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Abstract. We build a bijection between the set s7-tilt A of isomorphism
classes of basic support 7-tilting modules over the Auslander algebra A of
K[z]/(z™) and the symmetric group &,+1, which is an anti-isomorphism of
partially ordered sets with respect to the generation order on s7-tilt A and the
left order on &,41. This restricts to the bijection between the set tiltA of
isomorphism classes of basic tilting A-modules and the symmetric group &,
due to Briistle, Hille, Ringel and Rohrle. Regarding the preprojective algebra
I" of Dynkin type A,, as a factor algebra of A, we show that the tensor functor
—®a ' induces a bijection between st-tilt A — s7-tiltI". This recover Mizuno’s
anti-isomorphism &, 41 — s7-tiltI" of posets for type A,.

1. Introduction.

Tilting theory has been central in the representation theory of finite dimensional
algebras since the early seventies [BGP|, [AuPR], [B], [BrB], [HaR]. In this theory,
tilting modules play a central role. So it is important to classify tilting modules for a
given algebra. There are many algebraists working on this topic which makes the theory
fruitful. For more details about classical tilting modules we refer to [AsSS|, [AnHK].

Recently Adachi, Iyama and Reiten [AIR] introduced 7-tilting theory to generalize
the classical tilting theory from viewpoint of mutations. This is very close to the silting
theory (e.g. [Ail], [DF|, [HKM], [KV]) and the cluster tilting theory (e.g. [ BMRRT],
[IY], [KR]). The central notion of 7-tilting theory is support 7-tilting modules, and
therefore it is important to classify support 7-tilting modules for a given algebra. Re-
cently some authors worked on this topic, e.g. Adachi [A1] classified 7-rigid modules for
Nakayama algebras, Adachi [A2] and Zhang [Z1] studied 7-rigid modules for algebras
with radical square zero, and Mizuno [M] classified support 7-tilting modules for pre-
projective algebras of Dynkin type. In this context, it is basic to consider algebras with
only finitely many support 7-tilting modules, called 7-tilting finite algebras and studied
by Demonet, Iyama and Jasso [DIJ]. For more details of 7-tilting theory, we refer to
[AAC], [AIR], [AnMV], [DIRRT], [HuZ], [J], [IJY], IRRT], [W], [Zh] and so on.
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In this paper we focus on classifying tilting modules and support 7-tilting modules
over a class of Auslander algebras. Recall that an algebra A is called an Auslander algebra
if the global dimension of A is less than or equal to 2 and the dominant dimension of
A is greater than or equal to 2. It is showed by Auslander that there is a one-to-one
correspondence between Auslander algebras and algebras of finite representation type.

In the rest, let A be the Auslander algebra of the algebra K[z]/(z™). Then A is
presented by the quiver

al a2 as An—2 Ap—1
1 2 3 e n—1l=——=n
ba b3 by bn—1 by

with relations a;bo = 0 and a;b;11 = b;a;—1 for any 2 < i < n — 1. All modules in this
paper are right modules. Denote by tilt A the set of isomorphism classes of basic tilting
A-modules. We show that each tilting A-module is isomorphic to a product of maximal
ideals Iy,...,I,_1 of A. Moreover, we show a strong relationship between basic tilting
A-modules and the symmetric group &,,.

For w,w" € &, and 1 < i < n, we denote the product w'w € &, by (w'w)(i) :=
w’(w(i)). Denote by s; € &,, the transposition (4,7 + 1) for 1 <¢ <n — 1. The length of
w € &, is defined by I(w) := #{(i,7) | 1 <i < j < n,w(i) > w(j)} and an expression
W = 84,8, -8, of w € &, is called a reduced expression if | = l(w). For elements
w,w' € &, if l(w') = l(w) + l(w'w™!) then we write w < w’. This gives a partial order
on &,, called the left order. The Hasse quiver of &,, has vertices w corresponding to each
element w € &, and has arrows w — s;w if I(w) > I(s;w) and w + s;w if [(w) < I(s;w)
forw e 6, and 1 <i<n—1. Now we are in a position to state our first main result.

THEOREM 1.1 (Theorems 3.9, 3.18).  Let A be the Auslander algebra of Klx]/(z™),
and (I1,...,I,—1) the ideal semigroup of A generated by the maximal ideals I, ..., I 1.

(1) The set tiltA is given by (I1,...,I,—1).

(2) There exists a well-defined bijection I : &, = (Iy,...,I,_1), which maps w to
I(w)=1I; - I;, where w = s;, -+-8;, is an arbitrary reduced expression.

(3) Consequently there exists a bijection I : &, = tiltA. In particular #tilt A = nl.
(4) The map I in (3) is an anti-isomorphism of posets (partially orderd set).

Theorem 1.1(3) has been shown in [BHRR] by using a combinatorial method. Our
method in this paper is rather homological, and we shall modify the method in [IR],
[BIRS], [M] for preprojective algebras to the Auslander algebra of K[z|/(z™) by using
basic properties of Auslander algebras in Section 2.

Denote by s7-tiltA the set of isomorphism classes of basic support 7-tilting A-
modules, and by p;(T') the mutation of T with respect to the i-th indecomposable direct
summand of T. The set s7-tiltA forms a poset with respect to the generation order
(Definition 2.13). We show the following main result of this paper in Section 4, where
the map I : &, 41 = s7-tilt A is an extension of the map [ in Theorem 1.1.
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THEOREM 1.2 (Theorems 4.8, 4.10, 4.12). Let A be the Auslander algebra of
Klz]/(z").

(1) s7-tilt A is a disjoint union of piy1fhiye - pn(tiltA) for 0 < i< n.

(2) There exists a bijection I : &y 41 = sT-tilt A which maps w to I(w) = pu, piy -+ - i, (A),
where w = s;, 85, - - - 8;, 15 an arbitrary expression. In particular, we have #sT-tilt A =
(n+ 1)

(3) The map I in (2) is an anti-isomorphism of posets.

Now let I' be the preprojective algebra of Dynkin type A,. Then there exists a
natural surjection A — I', and we get a tensor functor — ®4 I' : modA — modI'. By
using this we get a bijection between s7-tilt A and s7-tiltI". More precisely, we have:

THEOREM 1.3 (Theorem 5.3). Let A and T be as above. Then
(1) The map — @p T : sT-tilt A — s7-tiltT" given by U — U @, T is bijective.
(2) The map in (1) is an isomorphism of posets.

As a corollary of Theorems 1.2 and 1.3, we recover Mizuno’s anti-isomorphism
Gpnt1 — s7-tiltT [M, Theorems 2.21 and 2.30] since it is the composition of — @5 T
in Theorem 1.3 and [ in Theorem 1.2.

COROLLARY 1.4 (Corollary 5.5).  Let A and T be as above. There are isomorphisms
between the following posets:

The poset sT-tilt A with the generation order.
The poset sT-tiltI' with the generation order.

The symmetric group G,4+1 with the opposite of the left order.

)
)
)

4) The poset sT-tilt (A°P) with the opposite of the generation order.
) The poset st-tilt (I'°P) with the opposite of the generation order.
)

The symmetric group S,11 with the right order.

The paper is organized as follows: In Section 2, we recall some preliminaries on
Auslander algebras, tilting modules and support 7-tilting modules. In Section 3, we
focus on the tilting modules over the Auslander algebra of K[z]/(z™) and we prove
Theorem 1.1. In Section 4, we use Theorem 1.1 and some other facts of tilting modules
to prove Theorem 1.2. Finally, in Section 5, we apply Theorem 1.2 and Theorem 1.3 to
preprojective algebras of Dynkin type A, and get Mizuno’s bijection for preprojective
algebras of Dynkin type A,.

Throughout this paper, we denote by K an arbitrary field, and we consider basic
finite dimensional K-algebras. By a module, we mean a finitely generated right module.
For an algebra A, we denote by mod A the category of finitely generated right A-modules.
For an A-module M, we denote by add M the full subcategory of mod A whose objects are
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direct summands of M™ for some n > 0. The composition of homomorphisms f : X — Y
and g : Y — Z is denoted by gf : X — Z. Thus Hom (X,Y) is an End (Y')°P-module
and an Endy (X)-module.

For more recent results on 7-tilting theory of Auslander algebras, we refer to [I1Z]
and [Z2].

ACKNOWLEDGEMENTS. Theorem 1.1 was obtained in the Master thesis of Yusuke
Tsujioka [T], who was a student of the first author in Graduate school of Mathematics
in Nagoya University. The authors thank him for allowing them to include his results in
this paper. Other parts of this paper were done when the second author visited Nagoya
University in the year 2015. The second author would like to thank Laurent Demonet,
Takahide Adachi, Yuta Kimura, Yuya Mizuno and Yingying Zhang for useful discussion
and kind help. He also wants to thank the first author for hospitality during his stay in
Nagoya. Both of the authors would like to thank the referees for useful suggestions to
improve this paper.

2. Preliminaries.

In this section we recall some basic properties of Auslander algebras, tilting modules
and support 7-tilting modules. We begin with the definition of Auslander algebras.

For an algebra A and a A-module M, denote by gl.dim A the global dimension of A,
and by proj.dim M (resp. inj.dim M) the projective dimension (resp. injective dimension)
of M. We recall the following definition.

DEFINITION 2.1.  An algebra A is called an Auslander algebra if gl.dim A < 2 and
E;(A) is projective for i = 0, 1, where E;(A) is the (¢ + 1)-th term in a minimal injective
resolution of A.

Recall that an algebra R is called representation-finite if mod R admits an additive
generator M, that is, modR = addM. The following classical result in [AuRS] shows
the relationship between representation-finite algebras and Auslander algebras.

THEOREM 2.2. (1) For an additive generator M of the category modR over a
representation-finite algebra R, the algebra Endg (M) is an Auslander algebra.

