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Abstract. We build a bijection between the set sτ -tiltΛ of isomorphism

classes of basic support τ -tilting modules over the Auslander algebra Λ of
K[x]/(xn) and the symmetric group Sn+1, which is an anti-isomorphism of
partially ordered sets with respect to the generation order on sτ -tiltΛ and the
left order on Sn+1. This restricts to the bijection between the set tiltΛ of

isomorphism classes of basic tilting Λ-modules and the symmetric group Sn

due to Brüstle, Hille, Ringel and Röhrle. Regarding the preprojective algebra
Γ of Dynkin type An as a factor algebra of Λ, we show that the tensor functor

−⊗ΛΓ induces a bijection between sτ -tiltΛ → sτ -tiltΓ. This recover Mizuno’s
anti-isomorphism Sn+1 → sτ -tiltΓ of posets for type An.

1. Introduction.

Tilting theory has been central in the representation theory of finite dimensional

algebras since the early seventies [BGP], [AuPR], [B], [BrB], [HaR]. In this theory,

tilting modules play a central role. So it is important to classify tilting modules for a

given algebra. There are many algebraists working on this topic which makes the theory

fruitful. For more details about classical tilting modules we refer to [AsSS], [AnHK].

Recently Adachi, Iyama and Reiten [AIR] introduced τ -tilting theory to generalize

the classical tilting theory from viewpoint of mutations. This is very close to the silting

theory (e.g. [AiI], [DF], [HKM], [KV]) and the cluster tilting theory (e.g. [BMRRT],

[IY], [KR]). The central notion of τ -tilting theory is support τ -tilting modules, and

therefore it is important to classify support τ -tilting modules for a given algebra. Re-

cently some authors worked on this topic, e.g. Adachi [A1] classified τ -rigid modules for

Nakayama algebras, Adachi [A2] and Zhang [Z1] studied τ -rigid modules for algebras

with radical square zero, and Mizuno [M] classified support τ -tilting modules for pre-

projective algebras of Dynkin type. In this context, it is basic to consider algebras with

only finitely many support τ -tilting modules, called τ -tilting finite algebras and studied

by Demonet, Iyama and Jasso [DIJ]. For more details of τ -tilting theory, we refer to

[AAC], [AIR], [AnMV], [DIRRT], [HuZ], [J], [IJY], [IRRT], [W], [Zh] and so on.
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In this paper we focus on classifying tilting modules and support τ -tilting modules

over a class of Auslander algebras. Recall that an algebra Λ is called an Auslander algebra

if the global dimension of Λ is less than or equal to 2 and the dominant dimension of

Λ is greater than or equal to 2. It is showed by Auslander that there is a one-to-one

correspondence between Auslander algebras and algebras of finite representation type.

In the rest, let Λ be the Auslander algebra of the algebra K[x]/(xn). Then Λ is

presented by the quiver

1
a1 // 2

a2 //
b2

oo 3
a3 //

b3

oo · · ·
an−2 //

b4

oo n− 1
an−1 //

bn−1

oo n
bn

oo

with relations a1b2 = 0 and aibi+1 = biai−1 for any 2 ≤ i ≤ n − 1. All modules in this

paper are right modules. Denote by tiltΛ the set of isomorphism classes of basic tilting

Λ-modules. We show that each tilting Λ-module is isomorphic to a product of maximal

ideals I1, . . . , In−1 of Λ. Moreover, we show a strong relationship between basic tilting

Λ-modules and the symmetric group Sn.

For w,w′ ∈ Sn and 1 ≤ i ≤ n, we denote the product w′w ∈ Sn by (w′w)(i) :=

w′(w(i)). Denote by si ∈ Sn the transposition (i, i+ 1) for 1 ≤ i ≤ n− 1. The length of

w ∈ Sn is defined by l(w) := #{(i, j) | 1 ≤ i < j ≤ n,w(i) > w(j)} and an expression

w = si1si2 · · · sil of w ∈ Sn is called a reduced expression if l = l(w). For elements

w,w′ ∈ Sn, if l(w
′) = l(w) + l(w′w−1) then we write w ≤ w′. This gives a partial order

on Sn called the left order. The Hasse quiver of Sn has vertices w corresponding to each

element w ∈ Sn, and has arrows w → siw if l(w) > l(siw) and w ← siw if l(w) < l(siw)

for w ∈ Sn and 1 ≤ i ≤ n− 1. Now we are in a position to state our first main result.

Theorem 1.1 (Theorems 3.9, 3.18). Let Λ be the Auslander algebra of K[x]/(xn),

and ⟨I1, . . . , In−1⟩ the ideal semigroup of Λ generated by the maximal ideals I1, . . . , In−1.

(1) The set tiltΛ is given by ⟨I1, . . . , In−1⟩.

(2) There exists a well-defined bijection I : Sn
∼= ⟨I1, . . . , In−1⟩, which maps w to

I(w) = Ii1 · · · Iil where w = si1 · · · sil is an arbitrary reduced expression.

(3) Consequently there exists a bijection I : Sn
∼= tiltΛ. In particular #tiltΛ = n!.

(4) The map I in (3) is an anti-isomorphism of posets (partially orderd set).

Theorem 1.1(3) has been shown in [BHRR] by using a combinatorial method. Our

method in this paper is rather homological, and we shall modify the method in [IR],

[BIRS], [M] for preprojective algebras to the Auslander algebra of K[x]/(xn) by using

basic properties of Auslander algebras in Section 2.

Denote by sτ -tiltΛ the set of isomorphism classes of basic support τ -tilting Λ-

modules, and by µi(T ) the mutation of T with respect to the i-th indecomposable direct

summand of T . The set sτ -tiltΛ forms a poset with respect to the generation order

(Definition 2.13). We show the following main result of this paper in Section 4, where

the map I : Sn+1
∼= sτ -tiltΛ is an extension of the map I in Theorem 1.1.



733(61)

Classifying τ-tilting modules over the Auslander algebra of K[x]/(xn) 733

Theorem 1.2 (Theorems 4.8, 4.10, 4.12). Let Λ be the Auslander algebra of

K[x]/(xn).

(1) sτ -tiltΛ is a disjoint union of µi+1µi+2 · · ·µn(tiltΛ) for 0 ≤ i ≤ n.

(2) There exists a bijection I : Sn+1
∼= sτ -tiltΛ which maps w to I(w) = µi1µi2 · · ·µil(Λ),

where w = si1si2 · · · sil is an arbitrary expression. In particular, we have #sτ -tiltΛ =

(n+ 1)!.

(3) The map I in (2) is an anti-isomorphism of posets.

Now let Γ be the preprojective algebra of Dynkin type An. Then there exists a

natural surjection Λ → Γ, and we get a tensor functor − ⊗Λ Γ : modΛ → modΓ. By

using this we get a bijection between sτ -tiltΛ and sτ -tiltΓ. More precisely, we have:

Theorem 1.3 (Theorem 5.3). Let Λ and Γ be as above. Then

(1) The map −⊗Λ Γ : sτ -tiltΛ→ sτ -tiltΓ given by U 7→ U ⊗Λ Γ is bijective.

(2) The map in (1) is an isomorphism of posets.

As a corollary of Theorems 1.2 and 1.3, we recover Mizuno’s anti-isomorphism

Sn+1 → sτ -tiltΓ [M, Theorems 2.21 and 2.30] since it is the composition of − ⊗Λ Γ

in Theorem 1.3 and I in Theorem 1.2.

Corollary 1.4 (Corollary 5.5). Let Λ and Γ be as above. There are isomorphisms

between the following posets :

(1) The poset sτ -tiltΛ with the generation order.

(2) The poset sτ -tiltΓ with the generation order.

(3) The symmetric group Sn+1 with the opposite of the left order.

(4) The poset sτ -tilt(Λop) with the opposite of the generation order.

(5) The poset sτ -tilt(Γop) with the opposite of the generation order.

(6) The symmetric group Sn+1 with the right order.

The paper is organized as follows: In Section 2, we recall some preliminaries on

Auslander algebras, tilting modules and support τ -tilting modules. In Section 3, we

focus on the tilting modules over the Auslander algebra of K[x]/(xn) and we prove

Theorem 1.1. In Section 4, we use Theorem 1.1 and some other facts of tilting modules

to prove Theorem 1.2. Finally, in Section 5, we apply Theorem 1.2 and Theorem 1.3 to

preprojective algebras of Dynkin type An and get Mizuno’s bijection for preprojective

algebras of Dynkin type An.

Throughout this paper, we denote by K an arbitrary field, and we consider basic

finite dimensional K-algebras. By a module, we mean a finitely generated right module.

For an algebra A, we denote by modA the category of finitely generated right A-modules.

For an A-module M , we denote by addM the full subcategory of modA whose objects are
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direct summands of Mn for some n > 0. The composition of homomorphisms f : X → Y

and g : Y → Z is denoted by gf : X → Z. Thus HomΛ(X,Y ) is an EndΛ(Y )op-module

and an EndΛ(X)-module.

For more recent results on τ -tilting theory of Auslander algebras, we refer to [IZ]

and [Z2].

Acknowledgements. Theorem 1.1 was obtained in the Master thesis of Yusuke

Tsujioka [T], who was a student of the first author in Graduate school of Mathematics

in Nagoya University. The authors thank him for allowing them to include his results in

this paper. Other parts of this paper were done when the second author visited Nagoya

University in the year 2015. The second author would like to thank Laurent Demonet,

Takahide Adachi, Yuta Kimura, Yuya Mizuno and Yingying Zhang for useful discussion

and kind help. He also wants to thank the first author for hospitality during his stay in

Nagoya. Both of the authors would like to thank the referees for useful suggestions to

improve this paper.

2. Preliminaries.

In this section we recall some basic properties of Auslander algebras, tilting modules

and support τ -tilting modules. We begin with the definition of Auslander algebras.

For an algebra Λ and a Λ-module M , denote by gl.dim Λ the global dimension of Λ,

and by proj.dimM (resp. inj.dimM) the projective dimension (resp. injective dimension)

of M . We recall the following definition.

Definition 2.1. An algebra Λ is called an Auslander algebra if gl.dim Λ ≤ 2 and

Ei(Λ) is projective for i = 0, 1, where Ei(Λ) is the (i+ 1)-th term in a minimal injective

resolution of Λ.

Recall that an algebra R is called representation-finite if modR admits an additive

generator M , that is, modR = addM . The following classical result in [AuRS] shows

the relationship between representation-finite algebras and Auslander algebras.

Theorem 2.2. (1) For an additive generator M of the category modR over a

representation-finite algebra R, the algebra EndR(M) is an Auslander algebra.

(2) For an Auslander algebra Λ and an additive generator Q of the category of projective-

injective Λ-module, the algebra EndΛ(Q) is representation-finite.

(3) The correspondences in (1) and (2) induce mutually inverse bijections between Morita

equivalence classes of representation-finite algebras and Morita equivalence classes of

Auslander algebras.

We call Λ = EndR(M) in Theorem 2.2(1) an Auslander algebra of R. In this case,

for X ∈ modR we denote

PX = HomR(M,X), PX = HomR(X,M), SX = PX/ radPX and SX = PX/ radPX .
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Here P− = HomR(M,−) is an equivalence between addM and addΛ, and P− =

HomR(−,M) is a duality between addM and addΛop. The following statement [AuRS]

shows the relationship between almost split sequences of R and projective resolutions of

simple Λ-modules.

