under Γ+, i.e. Pi ∈ Nn
0 \ Γ+. In such situation Γ̃+ will

also be denoted by Γ+ + {P1, . . . , Pk} or ΓP1,...,Pk
+ . Clearly, Γ+ + {P1, . . . , Pk} = (Γ+ +

{P1, . . . , Pk−1}) +Pk and hence ν(Γ+ + {P1, . . . , Pk}) = ν((Γ+ + {P1, . . . , Pk−1}) +Pk).

Since moreover

ν(Γ+) − ν(Γ+ + {P1, . . . , Pk}) =
∑

1≤i≤k

(ν(Γ+ + {P1, . . . , Pi−1}) − ν(Γ+ + {P1, . . . , Pi})),

it suffices to study the monotonicity of the Newton number for polyhedra defined by

sets which differ in one point only, i.e. for Newton polyhedra Γ+ and ΓP
+, for some

P ∈ Nn
0 \ Γ+.

We now give a nice formula for the difference ν(Γ+)−ν(ΓP
+) in terms of simplexes of

a triangulation of ΓP
+ \Γ+. It has been suggested to us by the referee of the first version

of this paper. The formula has considerably improved and shortened our original proof

of the main theorem and is likely the starting point for a proof in n ≥ 4 dimensions.

Let Γ+ be a convenient Newton polyhedron and P ∈ Nn
0 \ Γ+. Let RI(P ) be the

“smallest” coordinate hyperplane to which P belongs, i.e. I(P ) ⊂ {1, . . . , n} and P ∈
(R∗)I(P ). Consider ΓP

+ \Γ+ as a disjoint union of open simplexes “emanating” from the

point P

ΓP
+ \ Γ+ =

⊔
S∈S

S,

where each S ∈ S is of the form S = {P +
∑k

i=1 λi ai : λi > 0,
∑k

i=1 λi < 1}, for some

ai ∈ Rn such that P + ai is a vertex of Γ+ and some k ∈ {0, . . . , n}. Notice that one

of simplexes of S is the point P itself, S = {P} ∈ S. To each S ∈ S we associate the

“half-open” parallelepiped

P(S) :=

{
P +

k∑
i=1

λi ai : 0 ≤ λi < 1

}
.

We put P := {P(S) : S ∈ S}. For any I ⊂ {1, . . . , n} we let

S(I) := {S ∈ S : S ⊂ RI ,dimS = #I},
P(I) := {P(S) : S ∈ S(I)}.
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By classical formulas (see e.g. [2, Lemma 10.3]), given any S ∈ S(I) and putting l := #I,

we may write

l! voll(S) = voll P(S) = #(P(S) ∩ NI
0) = #(P(S) ∩ Nn

0 ). (2)

Notice that S(I) ̸= ∅ implies I(P ) ⊂ I. In fact, if S ∈ S(I) then P ∈ S ⊂ RI = RI .

Hence I(P ) ⊂ I.

The last fact implies that in order to study the difference ΓP
+ \ Γ+ we may limit

ourselves to investigating only these simplexes which belong to S(I) for some I ⊃ I(P ).

Thus, by definition of the Newton number and (2), we get

ν(Γ+) − ν(ΓP
+) =

∑
I ⊂ {1, . . . , n}

I(P ) ⊂ I

∑
P∈P(I)

(−1)n−#I #(P ∩ Nn
0 ). (3)

Since P ∩ Nn
0 is the union of sets of points in the relative interior Po of P and relative

interiors of its facets “emanating” from P , formula (3) gets the form

ν(Γ+) − ν(ΓP
+) =

∑
P∈P

#(Po ∩ Nn
0 )χ(P), (4)

where χ(P) :=
∑

Q ∈ P
P ⊂ Q

(−1)n−dimQ and P :=
⊔

I ⊂ {1, . . . , n}
I(P ) ⊂ I

P(I).

As there is a one-to-one correspondence between parallelepipeds in P and simplexes in

S, formula (4) can be equivalently stated in the language of simplexes as follows

ν(Γ+) − ν(ΓP
+) =

∑
S∈S

#(P(S)o ∩ Nn
0 )χ(S), (5)

where χ(S) :=
∑

T ∈ S

S ⊂ T

(−1)n−dimT and S :=
⊔

I ⊂ {1, . . . , n}
I(P ) ⊂ I

S(I). Notice χ(S) = χ(P(S)).