(2) For an Auslander algebra A and an additive generator Q of the category of projective-
injective A-module, the algebra Endp(Q) is representation-finite.

(3) The correspondences in (1) and (2) induce mutually inverse bijections between Morita
equivalence classes of representation-finite algebras and Morita equivalence classes of
Auslander algebras.

We call A = Endr(M) in Theorem 2.2(1) an Auslander algebra of R. In this case,
for X € mod R we denote

Px = Hompg(M, X), PX = Homg(X, M), Sx = Px/rad Px and S¥ = PX/rad PX.
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Here P_ = Hompg(M,—) is an equivalence between addM and addA, and P~ =
Hompg(—, M) is a duality between add M and add A°P. The following statement [AuRS]
shows the relationship between almost split sequences of R and projective resolutions of
simple A-modules.

PROPOSITION 2.3.  Let A be an Auslander algebra of R and let X be an indecom-
posable R-module. Then we have

(1) proj.dim(Sx)a <1 if and only if X is a projective R-module. Then 0 — Pragx —
Px — Sx — 0 is a minimal projective resolution of Sx.

(2) proj.dim(Sx)a = 2 if and only if X is a nonprojective R-module. Then the almost
split sequence 0 — 71X — E — X — 0 gives a minimal projective resolution 0 —
PTX *)PE —)PX — SX —0 OfSX.

(3) proj.dim A(SX) <1 if and only if X is an injective R-module. Then 0 — PX/s0°X _
PX — SX = 0 is a minimal projective resolution of SX.

(4) proj.dim (S¥X) = 2 if and only if X is a noninjective R-module. Then the almost
split sequence 0 = X — E — 771X — 0 gives a minimal projective resolution
0— PT'X 5 PE _, pX 5 X 50 of SX.

Denote by (—)* = Homy (—, A). We also need the following lemma.

LEMMA 2.4. Let A be an Auslander algebra of R and let X be an indecomposable
nonprojective R-module. Then we have

(1) Exti(Sx,A) = S™, and Ext’ (Sx,A) =0 if i # 2.
(2) Ext)(Sx,Y) = Tord ,(Y,5™X) for Y € modA and i € Z.

PROOF. We only prove (2) since the statement (1) follows from (2) immediately.
By Proposition 2.3, there exist projective resolutions

0— P.x —-Pg— Px —Sx —0, (2.1)
0—P¥ > PE L PX 5 9% 50 (2.2)

of Sx and S7X respectively. Applying Homy(—,Y) to (2.1), we obtain a complex
0 — Homp (Px,Y) — Homy (Pg,Y) — Homy (Prx,Y) — 0 (2.3)

whose homologies are Ext’y(Sx,Y). Similarly, applying Y ®, — to (2.2), we obtain a
complex

0=2Y @A PX Yoy PPlwY®yPX =0 (2.4)

whose homologies are Tory (Y, S7%). Because Homp (P_,Y) =Y @) P_* =Y @) P~
holds, (2.3) and (2.4) are isomorphic. Thus we obtain the desired isomorphism. O

The following lemma, is useful.
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LEMMA 2.5.  Let A be an Auslander algebra andY € modA. Then any composition
factor of Exti (Y, A) has projective dimension 2.

PrROOF. Without loss of generality, we can assume that Y is simple since any
composition factor of Ext3 (Y, A) is a composition factor of Ext3 (S, A) for some simple
A-module S. If proj.dimY < 1, then the assertion is clear since the zero module has
no composition factor. If proj.dimY = 2, then Proposition 2.3(2) shows that ¥ = Sx
for some indecomposable nonprojective R-module X. Thus Ext?\(Y, A) = S™X holds by
Lemma 2.4(2), and the assertion follows from Proposition 2.3(4). O

We also need the following general result on algebras of global dimension 2.

LEMMA 2.6. Let A be an algebra with gl.dim A < 2 and Y € modA. Then Y** is
a projective A-module.

ProoOr. Let Q1 — Qo — Y — 0 be a projective presentation of Y. Applying
(—)*, we obtain an exact sequence 0 — Y* — Qj — Q3. Hence Y™ is a projective
A°P-module, since @ and Q)] are projective A°°’-modules and gl.dim A < 2. Thus Y**
is a projective A-module. a

By the lemma above we obtain the following.

LEMMA 2.7.  Let A be an Auslander algebra, and let Y be a A-module with
proj.dimY < 1. Then the evaluation map vy : Y — Y™ is injective, and the pro-
jective dimension of any composition factor of Y**/Y is 2.

PROOF. By [AuB], we get an exact sequence 0 — Ext}o, (TrY,A) =Y — Y** —
Ext}op (TrY,A) — 0. Then the latter assertion holds by Lemma 2.5. We prove the
former one in two steps.

(1) We show that the projective dimension of any composition factor of TrY is 2.

It suffices to show that Homper (P, TrY") = 0 holds for the projective cover P of any
simple A°P-module S with proj.dim S < 1. By Proposition 2.3(3), P = P! for some
injective R-module I. On one hand, take a minimal projective resolution of Y:

0 Py, X Py, =Y 0. (2.5)

Since M is a generator, then we get an R-module monomorphism f : X; — Xy. Applying
Hompg(—, I), one has an epimorphism

Homp(Xo,I) - Homp(X1,I). (2.6)

On the other hand, applying the functor (—)* to (2.5), we get an exact sequence PX0 —
PX1 — TrY — 0. Then applying the functor Hompe» (P!, —), one obtains an exact
sequence

Homper (P!, P¥0) — Hompes (P!, PX) — Hompes (P1, TrY) — 0.
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This can be rewritten as Hompg (X, I) — Homp (X1, ) — Hompop (P!, TrY) — 0. Thus
we obtain Homper (P!, TrY) = 0 by (2.6).

(2) Now we prove the assertion. By (1) and Proposition 2.3(4), any composition
factor of TrY has the form S¥ for some indecomposable noninjective R-module X. By

the dual of Lemma 2.4(1), we have Extjop(SX,A) = 0. Thus Extje, (TrY;A) =0. O

In the rest of this section, A is an arbitrary algebra. In the following we recall some
basic properties of tilting modules. We begin with the definition of tilting modules.

DEFINITION 2.8. We call T € modA a tilting module if T satisfies the following
conditions:

(T1) proj.dim T < 1.

(T2) Exty(T,T) = 0.

(T3) There exists a short exact sequence 0 = A — Ty — 11 — 0 with Ty, 71 € addT.

The condition (T3) is equivalent to

(T3’) The number of non-isomorphic direct summands of T is equal to that of A.
Now let us recall some general properties of tilting modules [HaU].

LEMMA 2.9. Let T be a tilting A-module, and let 0 — Q1 — Qo — T — 0 be a
minimal projective resolution of T'. Then we have the following:

(1) (add@q) N (addQp) = 0 and add(Qo ® Q1) = addA hold.

(2) For a simple A-module S, precisely one of Homy(T,S) = 0 and Ext}(T,S) = 0
holds.

(3) For a simple A°P-module S, precisely one of T @5 S =0 and Torf(T, S) =0 holds.
We also have the following properties for the tensor products of tilting modules.
PROPOSITION 2.10.  Let T be a tilting A-module with T' = End (T).

(1) Let U be a tilting T-module. If Tor} (U, T) = 0 for anyi > 0 and proj.dim (U @rT) <
1, then U @p T is a tilting A-module with Endy (U ®r T') = Endp(U).

(2) Let V be a tilting A-module. If Exti(T,V) = 0 for any i > 0 and
proj.dim Homp (T, V)r < 1, then Homp(T,V) is a tilting T-module with
Endr(Homy (7, V)) = Endy (V).

ProOF. (1) Since — ®% T : DP(modI') — DP(modA) is a triangle equivalence,
U@L T is a tilting complex of A. Since Torf(U7 T) = 0 for any 7 > 0 by our assumption,
UerT = U®ET holds. Since proj.dim(U @r T) < 1, the assertion holds. One can show
(2) similarly. O
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Denote by 7 the AR-translation and denote by |N| the number of non-isomorphic
indecomposable direct summands of IV for a A-module N. In the following we recall some
basic properties of 7-tilting theory. Firstly, we need the following definition in [AIR].

DEFINITION 2.11. (1) We call N € modA 7-rigid if Homp (N,7N) = 0.
(2) We call N € modA 7-tilting if N is 7-rigid and |[N| = |A|.

(3) We call N € modA support T-tilting if there exists a basic idempotent e of A such
that N is a 7-tilting (A/(e))-module. In this case, we call (N, eA) a support T-tilting
pair.

It is clear that every tilting A-module is a 7-tilting A-module, and hence a support
7-tilting module. Moreover, it is showed in [AIR] that tilting A-modules are exactly
faithful support 7-tilting modules. Clearly any support 7-tilting pair (IV,eA) satisfies
IN|+ |eA| = |A

For a torsion class 7 in modA, we denote by P(7) the direct sum of one copy of
each of the indecomposable Ext-projective objects in 7 up to isomorphism. The following
properties of 7-rigid modules are important.

DEFINITION-PROPOSITION 2.12 ([AIR, Theorem 2.10]). Let A be an algebra and
let U be a T-rigid module. Then T = P(+7U) is a T-tilting A-module, where L7U consists
of A-modules X satisfying Homp (X, 7U) = 0. We call T the Bongartz completion of U.

Recall that s7-tilt A is the set of isomorphism classes of basic support 7-tilting A-
modules. For a A-module X, we define a full subcategory of modA by

Fac X = {Y € modA | There exists an epimorphism X" — Y for some n > 0}.

Now we define the partial order on s7-tilt A as follows:

DEFINITION 2.13.  For basic support 7-tilting A-modules T, U, we write T' < U if
FacT C FacU. Then the relation < gives a partial order on the set s7-tilt A by [AIR,
Theorem 2.7]. We call this partial order a generation order.