Proposition 2.3. Let Λ be an Auslander algebra of R and let X be an indecom-

posable R-module. Then we have

(1) proj.dim(SX)Λ ≤ 1 if and only if X is a projective R-module. Then 0 → PradX →
PX → SX → 0 is a minimal projective resolution of SX .

(2) proj.dim(SX)Λ = 2 if and only if X is a nonprojective R-module. Then the almost

split sequence 0 → τX → E → X → 0 gives a minimal projective resolution 0 →
PτX → PE → PX → SX → 0 of SX .

(3) proj.dim Λ(S
X) ≤ 1 if and only if X is an injective R-module. Then 0→ PX/socX →

PX → SX → 0 is a minimal projective resolution of SX .

(4) proj.dim Λ(S
X) = 2 if and only if X is a noninjective R-module. Then the almost

split sequence 0 → X → E → τ−1X → 0 gives a minimal projective resolution

0→ P τ−1X → PE → PX → SX → 0 of SX .

Denote by (−)∗ = HomΛ(−,Λ). We also need the following lemma.

Lemma 2.4. Let Λ be an Auslander algebra of R and let X be an indecomposable

nonprojective R-module. Then we have

(1) Ext2Λ(SX ,Λ) ∼= SτX , and ExtiΛ(SX ,Λ) = 0 if i ̸= 2.

(2) ExtiΛ(SX , Y ) ∼= TorΛ2−i(Y, S
τX) for Y ∈ modΛ and i ∈ Z.

Proof. We only prove (2) since the statement (1) follows from (2) immediately.

By Proposition 2.3, there exist projective resolutions

0→ PτX → PE → PX → SX → 0, (2.1)

0→ PX → PE → P τX → SτX → 0 (2.2)

of SX and SτX , respectively. Applying HomΛ(−, Y ) to (2.1), we obtain a complex

0→ HomΛ(PX , Y )→ HomΛ(PE , Y )→ HomΛ(PτX , Y )→ 0 (2.3)

whose homologies are ExtiΛ(SX , Y ). Similarly, applying Y ⊗Λ − to (2.2), we obtain a

complex

0→ Y ⊗Λ PX → Y ⊗Λ PE → Y ⊗Λ P τX → 0 (2.4)

whose homologies are TorΛ2−i(Y, S
τX). Because HomΛ(P−, Y ) ∼= Y ⊗Λ P−

∗ ∼= Y ⊗Λ P−

holds, (2.3) and (2.4) are isomorphic. Thus we obtain the desired isomorphism. □

The following lemma is useful.
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Lemma 2.5. Let Λ be an Auslander algebra and Y ∈ modΛ. Then any composition

factor of Ext2Λ(Y,Λ) has projective dimension 2.

Proof. Without loss of generality, we can assume that Y is simple since any

composition factor of Ext2Λ(Y,Λ) is a composition factor of Ext2Λ(S,Λ) for some simple

Λ-module S. If proj.dim Y ≤ 1, then the assertion is clear since the zero module has

no composition factor. If proj.dim Y = 2, then Proposition 2.3(2) shows that Y = SX

for some indecomposable nonprojective R-module X. Thus Ext2Λ(Y,Λ) = SτX holds by

Lemma 2.4(2), and the assertion follows from Proposition 2.3(4). □

We also need the following general result on algebras of global dimension 2.

Lemma 2.6. Let Λ be an algebra with gl.dim Λ ≤ 2 and Y ∈ modΛ. Then Y ∗∗ is

a projective Λ-module.

Proof. Let Q1 → Q0 → Y → 0 be a projective presentation of Y . Applying

(−)∗, we obtain an exact sequence 0 → Y ∗ → Q∗
0 → Q∗

1. Hence Y ∗ is a projective

Λop-module, since Q∗
0 and Q∗

1 are projective Λop-modules and gl.dim Λ ≤ 2. Thus Y ∗∗

is a projective Λ-module. □

By the lemma above we obtain the following.

Lemma 2.7. Let Λ be an Auslander algebra, and let Y be a Λ-module with

proj.dim Y ≤ 1. Then the evaluation map φY : Y → Y ∗∗ is injective, and the pro-

jective dimension of any composition factor of Y ∗∗/Y is 2.

Proof. By [AuB], we get an exact sequence 0→ Ext1Λop(TrY,Λ)→ Y → Y ∗∗ →
Ext2Λop(TrY,Λ) → 0. Then the latter assertion holds by Lemma 2.5. We prove the

former one in two steps.

(1) We show that the projective dimension of any composition factor of TrY is 2.

It suffices to show that HomΛop(P,TrY ) = 0 holds for the projective cover P of any

simple Λop-module S with proj.dim S ≤ 1. By Proposition 2.3(3), P = P I for some

injective R-module I. On one hand, take a minimal projective resolution of Y :

0→ PX1

Pf→ PX0 → Y → 0. (2.5)

SinceM is a generator, then we get an R-module monomorphism f : X1 → X0. Applying

HomR(−, I), one has an epimorphism

HomR(X0, I)→ HomR(X1, I). (2.6)

On the other hand, applying the functor (−)∗ to (2.5), we get an exact sequence PX0 →
PX1 → TrY → 0. Then applying the functor HomΛop(P I ,−), one obtains an exact

sequence

HomΛop(P I , PX0)→ HomΛop(P I , PX1)→ HomΛop(P I ,TrY )→ 0.
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This can be rewritten as HomR(X0, I)→ HomR(X1, I)→ HomΛop(P I ,TrY )→ 0. Thus

we obtain HomΛop(P I ,TrY ) = 0 by (2.6).

(2) Now we prove the assertion. By (1) and Proposition 2.3(4), any composition

factor of TrY has the form SX for some indecomposable noninjective R-module X. By

the dual of Lemma 2.4(1), we have Ext1Λop(SX ,Λ) = 0. Thus Ext1Λop(TrY,Λ) = 0. □

In the rest of this section, Λ is an arbitrary algebra. In the following we recall some

basic properties of tilting modules. We begin with the definition of tilting modules.

Definition 2.8. We call T ∈ modΛ a tilting module if T satisfies the following

conditions:

(T1) proj.dim T ≤ 1.

(T2) Ext1Λ(T, T ) = 0.

(T3) There exists a short exact sequence 0→ Λ→ T0 → T1 → 0 with T0, T1 ∈ addT .

The condition (T3) is equivalent to

(T3′) The number of non-isomorphic direct summands of T is equal to that of Λ.

Now let us recall some general properties of tilting modules [HaU].

Lemma 2.9. Let T be a tilting Λ-module, and let 0 → Q1 → Q0 → T → 0 be a

minimal projective resolution of T . Then we have the following :

(1) (addQ1) ∩ (addQ0) = 0 and add(Q0 ⊕Q1) = addΛ hold.

(2) For a simple Λ-module S, precisely one of HomΛ(T, S) = 0 and Ext1Λ(T, S) = 0

holds.

(3) For a simple Λop-module S, precisely one of T ⊗Λ S = 0 and TorΛ1 (T, S) = 0 holds.

We also have the following properties for the tensor products of tilting modules.

Proposition 2.10. Let T be a tilting Λ-module with Γ = EndΛ(T ).

(1) Let U be a tilting Γ-module. If TorΓi (U, T ) = 0 for any i > 0 and proj.dim(U⊗ΓT ) ≤
1, then U ⊗Γ T is a tilting Λ-module with EndΛ(U ⊗Γ T ) ∼= EndΓ(U).

(2) Let V be a tilting Λ-module. If ExtiΛ(T, V ) = 0 for any i > 0 and

proj.dim HomΛ(T, V )Γ ≤ 1, then HomΛ(T, V ) is a tilting Γ-module with

EndΓ(HomΛ(T, V )) ∼= EndΛ(V ).

Proof. (1) Since − ⊗L
Γ T : Db(modΓ) → Db(modΛ) is a triangle equivalence,

U ⊗L
Γ T is a tilting complex of Λ. Since TorΓi (U, T ) = 0 for any i > 0 by our assumption,

U ⊗Γ T ∼= U ⊗L
Γ T holds. Since proj.dim(U ⊗Γ T ) ≤ 1, the assertion holds. One can show

(2) similarly. □
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Denote by τ the AR-translation and denote by |N | the number of non-isomorphic

indecomposable direct summands of N for a Λ-module N . In the following we recall some

basic properties of τ -tilting theory. Firstly, we need the following definition in [AIR].

Definition 2.11. (1) We call N ∈ modΛ τ -rigid if HomΛ(N, τN) = 0.

(2) We call N ∈ modΛ τ -tilting if N is τ -rigid and |N | = |Λ|.

(3) We call N ∈ modΛ support τ -tilting if there exists a basic idempotent e of Λ such

that N is a τ -tilting (Λ/(e))-module. In this case, we call (N, eΛ) a support τ -tilting

pair.

It is clear that every tilting Λ-module is a τ -tilting Λ-module, and hence a support

τ -tilting module. Moreover, it is showed in [AIR] that tilting Λ-modules are exactly

faithful support τ -tilting modules. Clearly any support τ -tilting pair (N, eΛ) satisfies

|N |+ |eΛ| = |Λ|.
For a torsion class T in modΛ, we denote by P (T ) the direct sum of one copy of

each of the indecomposable Ext-projective objects in T up to isomorphism. The following

properties of τ -rigid modules are important.

Definition-Proposition 2.12 ([AIR, Theorem 2.10]). Let Λ be an algebra and

let U be a τ -rigid module. Then T = P (⊥τU) is a τ -tilting Λ-module, where ⊥τU consists

of Λ-modules X satisfying HomΛ(X, τU) = 0. We call T the Bongartz completion of U .

Recall that sτ -tiltΛ is the set of isomorphism classes of basic support τ -tilting Λ-

modules. For a Λ-module X, we define a full subcategory of modΛ by

FacX = {Y ∈ modΛ | There exists an epimorphism Xn → Y for some n ≥ 0}.

Now we define the partial order on sτ -tiltΛ as follows:

Definition 2.13. For basic support τ -tilting Λ-modules T,U , we write T ≤ U if

FacT ⊆ FacU . Then the relation ≤ gives a partial order on the set sτ -tiltΛ by [AIR,

Theorem 2.7]. We call this partial order a generation order.

Clearly Λ is a unique maximal element and 0 is a unique minimal element in sτ -tiltΛ.

We now recall the Hasse quiver of general posets.

Definition 2.14. The Hasse quiver H(P ) of a poset (P,≤) is defined as follows:

(1) The vertices are the elements of the poset P .

(2) For X,Y ∈ P , there is an arrow X → Y if and only if X > Y and there is no Z ∈ P

satisfying X > Z > Y .

The following observation is clear.

Lemma 2.15. Two partial orders on a finite set are the same if and only if their

Hasse quivers are the same.
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Now it is time to recall the mutations of support τ -tilting modules from [AIR].

Definition 2.16. Let T, T ′ ∈ sτ -tiltΛ. We call T ′ a mutation of T if T and T ′

have the same indecomposable direct summands except one. Precisely speaking, one of

the following three cases occurs, where (T, P ) and (T ′, P ′) are the support τ -tilting pairs.

(1) T = V ⊕X and T ′ = V ⊕X ′ with X ̸∼= X ′ indecomposable;

(2) T = T ′ ⊕X and P ′ = P ⊕Q′ with X and Q′ indecomposable;

(3) T ′ = T ⊕X ′ and P = P ′ ⊕Q with X ′ and Q indecomposable.

We call T ′ a mutation of T at X in cases (1) and (2), and at Q in case (3). It is uniquely

determined by T and the indecomposable direct summand X or Q of T or P respectively.