In the sequel we shall use both of the above formulas (4) and (5) interchangeably,

whichever seems more convenient for the purpose at hand. Now, we state the main

theorem of the paper.

Theorem 1. Let Γ+ be a convenient Newton polyhedron in R3
≥0 and let a lattice

point P lie under Γ+ i.e. P ∈ N3
0 \ Γ+. Then

1. ν(ΓP
+) ≤ ν(Γ+),

2. ν(ΓP
+) = ν(Γ+) if, and only if, there exists a coordinate plane H such that P ∈ H

and ΓP
+ − Γ+ is a pyramid with base (ΓP

+ − Γ+) ∩H and of height equal to 1.

Remark 2. We believe that the same theorem is true, mutatis mutandis, in the

n-dimensional case. In the simpler case n = 2 the theorem is well-known ([7], [9] or [6]).

Remark 3. In the particular case when ΓP
+ −Γ+ is a 3-dimensional simplex item

2 follows from Lemma 2.2 in [12].
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Example 1. Let us illustrate the second item of the theorem with some figures.

Let P lying under Γ+ be such that ν(ΓP
+) = ν(Γ+). Up to permutation of the variables,

we have the following, essentially different, possible locations for P :

1. P lies in the plane {z = 0} and not on axes (Figure 1 (a)),

2. P lies in the plane {z = 0} and on the axis Ox := {(x, y, z) ∈ R3 : y = z = 0}
(Figure 1 (b)).

Remark 4. Item 2 of Theorem 1 can be equivalently stated as follows:

2’. ν(ΓP
+) < ν(Γ+) if, and only if, one of the following two conditions is satisfied:

(a) P lies in the interior of Γ− i.e. P ∈ Int(Γ−),

(b) for each coordinate plane H such that P ∈ H the p-difference ΓP
+ − Γ+ is

either a pyramid with base (ΓP
+−Γ+)∩H and of height greater than or equal

to 2, or a 3-polytope with at least two vertices outside of H.

(a) (b)

y y

x x

P

O

zz

O
P

1

1

Figure 1.
(a) P lies in the plane and not on axes.
(b) P lies in the plane and on an axis.

Example 2. The (weaker) requirement that the p-difference ΓP
+ − Γ+ should lie

in “a wall” of thickness 1 around a coordinate plane is not sufficient for the equality

ν(ΓP
+) = ν(Γ+). In fact, if Γ+ is the Newton polyhedron of the surface singularity

f(x, y, z) := x6 + 2y6 + z(x2 + y2) + z4 and P = (3, 2, 0), then:

1. ν(Γ+) = 15, ν(ΓP
+) = 13,

2. ΓP
+−Γ+ is a 3-polytope with “base” (ΓP

+−Γ+)∩Oxy and of height 1, but it is not

a pyramid with base in a coordinate plane; it has two vertices above Oxy, where

Oxy = {(x, y, z) ∈ R3 : z = 0}.
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4. Proof of Theorem 1.

First we prove a lemma which by formula (4) gives us the monotonicity of the Newton

number, i.e. item 1 in Theorem 1.

Lemma 1. Let Γ+ be a convenient Newton polyhedron in R3
≥0 and P ∈ N3

0 \ Γ+.

Then, in notation of the previous section, for each P ∈ P, χ(P) ≥ 0.

Proof. Consider cases:

1. dim(P) = 3. Then the only Q ∈ P for which P ⊂ Q is P itself. Hence χ(P) = 1.

2. dim(P) = 2. Consider subcases:

2 a). P does not lie in any coordinate plane. Then the only Q ∈ P for which P ⊂ Q

are 3-dimensional parallelepipeds in P with P in the boundary. Hence χ(P) = k > 0,

where k is the number of such parallelepipeds.

2 b). P lies in a coordinate plane. Then there are but two Q ∈ P for which P ⊂ Q:

P itself and one 3-dimensional parallelepiped. Hence χ(P) = −1 + 1 = 0.

3. dim(P) = 1. Consider subcases:

3 a). P does not lie in any coordinate plane. Repeat the reasoning from case 2 a).