Clearly A is a unique maximal element and 0 is a unique minimal element in s7-tilt A.
We now recall the Hasse quiver of general posets.

DEFINITION 2.14. The Hasse quiver H(P) of a poset (P, <) is defined as follows:
(1) The vertices are the elements of the poset P.

(2) For X,Y € P, there is an arrow X — Y if and only if X > Y and there isno Z € P
satisfying X > Z > Y.

The following observation is clear.

LeEMMA 2.15.  Two partial orders on a finite set are the same if and only if their
Hasse quivers are the same.
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Now it is time to recall the mutations of support 7-tilting modules from [AIR].

DEFINITION 2.16. Let T,T" € sr-tiltA. We call T’ a mutation of T if T and T’
have the same indecomposable direct summands except one. Precisely speaking, one of
the following three cases occurs, where (T, P) and (T”, P’) are the support 7-tilting pairs.

() T=VoeXandT' =V & X with X 2 X’ indecomposable;
(2) T=T@®X and P = P® Q" with X and @’ indecomposable;
3) "=T® X' and P=P' @& Q with X’ and Q indecomposable.

We call T a mutation of T' at X in cases (1) and (2), and at Q in case (3). It is uniquely
determined by T and the indecomposable direct summand X or @ of T" or P respectively.

We call T a left mutation (resp. right mutation) of T if FacT' C FacT (resp.
FacT' 2 FacT).

In the following we give a method of calculating left mutations of support 7-tilting
modules due to Adachi, Iyama and Reiten [AIR].

THEOREM 2.17 ([AIR, Theorem 2.30], [Zh, Theorem 1.2]). LetT =V & X be
a basic T-tilting A-module which is the Bongartz completion of V, where X is inde-

composable. Let X EN V' 5Y — 0 be an ezact sequence, where f is a minimal left
(addV)-approxzimation. Then Y is either indecomposable or zero, and V ®Y is a left
mutation of T at X in both cases.

Now let us recall the relationship between mutations and the Hasse quiver, which is
given in [HaU], [RS] for tiltA and in [AIR] for s7-tiltA.

THEOREM 2.18.  Let T,U € st-tilt A (resp. tiltA). The following are equivalent.
1) T is a left mutation of U.

2) U is a right mutation of T.

(1)
(2)
(3) U > T and there is no V € st-tilt A (resp. tiltA) such that U >V > T.
(4)

4) There is an arrow from U to T in H(sT-tiltA) (resp. H(tiltA)).

The following result [AIR, Corollary 2.38] gives a method of judging an algebra to
be 7-tilting finite.

PROPOSITION 2.19. If H(st-tiltA) admits a finite connected component C, then
H(sT-tiltA) = C.

3. Tilting modules over the Auslander algebra of K[z]/(xz™).

Throughout this section, let R = K[z]/(2™) be a factor algebra of the polynomial
ring K[z] with n > 1, and A the Auslander algebra of R. Then the AR-quiver of R is

K === K[z]/(s*) === K[2]/(2®) === --- == K[a] /(2" ") === K[a]/(a"),
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and the Auslander algebra A is presented by the quiver

ai az as An—2 An—1
1 2 3 e n—1l——=n
bz b3 b4 bn—l bn

with relations a1b2 = 0 and a;b;+1 = b;a;—1 for any 2 < ¢ < n — 1. In this section, we
classify all tilting A-modules.

Denote by {eq,...,e,} a complete set of primitive orthogonal idempotents of A and
denote by P; = e;A (resp. P® = Ae;) the indecomposable projective A-module (resp.
A°P-module). It is easy to see that Pi, Ps,..., P, have the following composition series
(see n = 4 for example).

1 2 234 34
[Pl ps P = | 2, [T20a]1,3, 1120
4 3 3 2 4
4 4 3
4

For 1 <14 < n, we denote by I; the two-sided ideal generated by 1 — e;. This is a
maximal left ideal and also a maximal right ideal since there are no loops at the vertex
i. Thus we have direct sum decompositions

L =P®---©®@radP)®---®P,=P'® - ®(radP)®---® P".

Furthermore, for 1 < i < n, we define a (A, A)-bimodule by S; = A/I;. Clearly we have
the following.

PROPOSITION 3.1.  Let A be the Auslander algebra of Klx]/(z™). Then one gets
the following.

(1) As a A-module S; = P;/rad P; is simple. As a A°°-module S; = P?/rad P* is simple.

(2) There exists an isomorphism P, = DP™ of A-modules. Thus P, is a projective-
injective A-module.

(3) For1<i<mn—1, there exist minimal projective resolutions of A-modules

O%Piﬁpi_l@PH_l‘)Pi‘)Si‘)o and O%Pi%PiA@PiH%radPi%O.

(4) There exist minimal projective resolutions of A-modules

0—-P,.1—>P,—S,—0 and 0— P,_1 —»rad P, — 0.

PrROOF. (1) is clear. (3) and (4) are immediate from Proposition 2.3 and the
AR-quiver of R above.

(2) Since R is a symmetric K-algebra, we have an isomorphism Hompg(—, R)
DHomp(R, —) of functors. This gives the desired isomorphism.

O

We need the following properties of tilting A-modules.



Classifying T-tilting modules over the Auslander algebra of Klz]/(z™) 741

LEMMA 3.2. Let X be a A-module. For 1 < i < n — 1, there exist isomorphisms
Ext: (S;, X) & X @4 S; and Ext) (S;, X) = Tor) (X, S;). If X is tilting, then precisely
one of them is zero.

PROOF.  Since each indecomposable nonprojective -module is 7-stable, we have
Ext) (S;, X) = Toré‘fj(X, S;) for j = 1,2 by Lemma 2.4(2). The latter statement follows
from Proposition 2.9(3). O

Now we are in a position to show the following proposition.

PropoOSITION 3.3. Forl <i<mn-—1, I; is a tilting A-module and a tilting A°P-
module.

PrOOF. We only prove the case of a A-module since the case of a A°’-module is
similar. By definition, we have I; = (B, ;) ® rad P;.

(T1) By Proposition 3.1(3), we have proj.dimrad P; < 1. Thus proj.dim I; < 1.

(T2) Tt suffices to show that Ext}(rad P;,I;) = 0. Since there exists an exact
sequence 0 — radP;, — P, — S; — 0, we have Ext%(Si,Ii) o Ext}x(rad P, L).
By Lemma 3.2, we have Ext3(S;,I;) = I, ®x S;. On the other hand, we have
P, @5 S; = ejAQp S; = ¢;5; = 0 for any j # i. By Proposition 3.1(3), there ex-
ists an exact sequence 0 = (P;_1 ® Piy1) ®5 S; — (rad P;) ®A S; — 0. Thus we have
(rad P;) @5 S; =0 and I; ®, S; = 0.

(T3) By Proposition 3.1(3), there exists an exact sequence 0 — A — (B,,; ;) &
P,_1 ® Py; — rad P, — 0. The middle and right terms of this sequence are contained
in add ;. O

Notice that I, is not a tilting A-module. In fact I,, = (@?:_11 P,) @ (rad P,,) and
rad P, & P,_1 hold by Proposition 3.1(4), and hence |I,| = n — 1. This is not possible
for tilting A-modules.

To show that any multiplication of ideals I, ..., I,_1 is a tilting A-module, we now

prepare the following.
PROPOSITION 3.4. (1) For 1 <i<n, we have Homu(I;, S;) = 0.

(2) For1<i<mn-—1, the left multiplication A — Endx(I;) and the right multiplication
A°P — Endper (I;) are isomorphisms.

Proor. (1) For j # i, we have Homa (P;, S;) = 0. Further, by Proposition 3.1(3)
and (4), one gets Homy (rad P;,.S;) = 0. Thus we have Homy (;, S;) = 0.
(2) Applying Homu (—, A) to a short exact sequence

0—=I,—+A—S5 —0 (3.1)

yields a long exact sequence 0 — Homa(S;,A) — Homp(A,A) — Homp(I;,A) —
Ext}(S;,A) — 0. Then by Lemma 2.4, we have Homu(S;, A) = Ext}(S;, A) = 0, and
hence Homp (I;,A) = Homp(A,A) = A. On the other hand, applying Homp (I;, —)
to the short exact sequence (3.1), one gets an exact sequence 0 — Homy (I;, ;) —
Homy (I;, A) — Homy (15, ;). Using (1), we have Endy (I;) = Homa (1;, A) = A. O
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From the argument above, we have the following proposition on the multiplication
of tilting A-modules.

PrOPOSITION 3.5.  Let T be a tilting A-module and 1 < i <n — 1. Then we have
the following.

(1) IfTL; #T, then T, 2T @, I; =T ®% I,.
(2) T1I; is a tilting A-module, and Endy (T1;) = Enda(T).

PrROOF. (1) Since TI; # T, then T®, S; = T/T1I; # 0, and we have Tor} (T, S;) =
0 by Proposition 2.9(3). Applying T'®x — to the short exact sequence 0 — I; - A —
S; — 0, one gets an exact sequence 0 = Tor/f(T, Si) > Tepl; > Ty A=T. Thus
the natural map T ®p I; — T is injective and has the image T'I;. Thus we obtain
T @a I; = T1;. Moreover, we have Tor}(T,1;) = Tor}, (T, S;) = 0 for j > 1 since
proj.dim 7T < 1. Thus T ®p I; = T®k I;.

(2) If TI; = T, then the assertion is clear. Now assume that T1I; # T. Since
we have Endp(I;) & A by Proposition 3.4, T ®, I; = TI; is a tilting module with
Enda (T) = Endy (TI;) by (1) and Proposition 2.10(1). O

Denote by (Iy,...,I,_1) the set of ideals of A given by products of Iy,...,I,_1,
where the empty product A is also contained in this set. Now we can state the following
result.