We call T ′ a left mutation (resp. right mutation) of T if FacT ′ ⊊ FacT (resp.

FacT ′ ⊋ FacT ).

In the following we give a method of calculating left mutations of support τ -tilting

modules due to Adachi, Iyama and Reiten [AIR].

Theorem 2.17 ([AIR, Theorem 2.30], [Zh, Theorem 1.2]). Let T = V ⊕ X be

a basic τ -tilting Λ-module which is the Bongartz completion of V , where X is inde-

composable. Let X
f→ V ′ g→ Y → 0 be an exact sequence, where f is a minimal left

(addV )-approximation. Then Y is either indecomposable or zero, and V ⊕ Y is a left

mutation of T at X in both cases.

Now let us recall the relationship between mutations and the Hasse quiver, which is

given in [HaU], [RS] for tiltΛ and in [AIR] for sτ -tiltΛ.

Theorem 2.18. Let T,U ∈ sτ -tiltΛ (resp. tiltΛ). The following are equivalent.

(1) T is a left mutation of U .

(2) U is a right mutation of T .

(3) U > T and there is no V ∈ sτ -tiltΛ (resp. tiltΛ) such that U > V > T .

(4) There is an arrow from U to T in H(sτ -tiltΛ) (resp. H(tiltΛ)).

The following result [AIR, Corollary 2.38] gives a method of judging an algebra to

be τ -tilting finite.

Proposition 2.19. If H(sτ -tiltΛ) admits a finite connected component C, then

H(sτ -tiltΛ) = C.

3. Tilting modules over the Auslander algebra of K[x]/(xn).

Throughout this section, let R = K[x]/(xn) be a factor algebra of the polynomial

ring K[x] with n ≥ 1, and Λ the Auslander algebra of R. Then the AR-quiver of R is

K // K[x]/(x2) //oo K[x]/(x3) //oo · · · //oo K[x]/(xn−1) //oo K[x]/(xn),oo



740(68)

740 O. Iyama and X. Zhang

and the Auslander algebra Λ is presented by the quiver

1
a1 // 2

a2 //
b2

oo 3
a3 //

b3

oo · · ·
an−2 //

b4

oo n− 1
an−1 //

bn−1

oo n
bn

oo

with relations a1b2 = 0 and aibi+1 = biai−1 for any 2 ≤ i ≤ n − 1. In this section, we

classify all tilting Λ-modules.

Denote by {e1, . . . , en} a complete set of primitive orthogonal idempotents of Λ and

denote by Pi = eiΛ (resp. P i = Λei) the indecomposable projective Λ-module (resp.

Λop-module). It is easy to see that P1, P2, . . . , Pn have the following composition series

(see n = 4 for example).

[ P1 | P2 | P3 | P4 ] =

 1
2
3
4

∣∣∣∣∣∣∣
2

1 3
2 4
3
4

∣∣∣∣∣∣∣
3

2 4
1 3
2 4
3
4

∣∣∣∣∣∣∣
4

3
2 4

1 3
2 4
3
4

 .

For 1 ≤ i ≤ n, we denote by Ii the two-sided ideal generated by 1 − ei. This is a

maximal left ideal and also a maximal right ideal since there are no loops at the vertex

i. Thus we have direct sum decompositions

Ii = P1 ⊕ · · · ⊕ (radPi)⊕ · · · ⊕ Pn = P 1 ⊕ · · · ⊕ (radP i)⊕ · · · ⊕ Pn.

Furthermore, for 1 ≤ i ≤ n, we define a (Λ,Λ)-bimodule by Si = Λ/Ii. Clearly we have

the following.

Proposition 3.1. Let Λ be the Auslander algebra of K[x]/(xn). Then one gets

the following.

(1) As a Λ-module Si
∼= Pi/ radPi is simple. As a Λop-module Si

∼= P i/ radP i is simple.

(2) There exists an isomorphism Pn
∼= DPn of Λ-modules. Thus Pn is a projective-

injective Λ-module.

(3) For 1 ≤ i ≤ n− 1, there exist minimal projective resolutions of Λ-modules

0→ Pi → Pi−1 ⊕ Pi+1 → Pi → Si → 0 and 0→ Pi → Pi−1 ⊕ Pi+1 → radPi → 0.

(4) There exist minimal projective resolutions of Λ-modules

0→ Pn−1 → Pn → Sn → 0 and 0→ Pn−1 → radPn → 0.

Proof. (1) is clear. (3) and (4) are immediate from Proposition 2.3 and the

AR-quiver of R above.

(2) Since R is a symmetric K-algebra, we have an isomorphism HomR(−, R) ∼=
DHomR(R,−) of functors. This gives the desired isomorphism. □

We need the following properties of tilting Λ-modules.
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Lemma 3.2. Let X be a Λ-module. For 1 ≤ i ≤ n − 1, there exist isomorphisms

Ext2Λ(Si, X) ∼= X ⊗Λ Si and Ext1Λ(Si, X) ∼= Tor1Λ(X,Si). If X is tilting, then precisely

one of them is zero.

Proof. Since each indecomposable nonprojective R-module is τ -stable, we have

ExtjΛ(Si, X) ∼= TorΛ2−j(X,Si) for j = 1, 2 by Lemma 2.4(2). The latter statement follows

from Proposition 2.9(3). □

Now we are in a position to show the following proposition.

Proposition 3.3. For 1 ≤ i ≤ n − 1, Ii is a tilting Λ-module and a tilting Λop-

module.

Proof. We only prove the case of a Λ-module since the case of a Λop-module is

similar. By definition, we have Ii = (
⊕

j ̸=i Pj)⊕ radPi.

(T1) By Proposition 3.1(3), we have proj.dim radPi ≤ 1. Thus proj.dim Ii ≤ 1.

(T2) It suffices to show that Ext1Λ(radPi, Ii) = 0. Since there exists an exact

sequence 0 → radPi → Pi → Si → 0, we have Ext2Λ(Si, Ii) ∼= Ext1Λ(radPi, Ii).

By Lemma 3.2, we have Ext2Λ(Si, Ii) ∼= Ii ⊗Λ Si. On the other hand, we have

Pj ⊗Λ Si = ejΛ ⊗Λ Si = ejSi = 0 for any j ̸= i. By Proposition 3.1(3), there ex-

ists an exact sequence 0 = (Pi−1 ⊕ Pi+1) ⊗Λ Si → (radPi) ⊗Λ Si → 0. Thus we have

(radPi)⊗Λ Si = 0 and Ii ⊗Λ Si = 0.

(T3) By Proposition 3.1(3), there exists an exact sequence 0 → Λ → (
⊕

j ̸=i Pj) ⊕
Pi−1 ⊕ Pi+1 → radPi → 0. The middle and right terms of this sequence are contained

in addIi. □

Notice that In is not a tilting Λ-module. In fact In = (
⊕n−1

i=1 Pi) ⊕ (radPn) and

radPn
∼= Pn−1 hold by Proposition 3.1(4), and hence |In| = n − 1. This is not possible

for tilting Λ-modules.

To show that any multiplication of ideals I1, . . . , In−1 is a tilting Λ-module, we now

prepare the following.

Proposition 3.4. (1) For 1 ≤ i ≤ n, we have HomΛ(Ii, Si) = 0.

(2) For 1 ≤ i ≤ n− 1, the left multiplication Λ→ EndΛ(Ii) and the right multiplication

Λop → EndΛop(Ii) are isomorphisms.

Proof. (1) For j ̸= i, we have HomΛ(Pj , Si) = 0. Further, by Proposition 3.1(3)

and (4), one gets HomΛ(radPi, Si) = 0. Thus we have HomΛ(Ii, Si) = 0.

(2) Applying HomΛ(−,Λ) to a short exact sequence

0→ Ii → Λ→ Si → 0 (3.1)

yields a long exact sequence 0 → HomΛ(Si,Λ) → HomΛ(Λ,Λ) → HomΛ(Ii,Λ) →
Ext1Λ(Si,Λ) → 0. Then by Lemma 2.4, we have HomΛ(Si,Λ) = Ext1Λ(Si,Λ) = 0, and

hence HomΛ(Ii,Λ) ∼= HomΛ(Λ,Λ) ∼= Λ. On the other hand, applying HomΛ(Ii,−)
to the short exact sequence (3.1), one gets an exact sequence 0 → HomΛ(Ii, Ii) →
HomΛ(Ii,Λ)→ HomΛ(Ii, Si). Using (1), we have EndΛ(Ii) ∼= HomΛ(Ii,Λ) ∼= Λ. □
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From the argument above, we have the following proposition on the multiplication

of tilting Λ-modules.

Proposition 3.5. Let T be a tilting Λ-module and 1 ≤ i ≤ n− 1. Then we have

the following.

(1) If TIi ̸= T , then TIi ∼= T ⊗Λ Ii = T ⊗L
Λ Ii.

(2) TIi is a tilting Λ-module, and EndΛ(TIi) ∼= EndΛ(T ).

Proof. (1) Since TIi ̸= T , then T ⊗ΛSi
∼= T/TIi ̸= 0, and we have TorΛ1 (T, Si) =

0 by Proposition 2.9(3). Applying T ⊗Λ − to the short exact sequence 0 → Ii → Λ →
Si → 0, one gets an exact sequence 0 = TorΛ1 (T, Si) → T ⊗Λ Ii → T ⊗Λ Λ ∼= T . Thus

the natural map T ⊗Λ Ii → T is injective and has the image TIi. Thus we obtain

T ⊗Λ Ii ∼= TIi. Moreover, we have TorΛj (T, Ii)
∼= TorΛj+1(T, Si) = 0 for j ≥ 1 since

proj.dim T ≤ 1. Thus T ⊗Λ Ii = T ⊗L
Λ Ii.

(2) If TIi = T , then the assertion is clear. Now assume that TIi ̸= T . Since

we have EndΛ(Ii) ∼= Λ by Proposition 3.4, T ⊗Λ Ii ∼= TIi is a tilting module with

EndΛ(T ) ∼= EndΛ(TIi) by (1) and Proposition 2.10(1). □

Denote by ⟨I1, . . . , In−1⟩ the set of ideals of Λ given by products of I1, . . . , In−1,

where the empty product Λ is also contained in this set. Now we can state the following

result.

Theorem 3.6. Any ideal T in ⟨I1, . . . , In−1⟩ is a basic tilting Λ-module and a basic

tilting Λop-module. The left multiplication Λ → EndΛ(T ) and the right multiplication

Λop → EndΛop(T ) are isomorphisms.

Proof. We only prove the case of a Λ-module since the case of a Λop-module is

similar.

By Proposition 3.3, each of I1, . . . , In−1 is a tilting Λ-module such that the left

multiplication Λ → EndΛ(Ii) is an isomorphism. Assume that T = Ii1Ii2 · · · Iik−1
is

a tilting Λ-module such that the left multiplication Λ → EndΛ(T ) is an isomorphism.

Then, according to Proposition 3.5(2), we obtain that TIik is a tilting Λ-module such

that the left multiplication Λ → EndΛ(TIik) is an isomorphism. In particular, TIik is

basic. Thus we get the assertion inductively. □

By Theorem 3.6, any element in ⟨I1, . . . , In−1⟩ is a basic tilting Λ-module. In the

following we show the converse, that is, all basic tilting Λ-modules are in ⟨I1, . . . , In−1⟩.
For this aim, we start with the following.

Proposition 3.7. Let T be a tilting Λ-module, and 1 ≤ i ≤ n− 1. Then we have

the following :

(1) HomΛ(Si, T ) = 0.