3 b). P lies in a coordinate plane but not in axes. Let P = P(S), S ∈ S. Then S is

in the boundary of one or two triangles in S lying in this coordinate plane. Since every

such triangle generates a 3-simplex in S, we get χ(P) = χ(S) = −1 + 1 + k ≥ 0 in the

first case or χ(P) = χ(S) = −2 + 2 + k ≥ 0 in the second one, where k is the number of

extra 3-simplexes in S with S in the boundary.

3 c). P lies in a coordinate axis. Let P = P(S), S ∈ S. Then {S} ∈ S and S is

in the boundary of exactly two triangles in S lying in two different coordinate planes.

Hence χ(P) = χ(S) = 1 − 2 + k ≥ 0, where k > 0 is the number of 3-dimensional

simplexes in S with S in the boundary.

4. dim(P) = 0. We have only the case P = {P}. Consider subcases:

4 a). P does not lie in any coordinate plane. The reasoning is similar to case 3 a).

4 b). P lies in a coordinate plane but not in axes. The reasoning is similar to case

3 b).

4 c). P lies in a coordinate axis and P ̸= 0. The reasoning is similar to case 3 c).

4 d). P = {0}, i.e. P = 0. Let Txy
1 , . . . ,Txy

k be triangles in S lying in Oxy and

similarly Txz
1 , . . . ,Txz

l and Tyz
1 , . . . ,Tyz

m for planes Oxz and Oyz, respectively. Each of

these triangles uniquely generates one 3-simplex in S. Denote them by Sxy
1 , . . . ,Sxy

k and

respectively Sxz
1 , . . . ,Sxz

l and Syz
1 , . . . ,Syz

m . However, some of them may be identical, but

only one of Sxy
1 , . . . ,Sxy

k may be equal to one of Sxz
1 , . . . ,Sxz

l (when they have the same

edge in Ox) and similarly for remaining pairs of coordinate planes (Oxy, Oyz) and (Oxz,

Oyz). In the worst case only three pairs in the sequence of all simplexes Sxy
1 , . . . ,Syz

m

may be identical.

Assume first there are less such identical pairs (i.e. ≤ 2). Then there are the following

simplexes Q ∈ P for which P ⊂ Q: one 0-dimensional (P itself), three 1-dimensional
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(lying in axes), (k + l + m) 2-dimensional (lying in planes Oxy, Oxz, Oyz) and at least

(k + l + m− 2) 3-dimensional. Hence

χ(P) ≥ −1 + 3 − (k + l + m) + (k + l + m− 2) = 0.

If there are 3 pairs of identical simplexes in the sequence Sxy
1 , . . . ,Sxy

k , Sxz
1 , . . . ,Sxz

l ,

Syz
1 , . . . ,Syz

m , then a simple geometric reasoning gives us that

• either k = l = m = 1 and Sxy
1 = Sxz

1 = Syz
1 and then

χ(P) = −1 + 3 − 3 + 1 = 0,

•• or there are extra 3-simplexes in S (besides Sxy
1 , . . . ,Syz

m ) and then

χ(P) = −1 + 3 − (k + l + m) + (k + l + m− 3) + s ≥ 0,

where s > 0 is the number of these extra 3-simplexes in S. □

From the above lemma and formula (4) we get item 1 in Theorem 1. Let us pass to

the proof of item 2.

“⇐” First, we prove that the combinatorial condition in item 2 implies the equality

ν(Γ+) = ν(ΓP
+). Without loss of generality we may assume that, having fixed coordinates

(x, y, z) in R3, we have: H = {z = 0}, P ∈ H and ΓP
+ − Γ+ is a pyramid with base

(ΓP
+ − Γ+) ∩ H and of height equal to 1. We must show that ν(ΓP

+) = ν(Γ+). Since

ΓP
+−Γ+ = Γ−−ΓP

−, but the latter is a p-difference of two polytopes, we prefer to reason

in terms of Γ− and ΓP
− instead.

We have three possibilities:

1. P does not lie on any axis, that is P ̸∈ Ox∪Oy. Then the polytopes Γ− and ΓP
−

are identical on Ox, Oy, Oz, Oxz and Oyz. Denoting by W the p-difference polygon of

Γ− and ΓP
− in Oxy, we have by definition of the Newton number and (1)

ν(Γ+) − ν(ΓP
+) =

3! vol2(W) · 1

3
− 2! vol2(W) = 0.