THEOREM 3.6.  Anyideal T in (Iy,...,I,_1) is a basic tilting A-module and a basic
tilting A°P-module. The left multiplication A — Enda(T) and the right multiplication
A°P — Endper (T) are isomorphisms.

PrOOF. We only prove the case of a A-module since the case of a A°P-module is
similar.

By Proposition 3.3, each of Iy,..., I, 1 is a tilting A-module such that the left
multiplication A — Enda(f;) is an isomorphism. Assume that T = I;, I, -+ I;,_,

a tilting A-module such that the left multiplication A — Enda(7") is an isomorphism.

is

Then, according to Proposition 3.5(2), we obtain that T'I;, is a tilting A-module such
that the left multiplication A — Enda(T'I;,) is an isomorphism. In particular, T'I;, is
basic. Thus we get the assertion inductively. (|

By Theorem 3.6, any element in (I,...,I,_1) is a basic tilting A-module. In the
following we show the converse, that is, all basic tilting A-modules are in (Iy,..., ,_1).
For this aim, we start with the following.

PrOPOSITION 3.7.  Let T be a tilting A-module, and 1 < i <n — 1. Then we have
the following:

(1) Homyx(S;,T) = 0.
(2) proj.dim Homp (1;,T) < 1.

(3) There exist natural inclusions T C Homy (I;,T) C T** = Homy (I;, T)**.
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(4) Homy (I;, T)/T = Ext} (S;, T). If T € Homy (I;,T), then Homp (I;, T)I; = T.
(5) Homy (I;, T) is a tilting A-module, and Enda(Homy (I;,T)) =2 Enda (T) holds.

(6) If T is not a projective A-module, then there exists 1 < i < n — 1 such that T C
Homy (I;, T).

ProoOF. We firstly note by Lemma 2.6 that 7™* is a projective A-module. By
Lemma 2.4, we have Ext), (S;, A) = 0 = Ext} (S;, T**) for j # 2. These facts will be used
freely in this proof.

(1) By Lemma 2.7, we have an exact sequence

0— T 5 7% - T /T — 0. (3.2)

Applying the functor Homp (S;, —), one gets Homy (S;, T) = 0.

(2) Applying Homp (—, T**) to the short exact sequence 0 — I; - A — S; — 0,
we have an exact sequence 0 = Hompy (S;, T**) — Homp (A, T**) — Homy (I;, T**) —
Ext} (S;, T**) = 0. Thus Homy (I;, T**) 2 T** is a projective A-module. Then applying
the functor Homy (I;, —) to the sequence (3.2), one gets that Homy (I;, T) is a submodule
of the projective A-module Homp (I;, 7**). Since gl.dim A < 2, any submodule of a
projective module has projective dimension at most 1.

(3) Applying Homa(—,T) to the exact sequence 0 — I, = A — S; — 0 of (A, A)-
bimodules, we obtain an exact sequence

0 — Homy (A, T) — Homy (I;, T) — Ext) (Si, T) — 0 — Ext; (I;, T) — Ext3(S;, T) — 0

(3.3)
of A-modules by (1). Since the A°P-module S; is annihilated by I;, the A-module
Ext}(S;,T) is annihilated by I; and hence isomorphic to S for some m > 0. Hence
(3.3) gives an exact sequence 0 — T — Homa([;,T) — S — 0. Applying
(—=)* = Homp(—, A), we obtain an exact sequence 0 = (S7)* — Homp (;,T)* — T* —
Ext}(S7,A) = 0. In particular, we have T** 2 Homp(I;, T)** and the commutative
diagram

0 T Homp (I;,T) S 0.
l‘PT \LﬂaHOmA(Ii,T)
T** —— Homy (I;, T)**

By (2) and Lemma 2.7, @pom, (7,,7) is @ monomorphism and hence (3) follows.

(4) The former assertion is immediate from the exact sequence (3.3). Since
Ext}\(SZ—,T) >~ 8™ is annihilated by I;, we have TI; C Homy([;,T)l; € T. For
the latter assertion, notice that Tory(T,S;) = Ext)(S;,T) # 0 by Lemma 3.2. Since
T/TI; 2T ®p S; =0 holds by Lemma 2.9(3), we obtain Homy (I;, T)I; = T.

(5) If T = Homp(I;,T), then it is obvious. Assume that T' # Homy (I;,T). By
(2) and Propositions 3.4(2) and 2.10(2), it suffices to prove that Ext)(I;,T) = 0 for
any j > 0. We only have to consider the case j = 1 since proj.dim I; < 1. We have
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Ext} (S;, T) # 0 by (4), and hence Ext} (I;, T') = Ext3(S;,T) = 0 holds by Lemma 3.2.
Thus (5) follows.

(6) By our assumption and Lemma 2.6, T' # T** holds. By Lemma 2.7 and Proposi-
tion 3.1, we can take a simple submodule S; of T**/T for some 1 <i <n — 1. Applying
Hompy (S;, —) to the exact sequence (3.2), we get an exact sequence 0 = Homp (S;, T**) —
Homp (S;, T**/T) — Ext}(S;,T). Thus Ext}(S;,T) # 0 by our choice of S;. Thus
Homp (I;, T)/T = Ext} (S;, T) # 0 holds by (4), and we have T C Homy (I;, T). O

LEMMA 3.8. LetT € (I1,...,I,-1), and let fr : T — A be a natural inclusion.
Then in the following commutative diagram, oa and f1* are isomorphisms.

l’fT lf%*
PA

A —— A**,

PROOF.  Since A is projective, it is clear that ¢, is an isomorphism.

Any composition factor of the A-module A/T has a form S; for some 1 <i<n-—1.
By Lemma 2.4, we have Ext) (A/T,A) = 0 for j # 2. Applying (—)* = Homp(—,A)
to the exact sequence 0 — T f—T> A — A/T — 0, we have an exact sequence 0 =
(A/T)* — A* LN LN Exty(A/T,A) = 0. Thus f# is an isomorphism and hence f3*
is an isomorphism. O

Now we are in a position to state our first main result in this section.

THEOREM 3.9.  Let A be the Auslander algebra of K[x]/(z™). Then
(1) For any tilting A-module T, there exists U € (Iy,...,I,_1) such that addT = addU.
(2) If two elements T and U in (I1,...,I,_1) are isomorphic as A-modules, then T =U.
(3) The set tiltA is given by (I1,...,In_1).
(4) The statements (1), (2) and (3) hold also for A°P-modules.

Proor. (1) By Proposition 3.7(3), (4), (5) and (6), there exists a finite sequence
of tilting A-modules

T=ToCTy S CTp=T"

and il, NN ,im S {1, e, 1} such that Tk+1 = HOmA(Iik+1,Tk) and Tk = Tk+1lik+1 for
any 0 < k < m — 1. In particular, we have T' = T11;, = 121, I;, = --- =T, 1, - I, .
Because T** is a projective tilting A-module by Lemma 2.6, we have addT,, = addA.
Thus addT = addU holds for U :=1I;  ---I;; € (I1,..., In_1).

(2) For T,U € (I1,...,I,_1), assume that there exists a A-module isomorphism
g:T=U.

By Lemma 3.8, there exists a commutative diagram
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T—L U
A
YT YT
A T** ~ U** A
er g” ey

where er = @le;* and ey := @le{,* are isomorphisms. Putting h = eUg**e§1 A —
A, we have a commutative diagram

g
E—

U
fr lfu

S AL
h

<"

Since h is given by the left multiplication of an invertible element = € A, so is g. Since
T is an ideal of A, we have U = 2T =T.

(3) This is a consequence of (1), (2) and Theorem 3.6.

(4) One can prove it similarly to (1), (2) and (3). O

The mutations of tilting A-modules are described by the following result. Notice
that we use the structure of A°P-modules when we consider mutations of A-modules.

ProposITION 3.10.  Let T € (I1,...,I,—1).
(1) For each 1 < i <n — 1, precisely one of the following statements (a) and (b) holds.
(a) ;T # T and Hompes (I;,T) =T hold, and T = I, @ T is a left mutation of
T ate;T.
(b) LT =T and Homper (I;, T) # T hold, and Homper (I;,T) is a right mutation of
T at e;T.

(2) All mutations of T in tilt A are of the form (1). In particular, T has precisely n — 1
mutations in tilt A.

(3) The corresponding statements to (1) and (2) hold for A°P-modules.

Proor. (1) Applying Proposition 3.5(2) and Proposition 3.7(5) to the tilting
A°P-module T, we have that ;T and Hompos(I;,T) are tilting A°P-modules with
Endper (I;T) = Endper(T) = Endper (Homper (I;, 7). Since Endper (T) = A°P holds
by Theorem 3.6, we have that I;T and Hompep (I;,T) are tilting A-modules. Further we
know that

IZT = @einT and Hoonp(IZ‘,T) = @Hoonp(Iiej,T).
j=1 j=1
Since e;I; = ejA and I;e; = Aej hold for any j # ¢, the indecomposable direct summands

of I,;T (resp. Hompop (I;,T)) coincide with those of T except one. By Theorem 2.18, I,T
(resp. Hompop (1;,T)) is either isomorphic to T or a mutation of 7. We have
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LT=T <— S, ,T=0,
Hompor (I;, T) =T <= Ext}op(S;,T) =0

by Proposition 3.7. Thus precisely one of these conditions holds by Lemma 3.2.

It remains to decide whether the mutation is left or right. We only have to show
Hompor (I;,T) > T > I;T. Taking an epimorphism A™ — I; of A-modules, we have an
epimorphism T — I;T. Thus, we have T' > LT. If U := Homper (I;,T) 2 T, then we
have I;U = T by Proposition 3.7. Thus we have Hompop (I;,T) =U > T.