(2) proj.dim HomΛ(Ii, T ) ≤ 1.

(3) There exist natural inclusions T ⊆ HomΛ(Ii, T ) ⊆ T ∗∗ = HomΛ(Ii, T )
∗∗.
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(4) HomΛ(Ii, T )/T ∼= Ext1Λ(Si, T ). If T ⊊ HomΛ(Ii, T ), then HomΛ(Ii, T )Ii = T .

(5) HomΛ(Ii, T ) is a tilting Λ-module, and EndΛ(HomΛ(Ii, T )) ∼= EndΛ(T ) holds.

(6) If T is not a projective Λ-module, then there exists 1 ≤ i ≤ n − 1 such that T ⊊
HomΛ(Ii, T ).

Proof. We firstly note by Lemma 2.6 that T ∗∗ is a projective Λ-module. By

Lemma 2.4, we have ExtjΛ(Si,Λ) = 0 = ExtjΛ(Si, T
∗∗) for j ̸= 2. These facts will be used

freely in this proof.

(1) By Lemma 2.7, we have an exact sequence

0→ T
φT−−→ T ∗∗ → T ∗∗/T → 0. (3.2)

Applying the functor HomΛ(Si,−), one gets HomΛ(Si, T ) = 0.

(2) Applying HomΛ(−, T ∗∗) to the short exact sequence 0 → Ii → Λ → Si → 0,

we have an exact sequence 0 = HomΛ(Si, T
∗∗) → HomΛ(Λ, T

∗∗) → HomΛ(Ii, T
∗∗) →

Ext1Λ(Si, T
∗∗) = 0. Thus HomΛ(Ii, T

∗∗) ∼= T ∗∗ is a projective Λ-module. Then applying

the functor HomΛ(Ii,−) to the sequence (3.2), one gets that HomΛ(Ii, T ) is a submodule

of the projective Λ-module HomΛ(Ii, T
∗∗). Since gl.dim Λ ≤ 2, any submodule of a

projective module has projective dimension at most 1.

(3) Applying HomΛ(−, T ) to the exact sequence 0 → Ii → Λ → Si → 0 of (Λ,Λ)-

bimodules, we obtain an exact sequence

0→ HomΛ(Λ, T )→ HomΛ(Ii, T )→ Ext1Λ(Si, T )→ 0→ Ext1Λ(Ii, T )→ Ext2Λ(Si, T )→ 0

(3.3)

of Λ-modules by (1). Since the Λop-module Si is annihilated by Ii, the Λ-module

Ext1Λ(Si, T ) is annihilated by Ii and hence isomorphic to Sm
i for some m ≥ 0. Hence

(3.3) gives an exact sequence 0 → T → HomΛ(Ii, T ) → Sm
i → 0. Applying

(−)∗ = HomΛ(−,Λ), we obtain an exact sequence 0 = (Sm
i )∗ → HomΛ(Ii, T )

∗ → T ∗ →
Ext1Λ(S

m
i ,Λ) = 0. In particular, we have T ∗∗ ∼= HomΛ(Ii, T )

∗∗ and the commutative

diagram

0 // T //

φT

��

HomΛ(Ii, T ) //

φHomΛ(Ii,T )

��

// Sm
i

// 0.

T ∗∗ HomΛ(Ii, T )
∗∗

By (2) and Lemma 2.7, φHomΛ(Ii,T ) is a monomorphism and hence (3) follows.

(4) The former assertion is immediate from the exact sequence (3.3). Since

Ext1Λ(Si, T ) ∼= Sm
i is annihilated by Ii, we have TIi ⊆ HomΛ(Ii, T )Ii ⊆ T . For

the latter assertion, notice that TorΛ1 (T, Si) ∼= Ext1Λ(Si, T ) ̸= 0 by Lemma 3.2. Since

T/TIi ∼= T ⊗Λ Si = 0 holds by Lemma 2.9(3), we obtain HomΛ(Ii, T )Ii = T .

(5) If T = HomΛ(Ii, T ), then it is obvious. Assume that T ̸= HomΛ(Ii, T ). By

(2) and Propositions 3.4(2) and 2.10(2), it suffices to prove that ExtjΛ(Ii, T ) = 0 for

any j > 0. We only have to consider the case j = 1 since proj.dim Ii ≤ 1. We have



744(72)

744 O. Iyama and X. Zhang

Ext1Λ(Si, T ) ̸= 0 by (4), and hence Ext1Λ(Ii, T )
∼= Ext2Λ(Si, T ) = 0 holds by Lemma 3.2.

Thus (5) follows.

(6) By our assumption and Lemma 2.6, T ̸= T ∗∗ holds. By Lemma 2.7 and Proposi-

tion 3.1, we can take a simple submodule Si of T
∗∗/T for some 1 ≤ i ≤ n− 1. Applying

HomΛ(Si,−) to the exact sequence (3.2), we get an exact sequence 0 = HomΛ(Si, T
∗∗)→

HomΛ(Si, T
∗∗/T ) → Ext1Λ(Si, T ). Thus Ext1Λ(Si, T ) ̸= 0 by our choice of Si. Thus

HomΛ(Ii, T )/T ∼= Ext1Λ(Si, T ) ̸= 0 holds by (4), and we have T ⊊ HomΛ(Ii, T ). □

Lemma 3.8. Let T ∈ ⟨I1, . . . , In−1⟩, and let fT : T → Λ be a natural inclusion.

Then in the following commutative diagram, φΛ and f∗∗
T are isomorphisms.

T
φT //

fT
��

T ∗∗

f∗∗
T

��
Λ

φΛ // Λ∗∗.

Proof. Since Λ is projective, it is clear that φΛ is an isomorphism.

Any composition factor of the Λ-module Λ/T has a form Si for some 1 ≤ i ≤ n− 1.

By Lemma 2.4, we have ExtjΛ(Λ/T,Λ) = 0 for j ̸= 2. Applying (−)∗ = HomΛ(−,Λ)
to the exact sequence 0 → T

fT−−→ Λ → Λ/T → 0, we have an exact sequence 0 =

(Λ/T )∗ → Λ∗ f∗
T−−→ T ∗ → Ext1Λ(Λ/T,Λ) = 0. Thus f∗

T is an isomorphism and hence f∗∗
T

is an isomorphism. □

Now we are in a position to state our first main result in this section.

Theorem 3.9. Let Λ be the Auslander algebra of K[x]/(xn). Then

(1) For any tilting Λ-module T , there exists U ∈ ⟨I1, . . . , In−1⟩ such that addT = addU .

(2) If two elements T and U in ⟨I1, . . . , In−1⟩ are isomorphic as Λ-modules, then T = U .

(3) The set tiltΛ is given by ⟨I1, . . . , In−1⟩.

(4) The statements (1), (2) and (3) hold also for Λop-modules.

Proof. (1) By Proposition 3.7(3), (4), (5) and (6), there exists a finite sequence

of tilting Λ-modules

T = T0 ⊊ T1 ⊊ · · · ⊊ Tm = T ∗∗

and i1, . . . , im ∈ {1, . . . , n−1} such that Tk+1 = HomΛ(Iik+1
, Tk) and Tk = Tk+1Iik+1

for

any 0 ≤ k ≤ m − 1. In particular, we have T = T1Ii1 = T2Ii2Ii1 = · · · = TmIim · · · Ii1 .
Because T ∗∗ is a projective tilting Λ-module by Lemma 2.6, we have addTm = addΛ.

Thus addT = addU holds for U := Iim · · · Ii1 ∈ ⟨I1, . . . , In−1⟩.
(2) For T,U ∈ ⟨I1, . . . , In−1⟩, assume that there exists a Λ-module isomorphism

g : T ∼= U .

By Lemma 3.8, there exists a commutative diagram
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T
g

∼
//

φT

��

fT

}}{{
{{
{{
{{

U

φT

��

fU

!!C
CC

CC
CC

C

Λ T ∗∗
g∗∗
∼ //

eT
oo U∗∗

eU
// Λ

where eT := φ−1
Λ f∗∗

T and eU := φ−1
Λ f∗∗

U are isomorphisms. Putting h = eUg
∗∗e−1

T : Λ→
Λ, we have a commutative diagram

T
g //

fT
��

U

fU
��

Λ
∼
h

// Λ.

Since h is given by the left multiplication of an invertible element x ∈ Λ, so is g. Since

T is an ideal of Λ, we have U = xT = T .

(3) This is a consequence of (1), (2) and Theorem 3.6.

(4) One can prove it similarly to (1), (2) and (3). □

The mutations of tilting Λ-modules are described by the following result. Notice

that we use the structure of Λop-modules when we consider mutations of Λ-modules.

Proposition 3.10. Let T ∈ ⟨I1, . . . , In−1⟩.

(1) For each 1 ≤ i ≤ n− 1, precisely one of the following statements (a) and (b) holds.

(a) IiT ̸= T and HomΛop(Ii, T ) = T hold, and IiT = Ii ⊗Λ T is a left mutation of

T at eiT .

(b) IiT = T and HomΛop(Ii, T ) ̸= T hold, and HomΛop(Ii, T ) is a right mutation of

T at eiT .

(2) All mutations of T in tiltΛ are of the form (1). In particular, T has precisely n− 1

mutations in tiltΛ.

(3) The corresponding statements to (1) and (2) hold for Λop-modules.

Proof. (1) Applying Proposition 3.5(2) and Proposition 3.7(5) to the tilting

Λop-module T , we have that IiT and HomΛop(Ii, T ) are tilting Λop-modules with

EndΛop(IiT ) ∼= EndΛop(T ) ∼= EndΛop(HomΛop(Ii, T )). Since EndΛop(T ) ∼= Λop holds

by Theorem 3.6, we have that IiT and HomΛop(Ii, T ) are tilting Λ-modules. Further we

know that

IiT =
n⊕

j=1

ejIiT and HomΛop(Ii, T ) =
n⊕

j=1

HomΛop(Iiej , T ).

Since ejIi = ejΛ and Iiej = Λej hold for any j ̸= i, the indecomposable direct summands

of IiT (resp. HomΛop(Ii, T )) coincide with those of T except one. By Theorem 2.18, IiT

(resp. HomΛop(Ii, T )) is either isomorphic to T or a mutation of T . We have
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IiT ∼= T ⇐⇒ Si ⊗Λ T = 0,

HomΛop(Ii, T ) ∼= T ⇐⇒ Ext1Λop(Si, T ) = 0

by Proposition 3.7. Thus precisely one of these conditions holds by Lemma 3.2.

It remains to decide whether the mutation is left or right. We only have to show

HomΛop(Ii, T ) ≥ T ≥ IiT . Taking an epimorphism Λm → Ii of Λ-modules, we have an

epimorphism Tm → IiT . Thus, we have T ≥ IiT . If U := HomΛop(Ii, T ) ⊋ T , then we

have IiU = T by Proposition 3.7. Thus we have HomΛop(Ii, T ) = U ≥ T .

(2) Any basic tilting Λ-module has precisely n indecomposable direct summands.

Since Pn is injective by Proposition 3.1, it is a direct summand of any tilting Λ-module.

Therefore the number of mutations of T in tiltΛ is at most n− 1, while we have at least

n− 1 mutations in tiltΛ by (1).

(3) One can prove it similarly to (1) and (2). □

Immediately we have the following description of the Hasse quiver of tilting Λ-

modules.