2. P lies on Ox or Oy and P ̸= 0. Up to renaming of the variables, we may

assume that P ∈ Ox. Hence and by the assumption that Γ+ is convenient, the apex

of the pyramid must lie in the plane Oxz. Setting W := (Γ− − ΓP
−) ∩ Oxy and L :=

(Γ− − ΓP
−) ∩Ox, we have

ν(Γ+) − ν(ΓP
+) =

3! vol2(W) · 1

3
− 2! vol2(W) − 2! vol1(L) · 1

2
+ vol1(L) = 0.

3. P = 0. Then ΓP
− = ∅. By the assumption that Γ+ is convenient, the apex of

the pyramid must be (0, 0, 1). Hence, if we denote by Lx, Ly, Lz, Wxy, Wxz, Wyz the

intersections of Γ− with coordinate axes and planes, respectively, then

ν(Γ+) − ν(ΓP
+) = ν(Γ+)

=
3! vol2(Wxy) · 1

3
− 2! vol2(Wxy) − 2! vol2(Wxz) − 2! vol2(Wyz)
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+ vol1(Lx) + vol1(Ly) + vol1(Lz) − 1

= 0.

“⇒” We now show the inverse implication in item 2 of Theorem 1. To the contrary,

assume that the combinatorial condition in item 2 does not hold. Then we have to prove

that ν(Γ+) − ν(ΓP
+) > 0. In some cases we shall use formula (5). According to this

formula and Lemma 1, it suffices to find just one S ∈ S for which P(S)o ∩ Nn
0 ̸= ∅ and

χ(S) > 0. Consider possible cases:

1. P does not lie in any coordinate plane i.e. I(P ) = {1, 2, 3}. Then the p-difference

Γ− −ΓP
− is a 3-polytope, disjoint from all the coordinate planes. Hence, by definition of

the Newton number

ν(Γ+) − ν(ΓP
+) = 3! vol3(Γ− − ΓP

−) > 0.

2. P lies in a coordinate plane, but not on any axis. Without loss of generality, we

may assume that P ∈ Oxy\(Ox∪Oy). It means I(P ) = {1, 2}. Then the p-difference 3-

polytope Γ−−ΓP
− is disjoint from the planes Oxz and Oyz, but W := (Γ−−ΓP

−)∩Oxy ̸= ∅
(Figure 2 (a)). According to Remark 4 (b), we should examine the following possibilities:

a). Γ− − ΓP
− is a pyramid with base W and of height h ≥ 2. We have

ν(Γ+) − ν(ΓP
+) =

3! vol2(W)h

3
− 2! vol2(W) = 2 vol2(W) (h− 1) > 0.

b). There are at least two vertices of Γ−−ΓP
− lying above Oxy. Then there exists

a 3-simplex T ∈ S with two vertices above Oxy. Hence T has no side in Oxy. If we

denote by W1, . . . ,Wk the triangles of W (see Figure 2 (b)), then each Wi is a side of

a 3-simplex Ti and the Ti are different from T. Hence, taking S = {P} in formula (5),

we get P(S) = S, (So ∩ Nn
0 ) = {P} ̸= ∅.

Moreover, there are only the following simplexes Q ∈ P for which P ∈ Q: k 2-

simplexes lying in Oxy and at least (k + 1) 3-simplexes. Hence χ(S) ≥ −k + k + 1 > 0.

We obtain ν(Γ+) − ν(ΓP
+) > 0.

(a) (b) y

OO x x

y

P

W

P

W3

W2
W1

Figure 2.
(a) p-difference Γ− − ΓP

− in Oxy.
(b) Triangulation of W.
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3. P lies on an axis and P ̸= 0. Without loss of generality we may assume P ∈ Ox

i.e. I(P ) = {1}. Then the p-difference 3-polytope Γ−−ΓP
− is disjoint from the plane Oyz

and from the axes Oy and Oz. The polygons Wxy := (Γ− − ΓP
−) ∩ Oxy and Wxz :=

(Γ−−ΓP
−)∩Oxz are unions of triangles Wxy

1 , . . . ,Wxy
k , k ≥ 1 and Wxz

1 , . . . ,Wxz
l , l ≥ 1,

respectively, all of them having P as a vertex (see Figure 3).

z

y

O
P x

W3
xz

W2
xz

W1
xz

W1
xy

W2
xy

Figure 3. Triangulation of Wxy and Wxz.