(2) Any basic tilting A-module has precisely n indecomposable direct summands.
Since P, is injective by Proposition 3.1, it is a direct summand of any tilting A-module.
Therefore the number of mutations of 7" in tilt A is at most n — 1, while we have at least
n — 1 mutations in tiltA by (1).

(3) One can prove it similarly to (1) and (2). O

Immediately we have the following description of the Hasse quiver of tilting A-
modules.

COROLLARY 3.11.  The Hasse quiver of tiltA has the set (I1,...,I,—1) of vertices.
All arrows starting or ending at T € (I1,...,I,—1) are given by

14:(T) = Hompen (I;, T) — T if T = I,T,

for each 1 < i < n —1, where p;(T) is the mutation of T at the direct summand e;T
(Definition 2.16). Thus the number of arrows starting or ending at T is precisely n — 1.

We have shown that the set tilt A is given by (I1,...,I,_1). In the following we give
an explicit description of this set. Let us start with the following elementary observation.

PROPOSITION 3.12.  Let A be a basic finite dimensional algebra, {e1,...,en} a
complete set of orthogonal primitive idempotents of A, and Sy, ..., S, the corresponding
simple A-modules. For a subset J of {1,...,n}, we put

EJZZG»L‘ and I;=A(l—ej)A.
ieJ

Then for any X € mod A, we have that XI; is the minimum amongst submodules Y of
X satisfying the following condition:

(1) Any composition factor of X/Y has the form S; for some i € J.

PrOOF. Since Homu4((1 —ey)A, X) =2 X(1 —ey), we have

XI;=X(1—ej)A= Z Im f.
f€Homa ((1—ey)A,X)

The condition (f) holds if and only if Hom4((1 — es)A, X/Y) = 0 holds if and only if
Im f CY holds for any f € Homa((1 —ey)A, X) if and only if XI; C Y. O
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We have the following relations for the multiplication of ideals Iy, ..., I, 1.

PROPOSITION 3.13.  Let I; be the mazimal ideal of A as above. Then the following
relations hold for any 1 <i,5 <n—1.

(1) I? = I,.

PROOF. (1) The assertion is clear from I; = A(1 — e;)A.

(2)(3) For 1 <i# j <n-—1,put I,; = A(1 — e; — e;)A. Removing all vertices
except ¢ and j from the quiver with relations of A, we have the quiver with relations of
A/I; ;. In particular, if |i — j| > 2, then A/I; ; = K x K. If |i — j| = 1, then A/L; is
given by the quiver i #j with relations ab = 0 = ba and hence A/I; ; = [i j | ; j].

We prove (2). By Proposition 3.12, I,I; D I; ;. Since A/I; ; = K x K, we have
Iilj/Im = 0. Hence I;I; = I; ; holds, and similarly we have I;I; = I; ;. Thus I;,I; =
Ii,j = I]IZ

We prove (3). By Proposition 3.12, I,I;I; O I, ;. Since A/I; ; = [1 j | i j], we have
LI;I;/I; ; = 0. Hence I,I;I; = I, ; holds, and similarly we have I;I;I; = I; ;. Thus
IinIi = I@j = IjI'LIj~ Il

Now we recall some well-known properties of the symmetric groups. We consider
the action of &,, on R™ given by permuting the standard basis ey, ..., e,. Then &,, acts
on the subspace

$rim0).

V.= {£E161+"'+.Z‘n6n e R"”
i=1

which has a basis a; := e¢; — e¢;41 with 1 < i < n — 1. Clearly the action of &,, on V
is faithful, and we have an injective homomorphism &,, — GL(V) called the geometric
representation.

Let s; be the transposition (i,7 + 1) € &,,. The following elementary fact plays an
important role in the proof of our main theorem.

PROPOSITION 3.14. Let G,, be the symmetric group of degree n and S, > w. Then
we have the following:

(1) [BjB, Theorem 3.3.1] Any expression s;, S;,---S; of w can be transformed into a
reduced expression of w by applying the following operations (a), (b), (c) repeatedly.
(a) Remove s;s; in the expression.
(b) Replace s;s; with |i — j| > 2 by s;s; in the expression.
(c) Replace s;s;s; with |i —j| =1 by sjs;s; in the expression.

(2) [BjB, Theorem 3.3.1] Every two reduced expressions of w can be transformed into
each other by applying the operations (b) and (c) repeatedly.
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(3) If w = 54,84, -+ 85, is a reduced expression, then s;, ---s; (0, ) is a positive root
forany0<k<Il-1.

We also need the following proposition.

PROPOSITION 3.15.  There exists a well-defined surjective map S,, — (I1,...,I,_1)

which maps w to I(w) = I;, - -+ I;,, wherew = s;, - - - 84, s an arbitrary reduced expression.

ProOF. First, we show that the map is well-defined. Take two reduced expressions
w = 8;, -85 = 85, -+ 55 of w. These two expressions are transformed into each other
by the operation (b) and (c) in Proposition 3.14. Then by Proposition 3.13, we obtain
Ly Ly =1 - 1.

Next we show that the map is surjective. For any I € (Iy,...,I,—1), we take a
minimal number [ such that I = I;, - - - I, holds for some 41,...,4 € {1,...,n—1}. Now
we put w = s;, ---8;,. This expression is transformed into a reduced expression of w
by applying (a), (b) and (c) in Proposition 3.14. Since ! is minimal, then (a) would not
happen. Therefore w = s;, - -+ s;, is a reduced expression and we have I = I(w). O

Since I(w) is a tilting A-module with Endy (I(w)) & A for any w € &,, by Proposi-
tion 3.15, we have an autoequivalence

— @% I(w) : D”(modA) — D" (modA)

whose quasi-inverse is given by RHomp (I(w), —). We define a thick subcategory 7 of
DP(modA) by

T :={X € DP’(modA) | Vi € Z H'(X)e, = 0}.

The Grothendieck group Ko(7T) is a free abelian group with basis [S1],...,[Sn—1]. We
identify V with R ®z Ko(T) by a; = [S;] for any 1 <i <n — 1.

LEMMA 3.16. (1) We have an induced autoequivalence —@% I(w) : T — T.
(2) We have [—@% I;] = s; in GL(V) for any 1 <i<n—1.

PRrROOF. (1) We have a triangle I(w) = A — A/I(w) — I(w)[1] in D(modA°P @k
A). Applying X ®% — for X € T, we have a triangle

XehI(w) = X = X% (A/I(w)) = X % I'(w)[1] (3.4)

in DP(modA). Since both X and X ®%(A/I(w)) belong to T, so is X @Y I'(w). Thus
T @Y% I(w) C T holds. Similarly one can show RHomy (I(w),7) € 7. Therefore the
assertion follows.

(2) For X € D”(modA) and Y € DP(modA°P), let x(X,Y) =3, ,(—1)" dimg
H*(X @%Y). Then
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2 1=
x(85,8:) =49 -1 |i—jl=1
0 Ji—j|>2
holds for any 1 < j < n—1. We have [S; ®@% I;] = [S;] — [S; ®% Si] = [S;] — x(S;,5:)[Si]
by applying (3.4) to X = S; and w = s;. Thus the assertion follows easily. 0
We have the following key observations.
PROPOSITION 3.17.  Letw € 6,, and w = 8;,8;, - - - S;, a reduced expression.
(1) We have [— @Y% I(w)] = w™! in GL(V).
(2) We have Iil 2 Iil—llil 9_ s 2 Ii1 N 'Iil and I(’U)) = Ii1 ®k s ®k Iil-

(3) Let1 < j<n-—1. Thenl(sjw) > l(w) if and only if I(sjw) < I(w).

PROOF. The assertion (2) implies (1) since Lemma 3.16(2) implies [— @% I(w)]
[7 ®k Ill] 0--:0 [7 ®k Ilz] o [7 ®k I'Ll] = Sip 1 SipSiy = wt

We prove (2) inductively. This is clear for [ = 1. For u := s;, - - - 8;,, we assume [;, D
I’il—llil 22 Iiz o 'Iiz and I(u) = Ii2 ®k e ®}‘\ Iil' Then [Sll ®}‘\ I(U’)] = u_l(ah) =
i, - Siy (@, ) 18 & positive root by Proposition 3.14(3). Hence S;, ®a I(u) # 0 holds, and
we have I(u) 2 I;;I(u) = I(w). Thus I;, ®% I(u) = I(w) holds by Proposition 3.5(1),
and the assertion follows.

(3) It suffices to show that I(s;w) > I(w) implies that I(s;w) < I(w) by replacing
sjw with w if necessary. By (2) we have I(w) D I(s;w) = I;I(w). Then by Proposi-
tion 3.10(1)(a), we have I(s;w) < I(w). O

Now we have the following main result in this section.

THEOREM 3.18. (1) There exists a well-defined bijection &, = (I,...,In_1)
which maps w to I(w) = I, -+ I;;, where w = s; -+-s;, is an arbitrary reduced
exTPression.

(2) Consequently, there exists a bijection I : &, = tiltA. In particular #tilt A = nl.

(3) The bijection I in (2) is an anti-isomorphism of posets with respect to the left order
on &, and the generation order on tiltA.

ProOF. (1) By Proposition 3.15, I is a well-defined surjective map. Now we show
that the map is injective. If I(w) = I(w'), then [- @% I(w)] = [- @% I(w')] in GL(V). By
Proposition 3.17(1), the images of w and w’ in GL(V') are the same. Since &,, - GL(V)
is injective, we have w = w’.

(2) This is immediate from (1) and Theorem 3.9(3).

(3) In the Hasse quiver of the opposite of left order on &,,, arrows ending at w € &,,
are given by w — s;w with 1 < ¢ < n—1 satisfying I(s;w) > I(w). By Proposition 3.17(3),
the Hasse quiver of tilt A coincides with the opposite of the Hasse quiver of &,,. Thus [
is an anti-isomorphism by Lemma 2.15. g
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Immediately we have the following corollary.