Corollary 3.11. The Hasse quiver of tiltΛ has the set ⟨I1, . . . , In−1⟩ of vertices.
All arrows starting or ending at T ∈ ⟨I1, . . . , In−1⟩ are given by

µi(T ) := HomΛop(Ii, T ) −→ T if T = IiT,

T −→ µi(T ) := IiT if T ̸= IiT

for each 1 ≤ i ≤ n − 1, where µi(T ) is the mutation of T at the direct summand eiT

(Definition 2.16). Thus the number of arrows starting or ending at T is precisely n− 1.

We have shown that the set tiltΛ is given by ⟨I1, . . . , In−1⟩. In the following we give

an explicit description of this set. Let us start with the following elementary observation.

Proposition 3.12. Let A be a basic finite dimensional algebra, {e1, . . . , en} a

complete set of orthogonal primitive idempotents of A, and S1, . . . , Sn the corresponding

simple A-modules. For a subset J of {1, . . . , n}, we put

eJ =
∑
i∈J

ei and IJ = A(1− eJ)A.

Then for any X ∈ modA, we have that XIJ is the minimum amongst submodules Y of

X satisfying the following condition :

(♯) Any composition factor of X/Y has the form Si for some i ∈ J .

Proof. Since HomA((1− eJ)A,X) ∼= X(1− eJ ), we have

XIJ = X(1− eJ )A =
∑

f∈HomA((1−eJ )A,X)

Im f.

The condition (♯) holds if and only if HomA((1 − eJ )A,X/Y ) = 0 holds if and only if

Im f ⊆ Y holds for any f ∈ HomA((1− eJ )A,X) if and only if XIJ ⊆ Y . □
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We have the following relations for the multiplication of ideals I1, . . . , In−1.

Proposition 3.13. Let Ii be the maximal ideal of Λ as above. Then the following

relations hold for any 1 ≤ i, j ≤ n− 1.

(1) I2i = Ii.

(2) If |i− j| ≥ 2, then IiIj = IjIi.

(3) If |i− j| = 1, then IiIjIi = IjIiIj.

Proof. (1) The assertion is clear from Ii = Λ(1− ei)Λ.

(2)(3) For 1 ≤ i ̸= j ≤ n − 1, put Ii,j = Λ(1 − ei − ej)Λ. Removing all vertices

except i and j from the quiver with relations of Λ, we have the quiver with relations of

Λ/Ii,j . In particular, if |i− j| ≥ 2, then Λ/Ii,j ∼= K ×K. If |i− j| = 1, then Λ/Ii,j is

given by the quiver i
a // j
b

oo with relations ab = 0 = ba and hence Λ/Ii,j =
[
i
j

∣∣ j
i

]
.

We prove (2). By Proposition 3.12, IiIj ⊇ Ii,j . Since Λ/Ii,j ∼= K × K, we have

IiIj/Ii,j = 0. Hence IiIj = Ii,j holds, and similarly we have IjIi = Ii,j . Thus IiIj =

Ii,j = IjIi.

We prove (3). By Proposition 3.12, IiIjIi ⊇ Ii,j . Since Λ/Ii,j =
[
i
j

∣∣ j
i

]
, we have

IiIjIi/Ii,j = 0. Hence IiIjIi = Ii,j holds, and similarly we have IjIiIj = Ii,j . Thus

IiIjIi = Ii,j = IjIiIj . □

Now we recall some well-known properties of the symmetric groups. We consider

the action of Sn on Rn given by permuting the standard basis e1, . . . , en. Then Sn acts

on the subspace

V :=

{
x1e1 + · · ·+ xnen ∈ Rn

∣∣∣∣ n∑
i=1

xi = 0

}
,

which has a basis αi := ei − ei+1 with 1 ≤ i ≤ n − 1. Clearly the action of Sn on V

is faithful, and we have an injective homomorphism Sn → GL(V ) called the geometric

representation.

Let si be the transposition (i, i + 1) ∈ Sn. The following elementary fact plays an

important role in the proof of our main theorem.

Proposition 3.14. Let Sn be the symmetric group of degree n and Sn ∋ w. Then

we have the following :

(1) [BjB, Theorem 3.3.1] Any expression si1si2 · · · sil of w can be transformed into a

reduced expression of w by applying the following operations (a), (b), (c) repeatedly.

(a) Remove sisi in the expression.

(b) Replace sisj with |i− j| ≥ 2 by sjsi in the expression.

(c) Replace sisjsi with |i− j| = 1 by sjsisj in the expression.

(2) [BjB, Theorem 3.3.1] Every two reduced expressions of w can be transformed into

each other by applying the operations (b) and (c) repeatedly.
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(3) If w = si1si2 · · · sil is a reduced expression, then si1 · · · sik(αik+1
) is a positive root

for any 0 ≤ k ≤ l − 1.

We also need the following proposition.

Proposition 3.15. There exists a well-defined surjective map Sn → ⟨I1, . . . , In−1⟩
which maps w to I(w) = Ii1 · · · Iil , where w = si1 · · · sil is an arbitrary reduced expression.

Proof. First, we show that the map is well-defined. Take two reduced expressions

w = si1 · · · sil = sj1 · · · sjl of w. These two expressions are transformed into each other

by the operation (b) and (c) in Proposition 3.14. Then by Proposition 3.13, we obtain

Ii1 · · · Iil = Ij1 · · · Ijl .
Next we show that the map is surjective. For any I ∈ ⟨I1, . . . , In−1⟩, we take a

minimal number l such that I = Ii1 · · · Iil holds for some i1, . . . , il ∈ {1, . . . , n− 1}. Now

we put w := si1 · · · sil . This expression is transformed into a reduced expression of w

by applying (a), (b) and (c) in Proposition 3.14. Since l is minimal, then (a) would not

happen. Therefore w = si1 · · · sil is a reduced expression and we have I = I(w). □

Since I(w) is a tilting Λ-module with EndΛ(I(w)) ∼= Λ for any w ∈ Sn by Proposi-

tion 3.15, we have an autoequivalence

−⊗L
Λ I(w) : Db(modΛ)→ Db(modΛ)

whose quasi-inverse is given by RHomΛ(I(w),−). We define a thick subcategory T of

Db(modΛ) by

T := {X ∈ Db(modΛ) | ∀i ∈ Z Hi(X)en = 0}.

The Grothendieck group K0(T ) is a free abelian group with basis [S1], . . . , [Sn−1]. We

identify V with R⊗Z K0(T ) by αi = [Si] for any 1 ≤ i ≤ n− 1.

Lemma 3.16. (1) We have an induced autoequivalence −⊗L
Λ I(w) : T → T .

(2) We have [−⊗L
Λ Ii] = si in GL(V ) for any 1 ≤ i ≤ n− 1.

Proof. (1) We have a triangle I(w)→ Λ→ Λ/I(w)→ I(w)[1] in D(modΛop ⊗K

Λ). Applying X ⊗L
Λ− for X ∈ T , we have a triangle

X ⊗L
Λ I(w)→ X → X ⊗L

Λ(Λ/I(w))→ X ⊗L
Λ I(w)[1] (3.4)

in Db(modΛ). Since both X and X ⊗L
Λ(Λ/I(w)) belong to T , so is X ⊗L

Λ I(w). Thus

T ⊗L
Λ I(w) ⊆ T holds. Similarly one can show RHomΛ(I(w), T ) ⊆ T . Therefore the

assertion follows.

(2) For X ∈ Db(modΛ) and Y ∈ Db(modΛop), let χ(X,Y ) :=
∑

k∈Z(−1)k dimK

Hk(X ⊗L
Λ Y ). Then
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χ(Sj , Si) =


2 i = j

−1 |i− j| = 1

0 |i− j| ≥ 2

holds for any 1 ≤ j ≤ n− 1. We have [Sj ⊗L
Λ Ii] = [Sj ]− [Sj ⊗L

Λ Si] = [Sj ]− χ(Sj , Si)[Si]

by applying (3.4) to X = Sj and w = si. Thus the assertion follows easily. □

We have the following key observations.

Proposition 3.17. Let w ∈ Sn and w = si1si2 · · · sil a reduced expression.

(1) We have [−⊗L
Λ I(w)] = w−1 in GL(V ).

(2) We have Iil ⊋ Iil−1
Iil ⊋ · · · ⊋ Ii1 · · · Iil and I(w) = Ii1 ⊗L

Λ · · · ⊗L
Λ Iil .

(3) Let 1 ≤ j ≤ n− 1. Then l(sjw) > l(w) if and only if I(sjw) < I(w).

Proof. The assertion (2) implies (1) since Lemma 3.16(2) implies [−⊗L
Λ I(w)] =

[−⊗L
Λ Iil ] ◦ · · · ◦ [−⊗L

Λ Ii2 ] ◦ [−⊗L
Λ Ii1 ] = sil · · · si2si1 = w−1.

We prove (2) inductively. This is clear for l = 1. For u := si2 · · · sil , we assume Iil ⊋
Iil−1

Iil ⊋ · · · ⊋ Ii2 · · · Iil and I(u) = Ii2 ⊗L
Λ · · · ⊗L

Λ Iil . Then [Si1 ⊗L
Λ I(u)] = u−1(αi1) =

sil · · · si2(αi1) is a positive root by Proposition 3.14(3). Hence Si1⊗Λ I(u) ̸= 0 holds, and

we have I(u) ⊋ Ii1I(u) = I(w). Thus Ii1 ⊗L
Λ I(u) = I(w) holds by Proposition 3.5(1),

and the assertion follows.

(3) It suffices to show that l(sjw) > l(w) implies that I(sjw) < I(w) by replacing

sjw with w if necessary. By (2) we have I(w) ⊋ I(sjw) = IjI(w). Then by Proposi-

tion 3.10(1)(a), we have I(siw) < I(w). □

Now we have the following main result in this section.

Theorem 3.18. (1) There exists a well-defined bijection Sn
∼= ⟨I1, . . . , In−1⟩

which maps w to I(w) = Ii1 · · · Iil , where w = si1 · · · sil is an arbitrary reduced

expression.

(2) Consequently, there exists a bijection I : Sn
∼= tiltΛ. In particular #tiltΛ = n!.

(3) The bijection I in (2) is an anti-isomorphism of posets with respect to the left order

on Sn and the generation order on tiltΛ.

Proof. (1) By Proposition 3.15, I is a well-defined surjective map. Now we show

that the map is injective. If I(w) = I(w′), then [−⊗L
Λ I(w)] = [−⊗L

Λ I(w′)] inGL(V ). By

Proposition 3.17(1), the images of w and w′ in GL(V ) are the same. Since Sn → GL(V )

is injective, we have w = w′.

(2) This is immediate from (1) and Theorem 3.9(3).

(3) In the Hasse quiver of the opposite of left order on Sn, arrows ending at w ∈ Sn

are given by w → siw with 1 ≤ i ≤ n−1 satisfying l(siw) > l(w). By Proposition 3.17(3),

the Hasse quiver of tiltΛ coincides with the opposite of the Hasse quiver of Sn. Thus I

is an anti-isomorphism by Lemma 2.15. □
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Immediately we have the following corollary.

Corollary 3.19. For any expression w = si1si2 · · · sil ∈ Sn, I(w) =

µi1µi2 · · ·µil(Λ) holds, where µi is defined in Corollary 3.11.

Proof. It suffices to show that, if l(siw) = l(w) + 1, then I(siw) = µi(I(w))

holds. Since I(siw) ̸∼= I(w) holds by Proposition 3.16(2), the assertion follows from

Theorem 3.10(1)(a). □

To compare with the Hasse quiver of tilting Λ-modules, we give the Hasse quiver of

the left order on the symmetric group Sn for n = 2, 3.

Example 3.20. We describe the Hasse quiver of the left order on S2 and S3.