Each of them is a side of a 3-simplex in S. Denote these simplexes by Sxy
1 , . . . ,Sxy

k

and Sxz
1 , . . . ,Sxz

l , respectively. Clearly, they are all different except possibly Sxy
1 = Sxz

1 .

If there are other 3-simplexes in S besides Sxy
1 , . . . ,Sxy

k ,Sxz
1 , . . . ,Sxz

l or Sxy
1 ̸= Sxz

1 , then

there are at least (k + l) 3-simplexes in S. We take S = {P} in formula (5). Then

P(S) = S, (So ∩ Nn
0 ) = {P} ̸= ∅. Moreover, there are only the following simplexes

Q ∈ P for which P ∈ Q: one 1-simplex lying in Ox, (k + l) 2-simplexes lying in Oxy

and Oxz, and at least (k + l) 3-simplexes. Hence

χ(S) ≥ +1 − (k + l) + (k + l) > 0.

So, we may assume that the only 3-simplexes in S are Sxy
1 =

Sxz
1 ,Sxy

2 , . . . ,Sxy
k ,Sxz

2 , . . . ,Sxz
l . We claim that they have no vertices outside Oxy

and Oxz. Indeed, if, to the contrary, Sxy
i had a vertex outside Oxz, say R, then Sxy

i−1

would also have the same vertex R, and so on. At the end we would conclude that Sxy
1

also has R as its vertex, which is impossible (Sxy
1 = Sxz

1 ). Consider cases:

i). k = l = 1. Since ΓP
+ − Γ+ is not a pyramid of height 1, the triangles Wxy

1 and

Wxz
1 with bases in Ox have heights ≥ 2. Then, by definition of the Newton number, we

easily get ν(Γ+) − ν(ΓP
+) > 0.

ii). l = 1 and k ≥ 2. Since Sxy
1 , . . . ,Sxy

k have vertices in Oxz and l = 1, all of them

share the same vertex, which is also the vertex of Wxz
1 . As ΓP

+ −Γ+ is not a pyramid of

height 1, the triangle Wxz
1 with base in Ox has its height ≥ 2. Hence, again by definition

of the Newton number, we can check that ν(Γ+) − ν(ΓP
+) > 0.

iii). k = 1 and l ≥ 2. Analogously as in ii).
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iv). k ≥ 2 and l ≥ 2. In this case we can easily prove that among

Sxy
2 , . . . ,Sxy

k ,Sxz
2 , . . . ,Sxz

l there are ones with height ≥ 2. Then, again by definition

of the Newton number, we find that ν(Γ+) − ν(ΓP
+) > 0.

4. P = 0. Then ΓP
− = ∅ and consequently ν(Γ+)−ν(ΓP

+) = ν(Γ−)−ν(ΓP
−) = ν(Γ−).

By assumption Γ− is not a pyramid with base in a coordinate plane and height 1. Hence,

Γ+ intersects all axes at points with coordinates greater than or equal to 2. Take auxiliary

point P̃ = (1, 0, 0) on axis Ox, lying under Γ+. Then Γ− − ΓP̃
− is not a pyramid of

height 1, either. Hence, by 3., ν(Γ+) − ν(ΓP̃
+) > 0. Since ΓP̃

− is a pyramid of height 1,

ν(ΓP̃
−) = 0. But Γ− = (Γ− − ΓP̃

−) ∪ ΓP̃
− and, of course, ν(Γ−) = ν((Γ− − ΓP̃

−) ∪ ΓP̃
−) =

ν(Γ−−ΓP̃
−)+ν(ΓP̃

−). We get ν(Γ−) = ν(Γ−−ΓP̃
−) = ν(Γ−)−ν(ΓP̃

−) = ν(Γ+)−ν(ΓP̃
+) > 0.

This ends the proof of Theorem 1.

Corollary 1. Let Γ+ be a convenient Newton polyhedron in R3
≥0. Then ν(Γ+) ≥

0. Moreover, ν(Γ+) = 0 if, and only if, either Γ+ = R3
≥0 or Γ+ intersects one of the

axes at the point with coordinate equal to 1.

Remark 5. The last corollary was proved by Furuya [5, Corollary 2.4], in n-

dimensional case.
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