COROLLARY 3.19.  For any expression w = 8;,8i,--8; € G,, I(w) =
iy Miy + - fhiy (A) holds, where p; is defined in Corollary 3.11.

Proor. It suffices to show that, if {(s,w) = I(w) + 1, then I(s;w) = p;(I(w))
holds. Since I(s;w) % I(w) holds by Proposition 3.16(2), the assertion follows from
Theorem 3.10(1)(a). O

To compare with the Hasse quiver of tilting A-modules, we give the Hasse quiver of
the left order on the symmetric group &,, for n = 2, 3.

ExaMpPLE 3.20. We describe the Hasse quiver of the left order on &2 and G3.
(1) The Hasse quiver of the left order on &y is the opposite of the following quiver:

id = [12] —— [21] = s;.

(2) The Hasse quiver of the left order on &3 is the opposite of the following quiver:

id = [123]

-— T

51 = [213] [132] = sy

| |

S981 = [312 231] = 518
281 = [812] __ o 23] 152

818281 = [321] = 898182

By Corollary 3.11, we can describe the Hasse quiver of tilting modules over the
Auslander algebra A of K[x]/(z™) for n = 2,3.

EXAMPLE 3.21. Denote by A; the Auslander algebra of K[z]/(z) for i = 2,3.
Then we have

(1) The Hasse quiver H(tilt A3) is the following:

A2:[12’1§]—>Ilz[2‘1ﬂ.

(2) The Hasse quiver H(tilt As) is the following:
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1 2 3
Ag=| 2 |1,3]173
3 3 .
9 37 «— T 3
Li=] 2,1 1.3 RN
! 3 2 3 3] 2 2
3 L 3
v v
2 [ 1 3 s
LLI=| 2,2 L 3l 2 1,3 =11
3] —o s —L 3
[1[2[1[ 3 22 123]]2]1]2
3

4. Support 7-tilting modules over the Auslander algebra of K[z]/(z™).

Throughout this section, A is the Auslander algebra of K[z]/(xz™). In this section,
we firstly construct a bijection from the symmetric group &,,41 to the set sT-tiltA of
isomorphism classes of basic support 7-tilting A-modules, and then we show that this is
an anti-isomorphism of posets. Recall that A is presented by the quiver

ai az as An—2 An—1
1 2 3 S n—1l=—=n
ba b3 by bp—1 by

with relations a;1by = 0 and a;b; 11 = b;a;—1 for any 2 <i <n —1. Let M be the ideal of
A generated by e,,, and A := A/M. Then we have M = @], M;, where M; = ;M. We
often use the functor

():=—®rA:modA — modA.

For example, A and M in the case n = 4 are the following.

4 4
4
3 274 5 3 |42 274
M = 4] 29740173 CA= 3 2 4l 13
3 24 4 3 274
4 3 3
4 4

w
R

We start with some facts on &,,11. We denote by s; the transposition (¢,7 + 1) in
Gpq1 for 1 <i<n.

LEMMA 4.1. (1) Gpu1 =iy Si+1 - $,Cn, where s;41 - $,6,, = &, fori=n.
(2) Letve B, 1<i<nand w =841 $p0 € Spp1.

(a) If j <i—1, then s;w = Sj41 - - S S;v.

(b) If j > i+ 2, then s;w = S;11 - SpSj_10.

PROOF. (1) Anelement w € &, 41 belongs to s; 41 - - 8,6, if and only if w(n+1) =
i+ 1 holds. Thus the assertion follows.
(2) (a) is clear.  (b) follows from sjw = Sj41---5j—25;8;-15; " SpV

Si41 " 8j—1558j—15j41" " SnU = Si41 " SnpS;j—17. O
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By Lemma 4.1, elements in &,,41 are obtained from elements in &,, by multiply-
ing $;41---S,. Similarly, we will construct support 7-tilting A-modules from tilting
A-modules by applying successive mutations.

In the rest, for T € (I,...,I,—1), we consider a direct sum decomposition

T = @Ti for T; = e;T.
=1

We need the following observations on these direct summands.
LEMMA 4.2. LetT € (Iy,...,1,—1). For any 1 <i <n, we have

1) socT; = S,.

(1)

(2) T, T; is either zero or indecomposable with a simple socle Sy_;.

(3) T; has no composition factors isomorphic to S,. In particular Homy (T;, T) = 0.
(4)

4) Let Ve (l,...,I,_1). If T; =V, then T; = V;.

Proor. (1) Since M C T C A, then M; C T; C P; and hence S,, = soc M; C
socT; C soc P, = S,.

(2) is clear. (3) is immediate from (1).

To prove (4), it suffices to show that T can be recovered from T;. If T; = 0, then
T; = M;. Thus we can assume 1; # 0. Then P; is an injective hull of T; as a A-module,
and the natural epimorphism 7 : P; — P; is a projective cover of P; as a A-module. Since
T; = 7~ Y(T;) holds, the assertion follows. O

The following results on minimal left approximations are also needed to construct
support 7-tilting A-modules.

LEMMA 4.3. LetT € (I1,...,I—1).

(1) The minimal left add @Z L ) -approzimation of T; is given by f; : T; — T;_1, which
is the left multiplication of the arrow a;_1 : i —1 — i in the quiver of A. In this case,
fi(M;) = M.

(2) The minimal left add(@J iv1 Tj)-approzimation of T; is given by g; : T; — Tit1,
which is the left multiplication of the arrow b;11 : i+ 1 — i in the quiver of A. This
is a monomorphism.

PrROOF. (1) Since the left multiplication gives an isomorphism A 2 EndA( ), we
have an equivalence Homy (T, —) : addT = addA. The minimal left add(@. 1 €iMN)-
approximation of e;A is e;A — e;_1A, which is given by the left multlphcatlon of ai_1-
Thus the former assertion follows. The latter assertion follows from f;(M;) = a;—1 M; =
Mi—1~

(2) One can prove the first assertion similarly to (1). Since the left multiplication of
b;+1 gives a monomorphism P; — P; 4, its restriction g; is also a monomorphism. [l
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Let T € (I,...,I,_1) be a tilting A-module. For 0 < i < n, we define

pi1,n)(T) i= pig1prive - pn(T) € sT-tilt A

as the successive mutation at the direct summands 7,,,T,,—1, ..., T;+1 (Definition 2.16),
where pifi41,,(T) := T for i = n. The following result plays a cruc1al role.

PROPOSITION 4.4. Let T € (I1,...,I,—1). For 0 <i <n, we have
(1) pix1,m(T) = @2:1 T;® @?:_il T;.
(2) T > ,U,n(T) > ﬂ[n—l,n] (T) > e > H[1,n] (T)

(3) Leti < j<n—1. ThenT; = 0 if and only if S,—; is not a composition factor of
tii+1,n) (T)-

(4) (ifig1,n)(T), P) is a support T-tilting pair for P := @igjgnq,TT:o P,_;.

ProOOF. (1) We prove the assertion by descending induction on ¢. It is clear for
i=n.

Now we assume that p[;41.,)(T) is P’ =171} @@ T In the following we calculate
i) (T) by applying Theorem 2.17.

Firstly, we show that T; ¢ Fac (@i_l T, ® @"_17). By Lemma 4.2(3), we have
Homy (7;,7;) = 0. Thus we only have to show T} ¢ Fac (@Z vy 7). This is clear since
TM = M holds.

Next, by Lemma 4.3(1) and the fact that the natural epimorphism m Ty — Ty is
a left (modA)-approximation of T;, a left add(EB T ® Ean Tj)-approximation of T;
is given by f := (7{) T, =T 1T,

Finally, we have a commutative diagram of exact sequences

Uy

0 M; T; T; 0
o
M; T 1 Coker f —— 0,

we have Coker f = T;_1/fi(M;) =
Lemma 4.2(2), and we have pu; ,,(T
the assertion follows.

(2) By the proof of (1) we get p;»)(T) is a left mutation of pf11 (7)), and hence
the assertion holds.

(3) Notice that the A-module P; has the socle S,,_;. Since T} is a submodule of P;,
the “if” part follows. Conversely, assume T; = 0. Since T is a two-sided ideal of the
selfinjective K-algebra A, our assumption Tj = 0 implies that the A-module T does not
have S,,_; as a composition factor. Since M) with 1 < k < j does not have S,_; as a
composition factor, so does 11,0 (7).

(4) This is immediate from (3). O

1 by Lemma 4.3(1 ) This is indecomposable by
= @ Ty & 69] .1 T; by Theorem 2.17. Thus
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Now we give an example of calculation given in Proposition 4.4.

EXAMPLE 4.5. Let A be the Auslander algebra of K|[x]/(x*). Taking the trivial
tilting module A, then pg(A), pspa(A), popspa(A) and pqpopsia(A) are given as follows.

4
2 2
Loofils 254 2 a | pa |1y |1l3 |25 3w |ty |103 | 2 3
5 | 2 A | 25 | 274 A 3 | 24173 2
24 3 1 3 | 271
4 4 4 A
4 . 4
\Lﬂz
1 3 m L, |1 2 3
2 173 27 |=———| 25 | 2 |1.3] 2
3l 271 J T3] 271

For 0 <4 < n, we denote by ji;41,,(tiltA) the set of isomorphism classes of sup-
port 7-tilting A-modules consisting of pfi11 (7)) for any T' € tilt A. Then we have the
following lemma.

LEMMA 4.6. (1) For any 0 < i < n, there is a bijection tilt A — fuj41 5 (tilEA),
which maps T to pufiq1,n)(T)-

(2) We have piiq1,) (8 A) O gy o) (KIEA) = O for any 0 <i # j < n.