(1) The Hasse quiver of the left order on S2 is the opposite of the following quiver:

id = [12] [21] = s1.//

(2) The Hasse quiver of the left order on S3 is the opposite of the following quiver:

id = [123]

s1 = [213] [132] = s2

s2s1 = [312] [231] = s1s2
s1s2s1 = [321] = s2s1s2

qqccccccccc
cc

--[[[[[[[[
[[[

�� ��
--[[[[[ qqccccc

By Corollary 3.11, we can describe the Hasse quiver of tilting modules over the

Auslander algebra Λ of K[x]/(xn) for n = 2, 3.

Example 3.21. Denote by Λi the Auslander algebra of K[x]/(xi) for i = 2, 3.

Then we have

(1) The Hasse quiver H(tiltΛ2) is the following:

Λ2 =
[
1
2

∣∣∣ 2
1
2

]
I1 =

[
2

∣∣∣ 2
1
2

]
.//

(2) The Hasse quiver H(tiltΛ3) is the following:
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Λ3 =

[
1
2
3

∣∣∣∣∣ 2
1 3
2
3

∣∣∣∣∣
3

2
1 3
2
3

]

I1 =

[
2
3

∣∣∣∣∣ 2
1 3
2
3

∣∣∣∣∣
3

2
1 3
2
3

] [
1
2
3

∣∣∣∣∣ 1 3
2
3

∣∣∣∣∣
3

2
1 3
2
3

]
= I2

I2I1 =

[
2
3

∣∣∣∣∣ 3
2
3

∣∣∣∣∣
3

2
1 3
2
3

] [
3

∣∣∣∣∣ 1 3
2
3

∣∣∣∣∣
3

2
1 3
2
3

]
= I1I2

I1I2I1 =

[
3

∣∣∣∣∣ 3
2
3

∣∣∣∣∣
3

2
1 3
2
3

]
= I2I1I2

rrfffffff
f

,,XXXXX
XX

�� ��

,,XXXX rrffff

4. Support τ -tilting modules over the Auslander algebra of K[x]/(xn).

Throughout this section, Λ is the Auslander algebra of K[x]/(xn). In this section,

we firstly construct a bijection from the symmetric group Sn+1 to the set sτ -tiltΛ of

isomorphism classes of basic support τ -tilting Λ-modules, and then we show that this is

an anti-isomorphism of posets. Recall that Λ is presented by the quiver

1
a1 // 2

a2 //
b2

oo 3
a3 //

b3

oo · · ·
an−2 //

b4

oo n− 1
an−1 //

bn−1

oo n
bn

oo

with relations a1b2 = 0 and aibi+1 = biai−1 for any 2 ≤ i ≤ n− 1. Let M be the ideal of

Λ generated by en, and Λ := Λ/M . Then we have M =
⊕n

i=1 Mi, where Mi = eiM . We

often use the functor

( ) := −⊗Λ Λ : modΛ→ modΛ.

For example, Λ and M in the case n = 4 are the following.

M =


4

∣∣∣∣∣∣∣ 4
3
4

∣∣∣∣∣∣∣
4

3
2 4
3
4

∣∣∣∣∣∣∣
4

3
2 4

1 3
2 4
3
4

 ⊆ Λ =

 1
2
3
4

∣∣∣∣∣∣∣
2

1 3
2 4
3
4

∣∣∣∣∣∣∣
3

2 4
1 3
2 4
3
4

∣∣∣∣∣∣∣
4

3
2 4

1 3
2 4
3
4

 .

We start with some facts on Sn+1. We denote by si the transposition (i, i + 1) in

Sn+1 for 1 ≤ i ≤ n.

Lemma 4.1. (1) Sn+1 =
⊔n

i=0 si+1 · · · snSn, where si+1 · · · snSn = Sn for i = n.

(2) Let v ∈ Sn, 1 ≤ i ≤ n and w = si+1 · · · snv ∈ Sn+1.

(a) If j ≤ i− 1, then sjw = si+1 · · · snsjv.
(b) If j ≥ i+ 2, then sjw = si+1 · · · snsj−1v.

Proof. (1) An element w ∈ Sn+1 belongs to si+1 · · · snSn if and only if w(n+1) =

i+ 1 holds. Thus the assertion follows.

(2) (a) is clear. (b) follows from sjw = si+1 · · · sj−2sjsj−1sj · · · snv =

si+1 · · · sj−1sjsj−1sj+1 · · · snv = si+1 · · · snsj−1v. □
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By Lemma 4.1, elements in Sn+1 are obtained from elements in Sn by multiply-

ing si+1 · · · sn. Similarly, we will construct support τ -tilting Λ-modules from tilting

Λ-modules by applying successive mutations.

In the rest, for T ∈ ⟨I1, . . . , In−1⟩, we consider a direct sum decomposition

T =
n⊕

i=1

Ti for Ti := eiT.

We need the following observations on these direct summands.

Lemma 4.2. Let T ∈ ⟨I1, . . . , In−1⟩. For any 1 ≤ i ≤ n, we have

(1) socTi
∼= Sn.

(2) Ti is either zero or indecomposable with a simple socle Sn−i.

(3) Ti has no composition factors isomorphic to Sn. In particular HomΛ(Ti, T ) = 0.

(4) Let V ∈ ⟨I1, . . . , In−1⟩. If Ti
∼= Vi, then Ti

∼= Vi.

Proof. (1) Since M ⊆ T ⊆ Λ, then Mi ⊆ Ti ⊆ Pi and hence Sn = socMi ⊆
socTi ⊆ socPi = Sn.

(2) is clear. (3) is immediate from (1).

To prove (4), it suffices to show that Ti can be recovered from Ti. If Ti = 0, then

Ti = Mi. Thus we can assume Ti ̸= 0. Then Pi is an injective hull of Ti as a Λ-module,

and the natural epimorphism π : Pi → Pi is a projective cover of Pi as a Λ-module. Since

Ti = π−1(Ti) holds, the assertion follows. □

The following results on minimal left approximations are also needed to construct

support τ -tilting Λ-modules.

Lemma 4.3. Let T ∈ ⟨I1, . . . , In−1⟩.

(1) The minimal left add(
⊕i−1

j=1 Tj)-approximation of Ti is given by fi : Ti → Ti−1, which

is the left multiplication of the arrow ai−1 : i−1→ i in the quiver of Λ. In this case,

fi(Mi) = Mi−1.

(2) The minimal left add(
⊕n

j=i+1 Tj)-approximation of Ti is given by gi : Ti → Ti+1,

which is the left multiplication of the arrow bi+1 : i+ 1→ i in the quiver of Λ. This

is a monomorphism.

Proof. (1) Since the left multiplication gives an isomorphism Λ ∼= EndΛ(T ), we

have an equivalence HomΛ(T,−) : addT ∼= addΛ. The minimal left add(
⊕i−1

j=1 ejΛ)-

approximation of eiΛ is eiΛ → ei−1Λ, which is given by the left multiplication of ai−1.

Thus the former assertion follows. The latter assertion follows from fi(Mi) = ai−1Mi =

Mi−1.

(2) One can prove the first assertion similarly to (1). Since the left multiplication of

bi+1 gives a monomorphism Pi → Pi+1, its restriction gi is also a monomorphism. □
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Let T ∈ ⟨I1, . . . , In−1⟩ be a tilting Λ-module. For 0 ≤ i ≤ n, we define

µ[i+1,n](T ) := µi+1µi+2 · · ·µn(T ) ∈ sτ -tiltΛ

as the successive mutation at the direct summands Tn, Tn−1, . . . , Ti+1 (Definition 2.16),

where µ[i+1,n](T ) := T for i = n. The following result plays a crucial role.

Proposition 4.4. Let T ∈ ⟨I1, . . . , In−1⟩. For 0 ≤ i ≤ n, we have

(1) µ[i+1,n](T ) =
⊕i

j=1 Tj ⊕
⊕n−1

j=i Tj.

(2) T > µn(T ) > µ[n−1,n](T ) > · · · > µ[1,n](T ).

(3) Let i ≤ j ≤ n − 1. Then Tj = 0 if and only if Sn−j is not a composition factor of

µ[i+1,n](T ).

(4) (µ[i+1,n](T ), P ) is a support τ -tilting pair for P :=
⊕

i≤j≤n−1,Tj=0 Pn−j.

Proof. (1) We prove the assertion by descending induction on i. It is clear for

i = n.

Now we assume that µ[i+1,n](T ) is
⊕i

j=1 Tj⊕
⊕n−1

j=i Tj . In the following we calculate

µ[i,n](T ) by applying Theorem 2.17.

Firstly, we show that Ti /∈ Fac (
⊕i−1

j=1 Tj ⊕
⊕n−1

j=i Tj). By Lemma 4.2(3), we have

HomΛ(Tj , Ti) = 0. Thus we only have to show Ti /∈ Fac (
⊕i−1

j=1 Tj). This is clear since

TM = M holds.

Next, by Lemma 4.3(1) and the fact that the natural epimorphism πi : Ti → Ti is

a left (modΛ)-approximation of Ti, a left add(
⊕i−1

j=1 Tj ⊕
⊕n−1

j=i Tj)-approximation of Ti

is given by f :=
(
fi
πi

)
: Ti → Ti−1 ⊕ Ti.

Finally, we have a commutative diagram of exact sequences

0 // Mi
// Ti

πi //

fi

��

Ti
//

��

0

Mi
// Ti−1

// Coker f // 0,

we have Coker f = Ti−1/fi(Mi) = Ti−1 by Lemma 4.3(1). This is indecomposable by

Lemma 4.2(2), and we have µ[i,n](T ) =
⊕i−1

j=1 Tj ⊕
⊕n−1

j=i−1 Tj by Theorem 2.17. Thus

the assertion follows.

(2) By the proof of (1) we get µ[i,n](T ) is a left mutation of µ[i+1,n](T ), and hence

the assertion holds.

(3) Notice that the Λ-module Pj has the socle Sn−j . Since Tj is a submodule of Pj ,

the “if” part follows. Conversely, assume Tj = 0. Since T is a two-sided ideal of the

selfinjective K-algebra Λ, our assumption Tj = 0 implies that the Λ-module T does not

have Sn−j as a composition factor. Since Mk with 1 ≤ k ≤ j does not have Sn−j as a

composition factor, so does µ[i+1,n](T ).

(4) This is immediate from (3). □
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Now we give an example of calculation given in Proposition 4.4.

Example 4.5. Let Λ be the Auslander algebra of K[x]/(x4). Taking the trivial

tilting module Λ, then µ4(Λ), µ3µ4(Λ), µ2µ3µ4(Λ) and µ1µ2µ3µ4(Λ) are given as follows. 1
2
3
4

∣∣∣∣∣∣∣
2

1 3
2 4
3
4

∣∣∣∣∣∣∣
3

2 4
1 3
2 4
3
4

∣∣∣∣∣∣∣
4

3
2 4

1 3
2 4
3
4


 1

2
3
4

∣∣∣∣∣∣
2

1 3
2 4
3
4

∣∣∣∣∣∣
3

2 4
1 3
2 4
3
4

∣∣∣∣∣∣ 3
2

1

 [
1
2
3
4

∣∣∣∣∣
2

1 3
2 4
3
4

∣∣∣∣∣ 2
1 3
2

∣∣∣∣∣ 3
2

1

]

[
1
2
3
4

∣∣∣∣ 1 2
3

∣∣∣∣ 2
1 3
2

∣∣∣∣ 3
2

1

][
1
2
3

∣∣∣ 2
1 3
2

∣∣∣ 3
2

1

]

µ4 // µ3 //

µ2

��
µ1oo

For 0 ≤ i ≤ n, we denote by µ[i+1,n](tiltΛ) the set of isomorphism classes of sup-

port τ -tilting Λ-modules consisting of µ[i+1,n](T ) for any T ∈ tiltΛ. Then we have the

following lemma.