PrOOF. (1) This is clear since each p; : s7-tilt A — s7-tilt A is a bijection.

(2) By Proposition 4.4 and Lemma 4.2(1) and (3), the first ¢ direct summands
of pifi41,n(T) have a composition factor S, and the other summands do not have a
composition factor S,,. Thus the assertion follows. O

Let U = pfig1,0)(T) € s7-tiltA with T € (I1,...,I,—1) and 0 < i < n, given in
Proposition 4.4(1). For each 1 < k < n, we define ux(U) by

the mutation of U at T} if 1<k<i,
uk(U) = < the mutation of U at Ty_; if i+1<k<n and Tp_; #0, (4.1)
the mutation of U at P,_py1 if i+1<k<n and Typ_1 =0,

where the third case is well-defined by Proposition 4.4(4). We have the following relations
of mutation in s7-tilt A corresponding to Lemma 4.1(2).

PROPOSITION 4.7.  Let T € (Iy,...,I,1), 0<i <n and U = pq1,,)(T).

(1) For any 1 <k <i—1, we have up(U) = pjip1,n)(px(T)). Moreover, T > ux(T) if
and only if U > i (U).

(2) Foranyi+2 <k <n, we have ux(U) = ppiy1,n)(krx—1(T)). Moreover, T > pp_1(T)
if and only if U > pug(U).

(3) We have
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Hlit1 n]ﬂk(T) kgl_l)

[
tepifi1,n) (1) = .
N[z+2n]( ) k=i+1,
[

Wit1,mpr—1(T) k>i+2.

PrRoOOF. By Proposition 4.4, we have U = @2:1 T; @ @?;1 T;.

(1) Let V := u(T) = @1?71 Ty @ Vi © @)_s,1 Tj- Then V is a tilting A-module
with Vi, 2% T}, and applymg Proposition 4.4 to V, we have pufi11,,(V) = @;:11 T;& Vi ®
@;:k nwT e @i T Since U and p[;41,,)(V) have the same indecomposable direct
summands except the k-th one, we have uy(U) = pjit1,n)(V) as desired.

To prove the latter one, it suffices to show that T > pp(7T) implies U > pug(U).
The condition T° > up(T) is equivalent to Ty ¢ Fac(T/Ty). Since U/Uj belongs to
Fac (T/T}y) by the explicit form in Proposition 4.4, we have Uy = T} ¢ Fac(U/Uy).
Therefore U > i (U).

(2) Let V = pp—1(T) = @f;lz Ty ® Vi1 @ @), Tj. Then V is a tilting A-
module with Vj_ 1 2 Tk_1, and applying Proposition 4.4 to V, we have pji1,)(V) =
@J 1 T; EB@ T e Vi1 @@] kT Since Vi1 % T)_1 holds by Lemma 4.2(4), U
and /L[,+17n](V) have the same indecomposable direct summands except the k-th one.
Thus we have . (U) = pfit1,n)(V) as desired.

To show the latter one, it suffices to show that T' < py—1(7") implies U < ux(U). The
condition T' < pk—1(T) is equivalent to Ty € Fac(T/Ti—_1). Since T/Tk_l belongs to
Fac (U/Uy,) by the explicit form in Proposition 4.4, we have Uy, = Ty,_1 € Fac (T /Tx_1) C
Fac (U/Uy). Therefore U < py(U).

(3) Immediate from (1) and (2). O

Immediately we have the following complete classification of support 7-tilting A-
modules and indecomposable 7-rigid A-modules.

THEOREM 4.8. (1) We have st-tiltA = || o pps1,n(tiltA).  In particular,
#sm-tiltA = (n + 1)!, and the mutation pg for each 1 < k < n is well-defined
on sT-tilt A by (4.1).

(2) Any support T-tilting A-module has a form Ty ® - ®T; T; @ - - ® T,,—1 for some
0<i<nandT € (I,...,In_1) withT; := e;T for1 < j < n. Moreover such i and
T are uniquely determined.

(3) Any indecomposable T-rigid module has a form T; = e;T or T; for some T €
<Il, N .,In_1> and 1 S ) S n.

(4) The statements (1) and (2) hold for A°P-modules.

ProoOF. (1) By Lemma 4.6, ;" ptfi41,1)(tiltA) is a disjoint union and contains
precisely (n + 1)! elements. By Proposition 4.7(3), ||\ pfi+1,n) (tiltA) is closed under
mutation. This is a finite connected component of H(s7-tilt A). By Proposition 2.19, we
have sT-tilt A = | |\ puji41,0) (Li1EA).
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(2) is clear by (1) and Proposition 4.4.
(3) is a straight result of (2) and Lemma 2.12. O

The following lemma is also needed.

LEMMA 4.9. Let U € st-tiltA and 1 < j, k < n.
(1) pip;(U)=U.
(2) If 17 — k| > 2, then p;px(U) = pepj(U).
(3) If |7 — k| =1, then pjpnp;(U) = puopijpun(U).

PROOF. (1) is clear from the definition of mutation.
By Theorem 4.8(1), we can assume that U = pfi11,,(T) for some 0 < i < n and

T € (I1,...,In—1). In the following we use Proposition 4.7(3) and Proposition 3.13

frequently.

(2) Without loss of generality, we assume k < j. We divide the proof into seven
cases.

(@) I k < j < i—1, then pjme(U) = pipeppivin)(T) = piptpivrnme(T) =
it 1,m g e (T) = ppipr,mg bty (T) = pepsifier,n) (1) = papey (U).

(b) If i + 2 < k < j, then the proof is very similar to (a).

() Ik <i—1<i+2<y, then ujup(U) = pipnpifivr,n)(T) = piiiprmpn(T) =
Bt 1 t—1 ke (T) = pipsrn)tietti—1(T) = peptpivr,ntti—1(T) = pwptjpfivn(T) =
fuiepig (U).

(d) The case k = i < i+ 2 < j, then pjur(U) = pippiizin)(T) = pippn(T) =
tiini =1 (T) = ppfi1,nytti—1(T) = prpstifivr,n) (T) = paeps (U).

(e) If k <i—2 < i=j, then the proof is very similar to (d).

() Uk <i-1<i+1=j, then pju(U) = pjprppivin)(T) = piv1ppiv1mpn(T) =
tfi2,m) e (T) = pureffiv2,n) (T) = prpstifivn,n) (1) = prp; (U).

(g) fk=1i+4+1<i+3 <}, then the proof is very similar to (d).

(3) Without loss of generality, we assume k = j + 1. We also divide the proof into
five cases.

(a) If j < i —2, then pjppp;(U) = pjpnpipfiving(T) = prvrmpgpnpi(T) =
i1, kg o (T) = prpig i pgivn,n) (T) = e pr (U)-

(b) If j > i+ 2, then the proof is very similar to (a).

(c) Ifj=i—1,then pi—1pipi—1(U) = pri—apifti—1ptpis1,n)(T) = pi—1ptiptipr,npbi—1(T) =
et ii-1(T) = pittfi—1,0)(T) = pripi—1piptfiz1,m) (1) = pipti-1p2:(U).

(d) If j=1dor j=1i+ 1, then the proof is very similar to (c). O

Now we are in a position to state one of the main results of this section.
THEOREM 4.10.  Let A be the Auslander algebra of K[z]|/(z™). Then

(1) There exists a bijection I : &y 411 = sT-tilt A which maps w to I(w) = puy, piy -+ - i, (A),
where w = $;, 84, * - 8, 1s an arbitrary (not necessarily reduced) expression.

(2) The statement (1) holds for A°P-modules.



Classifying T-tilting modules over the Auslander algebra of Klz]/(z™) 757

PRrROOF. (1) Proposition 4.9 and the same argument as in the proof of Theorem 3.18
show that the map I is well-defined. By Theorem 4.8, we have #s7-tiltA = (n + 1)! =
#6,,+1. Thus we only have to show I is surjective.

By Theorem 4.8, any U € s7-tilt A is written as p[;41,,)(T) for some T' € tilt A and
0 < i < n. By Corollary 3.19, there exists w € &,, such that T = I(w). Then we have
I(sit1- - 5,w) = pfit1,n)(T) = U. Thus the assertion follows.

(2) We only need to replace A-modules with A°?-modules in the proof. O

Our second goal in this section is to show that the map I in Theorem 4.10 is an
anti-isomorphism of posets. For this aim, we need the following result.

PROPOSITION 4.11.  For w € 6,41 and 1 < j < n, l(sjw) > l(w) if and only if
I(s;w) < I(w).

PrOOF. It suffices to show that [(s;w) > I(w) implies that I(s;w) < I(w) by
replacing s;w with w if necessary. Write w = s;41---5,v with 0 <7 < n and v € G,,.
Then I(w) =n—i+1(v) and I(s;w) = n—i+1(v) + 1 hold by our assumption. We prove
the assertion by comparing ¢ with j.

(a) Assume j < i — 1. By Proposition 4.7(3), we have I(s;w) = pjpifit1,n)(1(v)) =
Wit (1 (V) = pig1,n)(I(s5v)). Since sjw = si41---sps5v holds, we have n — i +
l(v)+1=1I(sjw) <n—1i+I(s;v) and hence [(v) +1 = l(s;v). Then by Theorem 3.18 one
has I(s;jv) < I(v), which implies by Proposition 4.7(1) that I(sjw) = 41,0 (I(s5v)) <
i (1)) = T(w)

(b) Assume j > i + 2. We have I(s;w) = pjpifit1,0)(I(v)) = ppigimpi—1(I(v)) =
Mpit1,n](I(sj-1v)) by Proposition 4.7(3). Since s;w = s;y1---5,5;_1v holds by
Lemma 4.1(2), we have n — ¢ + [(v) + 1 = I(s;w) < n — i+ I(s;—1v) and hence
l(v) +1 = I(sj—1v). Then by Theorem 3.18 one has I(s;_1v) < I(v), which implies
by Proposition 4.7(2) that I(sjw) = pujy1,0)(1(55-1v)) < pjig1,n(1(v)) = I(w).