Lemma 4.6. (1) For any 0 ≤ i ≤ n, there is a bijection tiltΛ → µ[i+1,n](tiltΛ),

which maps T to µ[i+1,n](T ).

(2) We have µ[i+1,n](tiltΛ) ∩ µ[j+1,n](tiltΛ) = ∅ for any 0 ≤ i ̸= j ≤ n.

Proof. (1) This is clear since each µj : sτ -tiltΛ→ sτ -tiltΛ is a bijection.

(2) By Proposition 4.4 and Lemma 4.2(1) and (3), the first i direct summands

of µ[i+1,n](T ) have a composition factor Sn, and the other summands do not have a

composition factor Sn. Thus the assertion follows. □

Let U = µ[i+1,n](T ) ∈ sτ -tiltΛ with T ∈ ⟨I1, . . . , In−1⟩ and 0 ≤ i ≤ n, given in

Proposition 4.4(1). For each 1 ≤ k ≤ n, we define µk(U) by

µk(U) =


the mutation of U at Tk if 1 ≤ k ≤ i,

the mutation of U at Tk−1 if i+ 1 ≤ k ≤ n and Tk−1 ̸= 0,

the mutation of U at Pn−k+1 if i+ 1 ≤ k ≤ n and Tk−1 = 0,

(4.1)

where the third case is well-defined by Proposition 4.4(4). We have the following relations

of mutation in sτ -tiltΛ corresponding to Lemma 4.1(2).

Proposition 4.7. Let T ∈ ⟨I1, . . . , In−1⟩, 0 ≤ i ≤ n and U := µ[i+1,n](T ).

(1) For any 1 ≤ k ≤ i − 1, we have µk(U) = µ[i+1,n](µk(T )). Moreover, T > µk(T ) if

and only if U > µk(U).

(2) For any i+2 ≤ k ≤ n, we have µk(U) = µ[i+1,n](µk−1(T )). Moreover, T > µk−1(T )

if and only if U > µk(U).

(3) We have
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µkµ[i+1,n](T ) =


µ[i+1,n]µk(T ) k ≤ i− 1,

µ[i,n](T ) k = i,

µ[i+2,n](T ) k = i+ 1,

µ[i+1,n]µk−1(T ) k ≥ i+ 2.

Proof. By Proposition 4.4, we have U =
⊕i

j=1 Tj ⊕
⊕n−1

j=i Tj .

(1) Let V := µk(T ) =
⊕k−1

j=1 Tj ⊕ Vk ⊕
⊕n

j=k+1 Tj . Then V is a tilting Λ-module

with Vk ̸∼= Tk, and applying Proposition 4.4 to V , we have µ[i+1,n](V ) =
⊕k−1

j=1 Tj ⊕Vk⊕⊕i
j=k+1 Tj ⊕

⊕n−1
j=i Tj . Since U and µ[i+1,n](V ) have the same indecomposable direct

summands except the k-th one, we have µk(U) = µ[i+1,n](V ) as desired.

To prove the latter one, it suffices to show that T > µk(T ) implies U > µk(U).

The condition T > µk(T ) is equivalent to Tk /∈ Fac (T/Tk). Since U/Uk belongs to

Fac (T/Tk) by the explicit form in Proposition 4.4, we have Uk = Tk /∈ Fac (U/Uk).

Therefore U > µk(U).

(2) Let V := µk−1(T ) =
⊕k−2

j=1 Tj ⊕ Vk−1 ⊕
⊕n

j=k Tj . Then V is a tilting Λ-

module with Vk−1 ̸∼= Tk−1, and applying Proposition 4.4 to V , we have µ[i+1,n](V ) =⊕i
j=1 Tj ⊕

⊕k−2
j=i Tj ⊕ Vk−1 ⊕

⊕n−1
j=k Tj . Since Vk−1 ̸∼= Tk−1 holds by Lemma 4.2(4), U

and µ[i+1,n](V ) have the same indecomposable direct summands except the k-th one.

Thus we have µk(U) = µ[i+1,n](V ) as desired.

To show the latter one, it suffices to show that T < µk−1(T ) implies U < µk(U). The

condition T < µk−1(T ) is equivalent to Tk−1 ∈ Fac (T/Tk−1). Since T/Tk−1 belongs to

Fac (U/Uk) by the explicit form in Proposition 4.4, we have Uk = Tk−1 ∈ Fac (T/Tk−1) ⊆
Fac (U/Uk). Therefore U < µk(U).

(3) Immediate from (1) and (2). □

Immediately we have the following complete classification of support τ -tilting Λ-

modules and indecomposable τ -rigid Λ-modules.

Theorem 4.8. (1) We have sτ -tiltΛ =
⊔n

i=0 µ[i+1,n](tiltΛ). In particular,

#sτ -tiltΛ = (n + 1)!, and the mutation µk for each 1 ≤ k ≤ n is well-defined

on sτ -tiltΛ by (4.1).

(2) Any support τ -tilting Λ-module has a form T1 ⊕ · · · ⊕ Ti ⊕ Ti ⊕ · · · ⊕ Tn−1 for some

0 ≤ i ≤ n and T ∈ ⟨I1, . . . , In−1⟩ with Tj := ejT for 1 ≤ j ≤ n. Moreover such i and

T are uniquely determined.

(3) Any indecomposable τ -rigid module has a form Ti = eiT or Ti for some T ∈
⟨I1, . . . , In−1⟩ and 1 ≤ i ≤ n.

(4) The statements (1) and (2) hold for Λop-modules.

Proof. (1) By Lemma 4.6,
∪n

i=0 µ[i+1,n](tiltΛ) is a disjoint union and contains

precisely (n + 1)! elements. By Proposition 4.7(3),
⊔n

i=0 µ[i+1,n](tiltΛ) is closed under

mutation. This is a finite connected component of H(sτ -tiltΛ). By Proposition 2.19, we

have sτ -tiltΛ =
⊔n

i=0 µ[i+1,n](tiltΛ).
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(2) is clear by (1) and Proposition 4.4.

(3) is a straight result of (2) and Lemma 2.12. □

The following lemma is also needed.

Lemma 4.9. Let U ∈ sτ -tiltΛ and 1 ≤ j, k ≤ n.

(1) µjµj(U) = U .

(2) If |j − k| ≥ 2, then µjµk(U) = µkµj(U).

(3) If |j − k| = 1, then µjµkµj(U) = µkµjµk(U).

Proof. (1) is clear from the definition of mutation.

By Theorem 4.8(1), we can assume that U = µ[i+1,n](T ) for some 0 ≤ i ≤ n and

T ∈ ⟨I1, . . . , In−1⟩. In the following we use Proposition 4.7(3) and Proposition 3.13

frequently.

(2) Without loss of generality, we assume k < j. We divide the proof into seven

cases.

(a) If k < j ≤ i − 1, then µjµk(U) = µjµkµ[i+1,n](T ) = µjµ[i+1,n]µk(T ) =

µ[i+1,n]µjµk(T ) = µ[i+1,n]µkµj(T ) = µkµjµ[i+1,n](T ) = µkµj(U).

(b) If i+ 2 ≤ k < j, then the proof is very similar to (a).

(c) If k ≤ i − 1 < i + 2 ≤ j, then µjµk(U) = µjµkµ[i+1,n](T ) = µjµ[i+1,n]µk(T ) =

µ[i+1,n]µj−1µk(T ) = µ[i+1,n]µkµj−1(T ) = µkµ[i+1,n]µj−1(T ) = µkµjµ[i+1,n](T ) =

µkµj(U).

(d) The case k = i < i + 2 ≤ j, then µjµk(U) = µjµkµ[i+1,n](T ) = µjµ[i,n](T ) =

µ[i,n]µj−1(T ) = µkµ[i+1,n]µj−1(T ) = µkµjµ[i+1,n](T ) = µkµj(U).

(e) If k ≤ i− 2 < i = j, then the proof is very similar to (d).

(f) If k ≤ i − 1 < i + 1 = j, then µjµk(U) = µjµkµ[i+1,n](T ) = µi+1µ[i+1,n]µk(T ) =

µ[i+2,n]µk(T ) = µkµ[i+2,n](T ) = µkµjµ[i+1,n](T ) = µkµj(U).

(g) If k = i+ 1 < i+ 3 ≤ j, then the proof is very similar to (d).

(3) Without loss of generality, we assume k = j + 1. We also divide the proof into

five cases.

(a) If j ≤ i − 2, then µjµkµj(U) = µjµkµjµ[i+1,n](T ) = µ[i+1,n]µjµkµj(T ) =

µ[i+1,n]µkµjµk(T ) = µkµjµkµ[i+1,n](T ) = µkµjµk(U).

(b) If j ≥ i+ 2, then the proof is very similar to (a).

(c) If j = i−1, then µi−1µiµi−1(U) = µi−1µiµi−1µ[i+1,n](T ) = µi−1µiµ[i+1,n]µi−1(T ) =

µ[i−1,n]µi−1(T ) = µiµ[i−1,n](T ) = µiµi−1µiµ[i+1,n](T ) = µiµi−1µi(U).

(d) If j = i or j = i+ 1, then the proof is very similar to (c). □

Now we are in a position to state one of the main results of this section.

Theorem 4.10. Let Λ be the Auslander algebra of K[x]/(xn). Then

(1) There exists a bijection I : Sn+1
∼= sτ -tiltΛ which maps w to I(w) = µi1µi2 · · ·µil(Λ),

where w = si1si2 · · · sil is an arbitrary (not necessarily reduced) expression.

(2) The statement (1) holds for Λop-modules.
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Proof. (1) Proposition 4.9 and the same argument as in the proof of Theorem 3.18

show that the map I is well-defined. By Theorem 4.8, we have #sτ -tiltΛ = (n + 1)! =

#Sn+1. Thus we only have to show I is surjective.

By Theorem 4.8, any U ∈ sτ -tiltΛ is written as µ[i+1,n](T ) for some T ∈ tiltΛ and

0 ≤ i ≤ n. By Corollary 3.19, there exists w ∈ Sn such that T = I(w). Then we have

I(si+1 · · · snw) = µ[i+1,n](T ) = U . Thus the assertion follows.

(2) We only need to replace Λ-modules with Λop-modules in the proof. □

Our second goal in this section is to show that the map I in Theorem 4.10 is an

anti-isomorphism of posets. For this aim, we need the following result.

Proposition 4.11. For w ∈ Sn+1 and 1 ≤ j ≤ n, l(sjw) > l(w) if and only if

I(sjw) < I(w).

Proof. It suffices to show that l(sjw) > l(w) implies that I(sjw) < I(w) by

replacing sjw with w if necessary. Write w = si+1 · · · snv with 0 ≤ i ≤ n and v ∈ Sn.

Then l(w) = n− i+ l(v) and l(sjw) = n− i+ l(v)+1 hold by our assumption. We prove

the assertion by comparing i with j.

(a) Assume j ≤ i − 1. By Proposition 4.7(3), we have I(sjw) = µjµ[i+1,n](I(v)) =

µ[i+1,n]µj(I(v)) = µ[i+1,n](I(sjv)). Since sjw = si+1 · · · snsjv holds, we have n − i +

l(v)+1 = l(sjw) ≤ n− i+ l(sjv) and hence l(v)+1 = l(sjv). Then by Theorem 3.18 one

has I(sjv) < I(v), which implies by Proposition 4.7(1) that I(sjw) = µ[i+1,n](I(sjv)) <

µ[i+1,n](I(v)) = I(w).

(b) Assume j ≥ i + 2. We have I(sjw) = µjµ[i+1,n](I(v)) = µ[i+1,n]µj−1(I(v)) =

µ[i+1,n](I(sj−1v)) by Proposition 4.7(3). Since sjw = si+1 · · · snsj−1v holds by

Lemma 4.1(2), we have n − i + l(v) + 1 = l(sjw) ≤ n − i + l(sj−1v) and hence

l(v) + 1 = l(sj−1v). Then by Theorem 3.18 one has I(sj−1v) < I(v), which implies

by Proposition 4.7(2) that I(sjw) = µ[i+1,n](I(sj−1v)) < µ[i+1,n](I(v)) = I(w).

(c) Assume j = i. By Proposition 4.7(3), we have I(sjw) = µiµ[i+1,n](I(v)) =

µ[i,n](I(v)) < µ[i+1,n](I(v)) = I(w) by Proposition 4.4(2).

(d) The case j = i + 1 does not occur. In fact sjw = si+2 · · · snv implies l(sjw) =

l(w)− 1, a contradiction. □

Now we are ready to show the main result on the anti-isomorphisms of posets.

Theorem 4.12. Let Λ and I be as in Theorem 4.10. Then I : Sn+1 → sτ -tiltΛ is

an anti-isomorphism of posets with respect to the left order on Sn+1 and the generation

order on sτ -tiltΛ, that is, w1 ≤ w2 in Sn+1 if and only if I(w1) ≥ I(w2) in sτ -tiltΛ.

Proof. The proof is very similar to the proof of Theorem 3.18(3), we need to use

Proposition 4.11 instead of Proposition 3.17(3). □

To compare with the Hasse quiver of support τ -tilting Λ-modules, we give the Hasse

quiver of the left order on the symmetric group Sn for n = 4.

Example 4.13. The Hasse quiver of the left order on S4 is the opposite of the

following quiver:
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By Theorem 4.14, we give the Hasse quiver of support τ -tilting modules of the

Auslander algebra of K[x]/(xn) for n = 2, 3.

Example 4.14. Denote by Λi the Auslander algebra of K[x]/(xi) for i = 2, 3.

Then

(1) The Hasse quiver H(sτ -tiltΛ2) is of the following form, where
i−→ shows µi.[

1
2

∣∣∣ 2
1
2

][
2

∣∣∣ 2
1
2

]
[ 1 2 | 1 ]

[ 2 | ] [ | 1 ]
[ | ]

1cccqqcccc 2[[[ --[[[[

2
��

1

��
1\\\\\ ..\\\\\\ 2bbbbbppbbbbbb

(2) The Hasse quiver H(sτ -tiltΛ3) is of the following form, where
i−→ shows µi.
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5. Connection with preprojective algebras of type An.

Let Λ be the Auslander algebra of K[x]/(xn) and Γ be the preprojective algebra of

Dynkin type An. Thus Γ is presented by the quiver

1
a1 // 2

a2 //
b2

oo 3
a3 //

b3

oo · · ·
an−2 //

b4

oo n− 1
an−1 //

bn−1

oo n
bn

oo

with relations a1b2 = 0, bnan−1 = 0 and aibi+1 = biai−1 for any 2 ≤ i ≤ n− 1. Thus we

have Γ = Λ/L for the ideal L of Λ generated by bnan−1. Then we have L =
⊕n

i=1 Li for

Li := eiL. For example, Λ and L in the case n = 4 is the following.

L =

 ∣∣∣∣∣∣ 4

∣∣∣∣∣∣ 4
3
4

∣∣∣∣∣∣ 4
3

2 4
3
4

 ⊆ Λ =

 1
2
3
4

∣∣∣∣∣∣∣
2

1 3
2 4
3
4

∣∣∣∣∣∣∣
3

2 4
1 3
2 4
3
4

∣∣∣∣∣∣∣
4

3
2 4

1 3
2 4
3
4

 .

Our aim in this section is to apply Theorems 4.10 and 4.12 to Γ and prove that the tensor

functor
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−⊗Λ Γ : modΛ→ modΓ

induces a bijection from sτ -tiltΛ to sτ -tiltΓ. In particular, we can get Mizuno’s bijection

from the symmetric group Sn+1 to sτ -tiltΓ.

Let us start with the following general properties of support τ -tilting modules over

an algebra A and its factor algebra B.

Proposition 5.1 ([DIRRT]). Let A be an algebra and let B be a factor algebra

of A.

(1) If T is a τ -rigid A-module, then T ⊗A B is a τ -rigid B-module.

(2) If T is a support τ -tilting A-module, then T ⊗A B is a support τ -tilting B-module.

Thus we have a map − ⊗A B : sτ -tiltA → sτ -tiltB, which preserves the generation

order.

(3) The map in (2) is surjective if A is τ -rigid finite.

Note that T ⊗A B is not necessarily basic even if T is basic τ -rigid.

Recall that M and L are the ideals defined at the beginning of Sections 4 and 5

respectively, and Mi = eiM and Li = eiL for 1 ≤ i ≤ n. We need the following facts.

Lemma 5.2. Let T ∈ ⟨I1, . . . , In−1⟩ and Ti := eiT for 1 ≤ i ≤ n. For any

1 ≤ i ≤ n, we have

(1) LM = L = ML and TiL = Li.

(2) Ti/Li is indecomposable with a simple socle Sn−i+1.

(3) Let V ∈ ⟨I1, . . . , In−1⟩. If Ti/Li
∼= Vi/Li, then Ti

∼= Vi.

Proof. (1) This is clear. (2) Since Mi ⊆ Ti ⊆ Pi, we have Li = MiL ⊆ TiL ⊆
PiL = Li. The socle of Ti/Li ⊆ Pi/Li is Sn−i+1. (3) One can prove in a similar method

with Lemma 4.2(4). □

Now we can state our main result of this section.

Theorem 5.3. Let Λ be the Auslander algebra of K[x]/(xn) and Γ the preprojective

algebra of Dynkin type An.

(1) The map −⊗Λ Γ : sτ -tiltΛ→ sτ -tiltΓ given by U 7→ U ⊗Λ Γ is bijective.

(2) The map in (1) is an isomorphism of posets.

(3) If X is an indecomposable τ -rigid Λ-module, then X⊗ΛΓ is an indecomposable τ -rigid

Γ-module.

Proof. (1) For any U ∈ sτ -tiltΛ, there exists T ∈ ⟨I1, . . . , In−1⟩ and 0 ≤ i ≤ n

such that

U = µ[i+1,n](T ) = T1 ⊕ · · · ⊕ Ti ⊕ Ti ⊕ · · · ⊕ Tn−1
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by Theorem 4.8. In this case, we have

U ⊗Λ Γ =

{
(T1/L1)⊕ · · · ⊕ (Ti/Li)⊕ Ti ⊕ · · · ⊕ Tn−1 if i ≥ 1,

0⊕ T1 ⊕ · · · ⊕ Tn−1 if i = 0.

For any 1 ≤ j ≤ n, Tj does not have Sn as a composition factor, and Tj/Lj has Sn as

a composition factor. Therefore the integer i can be recovered from U as the number of

indecomposable direct summands of U which have Sn as a composition factor. Moreover,

by Lemmas 5.2(2) and 4.2(2), the socle of the j-th direct summand of U ⊗Λ Γ is Sn−j+1

if 1 ≤ j ≤ i, and either 0 or Sn−j+1 if i+ 1 ≤ j ≤ n.

Now assume that another U ′ ∈ sτ -tiltΛ satisfies U ⊗Λ Γ ∼= U ′ ⊗Λ Γ, and take

T ′ ∈ ⟨I1, . . . , In−1⟩ and 1 ≤ i′ ≤ n such that U ′ = µ[i′+1,n](T
′). By the argument above,

we have i = i′. By looking at the socle of each indecomposable direct summand, we have

Tj/Lj
∼= T ′

j/Lj for any 1 ≤ j ≤ i and Tj
∼= T ′

j for any i ≤ j ≤ n− 1. They imply Tj
∼= T ′

j

for any 1 ≤ j ≤ n − 1 by Lemmas 5.2(3) and 4.2(4). Since Tn = Pn = T ′
n, we have

T ∼= T ′ and hence U = µ[i+1,n](T ) ∼= µ[i+1,n](T
′) = U ′.

(3) By Theorem 4.8(3), X has a form Ti or Ti for some T ∈ ⟨I1, . . . , In−1⟩ and
1 ≤ i ≤ n. Since Ti⊗ΛΓ = Ti/Li and Ti⊗ΛΓ = Ti are indecomposable by Lemmas 5.2(2)

and 4.2(2), the assertion follows.

(2) The map −⊗Λ Γ preserves mutations. In fact, if U = µi(T ) for T,U ∈ sτ -tiltΛ,

then U ⊗ΛΓ and T ⊗ΛΓ have the same indecomposable direct summands except the i-th

summand by (3) and the injectivity of −⊗Λ Γ : sτ -tiltΛ → sτ -tiltΓ. Therefore we have

U ⊗Λ Γ = µi(T ⊗Λ Γ). Moreover, −⊗Λ Γ preserves the generation order clearly.

In particular, − ⊗Λ Γ gives an isomorphism H(sτ -tiltΛ) → H(sτ -tiltΓ) of Hasse

quivers by Theorem 2.18. Thus −⊗Λ Γ : sτ -tiltΛ→ sτ -tiltΓ is an isomorphism of posets

by Lemma 2.15. □

Remark 5.4. Theorem 5.3 gives another proof of Mizuno’s result [M, Theorem

2.21].

As a corollary, we get the following.

Corollary 5.5. Let Λ be the Auslander algebra of K[x]/(xn) and Γ a preprojective

algebra of Dynkin type An. There are isomorphisms between the following posets :

(1) The poset sτ -tiltΛ with the generation order.

(2) The poset sτ -tiltΓ with the generation order.

(3) The symmetric group Sn+1 with the opposite of the left order.

(4) The poset sτ -tilt(Λop) with the opposite of the generation order.

(5) The poset sτ -tilt(Γop) with the opposite of the generation order.

(6) The symmetric group Sn+1 with the right order.

Proof. The isomorphism from (1) to (2) given by − ⊗Λ Γ is showed in Theo-

rem 5.3. The isomorphism from (3) to (1) given by I is showed in Theorem 4.12. The

isomorphism between (1) and (4) (resp. (2) and (5)) is given in [AIR]. □
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Example 5.6. Denote by Γn the preprojective algebra of type An. Then

(1) The Hasse quiver H(sτ -tiltΓ2) is of the following form, where
i−→ shows µi.

[ 1 2 | 2
1 ]

[ 2 | 2
1 ] [ 1 2 | 1 ]

[ 2 | ] [ | 1 ]
[ | ]

1bbbqqbbbb 2\\\ --\\\\
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��

1\\\\\ ..\\\\\\ 2bbbbbppbbbbbb

(2) The Hasse quiver H(sτ -tiltΓ3) is of the following form, where
i−→ shows µi.
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3
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2

∣∣∣ 1 ] [
1
2
3
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∣∣∣ 2
1

]

[ 2 3 | 3
2 | ]

[
3
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2
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2

1

]
[ 3 | 1 3

2 | 1 ]
[
2
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