(c) Assume j = i. By Proposition 4.7(3), we have I(s;jw) = pipiit1,n(I(v)) =
i (I () < ppig1,m (I(v)) = I(w) by Proposition 4.4(2).

(d) The case j = i + 1 does not occur. In fact sjw = s;42---s,v implies I(s;w) =
l(w) — 1, a contradiction. O

Now we are ready to show the main result on the anti-isomorphisms of posets.

THEOREM 4.12. Let A and I be as in Theorem 4.10. Then I : G, 11 — sT-tilt A is
an anti-isomorphism of posets with respect to the left order on &,,41 and the generation
order on sT-tilt A, that is, wi < wy in S,41 if and only if I(wy) > I(wsy) in sT-tiltA.

PROOF.  The proof is very similar to the proof of Theorem 3.18(3), we need to use
Proposition 4.11 instead of Proposition 3.17(3). O

To compare with the Hasse quiver of support 7-tilting A-modules, we give the Hasse
quiver of the left order on the symmetric group &,, for n = 4.

ExXAMPLE 4.13. The Hasse quiver of the left order on &4 is the opposite of the
following quiver:
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id = 1234]

I

[2134] [1324] [1243]

7 =TT

[3124] [2314] [2143] [1423] [1342]

/NN o N N

[4123] [3214] [2413] [3142] [1432] [2341]

KX\%

(4213 [4132] [3412] [3241] [2431]

~ =< 7
T

[4312] [3421]
By Theorem 4.14, we give the Hasse quiver of support 7-tilting modules of the
Auslander algebra of K[z]/(2™) for n = 2, 3.

i\

4231]

e

[4321]

EXAMPLE 4.14. Denote by A; the Auslander algebra of K|[z]/(z*) for i = 2,3.
Then

(1) The Hasse quiver H(s7-tilt A2) is of the following form, where % shows i

(2) The Hasse quiver H(s7-tilt A3) is of the following form, where %5 shows 1
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_ , 4
1|25 2
2 53173
| ° 3
/1/ % T
2 3 I 37 5
[231231 31 Yy 112312 {12 12312}
3 3 2 3 3
3 L 3
/2/ \}< o N,
° [ 13| 2? 2 /\1 1 3 \1{
2 2 |17 3| 2 1| o2
R A I S e I R e S I R R R NS
f h -%2/ N3 )il/ \z\ 3/ \1
N\
3 3 23 1 3 b 1 / \J
[23‘23‘} 7175 122] [3’ 23’1_ [25]2]17] { 23‘12‘1} [[12112]

5. Connection with preprojective algebras of type A,.

Let A be the Auslander algebra of K[z]/(z™) and I be the preprojective algebra of
Dynkin type A,,. Thus I' is presented by the quiver

al as as An—2 An—1
1 2 3 s n—1l=—=n
by b3 by bn—1 bn

with relations a1b2 = 0, bya,—1 = 0 and a;b;41 = b;a;—1 for any 2 <i <n — 1. Thus we
have I' = A/L for the ideal L of A generated by b,a,,—1. Then we have L = @?:1 L; for
L; := e; L. For example, A and L in the case n = 4 is the following.

2 3
4 1 173 P
L= 2| EA= %3 2 Loda1ls
4 3 3 4 3 3 2,4
4 4 4

Our aim in this section is to apply Theorems 4.10 and 4.12 to I" and prove that the tensor
functor
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— QA ' : modA — modT

induces a bijection from s7-tilt A to s7-tiltI". In particular, we can get Mizuno’s bijection
from the symmetric group &,,41 to s7-tiltT.

Let us start with the following general properties of support 7-tilting modules over
an algebra A and its factor algebra B.

ProprosITION 5.1 ([DIRRT]). Let A be an algebra and let B be a factor algebra
of A.

(1) If T is a 7-rigid A-module, then T ® o B is a T-rigid B-module.

(2) If T is a support T-tilting A-module, then T ® 4 B is a support T-tilting B-module.
Thus we have a map — @4 B : sT-tilt A — s7-tilt B, which preserves the generation
order.

(3) The map in (2) is surjective if A is T-rigid finite.

Note that T"®4 B is not necessarily basic even if T is basic 7-rigid.
Recall that M and L are the ideals defined at the beginning of Sections 4 and 5
respectively, and M; = e;M and L; = e;L for 1 < i < n. We need the following facts.

LEMMA 5.2. Let T € (I1,...,I,—1) and T; := ;T for 1 < i < n. For any
1 <i < n, we have

(1) LM=L=ML and T;L = L;.
(2) T;/L; is indecomposable with a simple socle Sy, _;11.
(3) LetV € <Il, Ce 7In—1>- IfTZ/Ll = ‘/i/Li; then T; =2 V;.

Proor. (1) This is clear. (2) Since M; C T; C P;, we have L; = M;L C T;L C
P,L =L;. The socle of T;/L; C P;/L; is S;,—;+1. (3) One can prove in a similar method
with Lemma 4.2(4). O

Now we can state our main result of this section.

THEOREM 5.3.  Let A be the Auslander algebra of K[x]/(x™) and I" the preprojective
algebra of Dynkin type A,.

(1) The map — @p T : sT-tilt A — s7-tilt T given by U — U @, ' is bijective.
(2) The map in (1) is an isomorphism of posets.

(3) If X is an indecomposable T-rigid A-module, then X @ T is an indecomposable T-rigid
T'-module.

PrOOF. (1) For any U € s7-tilt A, there exists T' € (I1,...,I,—1) and 0 < i < n
such that

U=pjipn0)=T1® - oT,e6T®& - &T, 1
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by Theorem 4.8. In this case, we have

(M/Lye--e@/L)eTie ol if i>1,
0T & &T, if i=0.

U®AI‘—{

For any 1 < j < n, T] does not have S,, as a composition factor, and T;/L; has S, as
a composition factor. Therefore the integer ¢ can be recovered from U as the number of
indecomposable direct summands of U which have S,, as a composition factor. Moreover,
by Lemmas 5.2(2) and 4.2(2), the socle of the j-th direct summand of U @, T" is Sp,— ;41
if 1 <j <4, and either Oor S,—j41 if i +1 <5< n.

Now assume that another U’ € s7-tiltA satisfies U @p I' = U’ @4 I, and take
T €(I,...,I,—1) and 1 <4" < n such that U’ = ppi41.,)(T'). By the argument above,
we have i = i’. By looking at the socle of each indecomposable direct summand, we have
T;/L; = T;/Lj forany 1 <j <i and T} = TJ/ for any i < j <n—1. They imply T; = T}
for any 1 < j < n — 1 by Lemmas 5.2(3) and 4.2(4). Since T,, = B, = T/,
T =T and hence U = puf1,0)(T) = pipir,n) (1) = U".

(3) By Theorem 4.8(3), X has a form T} or T; for some T € (Iy,...,I, 1) and
1 <i<n. Since ;@51 = T;/L; and T; @' = T; are indecomposable by Lemmas 5.2(2)
and 4.2(2), the assertion follows.

(2) The map — ® I' preserves mutations. In fact, if U = p;(T) for T, U € s7-tiltA,
then U @5 I' and T'® I' have the same indecomposable direct summands except the i-th
summand by (3) and the injectivity of — ®a I' : s7-tilt A — s7-tiltI". Therefore we have
UprT = pu;i(T @, T). Moreover, — ®, I' preserves the generation order clearly.

In particular, — ®4 I’ gives an isomorphism H(s7-tiltA) — H(s7-tiltI") of Hasse
quivers by Theorem 2.18. Thus — @ I' : s7-tilt A — s7-tiltT" is an isomorphism of posets
by Lemma 2.15. O

we have

REMARK 5.4. Theorem 5.3 gives another proof of Mizuno’s result [M, Theorem
2.21].

As a corollary, we get the following.

COROLLARY 5.5.  Let A be the Auslander algebra of K[x]/(x™) and T' a preprojective
algebra of Dynkin type A,. There are isomorphisms between the following posets:

1) The poset sT-tilt A with the generation order.
The poset sT-tiltT" with the generation order.
The symmetric group &,41 with the opposite of the left order.

(

(2)

3)

(4) The poset sT-tilt (A°P) with the opposite of the generation order.
(5) The poset sT-tilt (T'°P) with the opposite of the generation order.
(6)

The symmetric group G,,+1 with the right order.

PROOF. The isomorphism from (1) to (2) given by — ®, I' is showed in Theo-
rem 5.3. The isomorphism from (3) to (1) given by I is showed in Theorem 4.12. The
isomorphism between (1) and (4) (resp. (2) and (5)) is given in [AIR]. O
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EXAMPLE 5.6.

O. IyAMA and X. ZHANG

Denote by I',, the preprojective algebra of type A,. Then

(1) The Hasse quiver H(s7-tiltI'y) is of the following form, where % shows i

[2|12]‘”’1"[ o ]\2“[12\1}

; ;

— [ 1]

[2|}\1\>[Hé/’42

(2) The Hasse quiver H(s7-tiltI's) is of the following form, where % shows L

(A1]
(A2]
[AAC)

[AIR]
[Ail]

[AnHK]

[123 123 123}
— ~
[2 ‘123‘ 231/1 Ly 1%3 2 ? 3\[12 )123‘ 2}
31153, 3] 2 |1 3l 271
R T
N [3‘1/23‘12\3} [23 123\12} [123‘12\3‘1} [1/23‘1\2‘12}
N N /gl/ NS
BB P I CT P EV R E N E P N R E R R (E P
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