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Abstract. We prove that b < v§°™' where b is as usual the unbounding number,
and v§°™' is the constant prediction number, that is, the size of the least family /7 of
functions 7 : 2<“ — 2 such that for each x € 2% there are n e Il and k such that for
almost all intervals I of length k, one has n(x[i) = x(i) for some i e /. This answers
a question of Kamo. We also include some related results.

Introduction.

This work is about evasion and prediction, a combinatorial concept orig-
inally introduced by Blass when studying set-theoretic aspects of the Specker
phenomenon in abelian group theory [BI1]. It is also about how hard (in a
descriptive set-theoretic sense) it sometimes can be to prove ZFC-inequalities
between cardinal invariants of the continuum.

For our purposes, call a function n:2<” — 2 a predictor. Say n k-
constantly predicts a real x € 2¢ if for almost all intervals I of length k, there
is i € I such that x(i) = n(x[i). In case n k-constantly predicts x for some k,
say that 7 constantly predicts x. The constant prediction number v$*™' is the
smallest size of a set of predictors I such that every xe2® is constantly
predicted by some 7 e II. As mentioned already, the concept of prediction is
originally due to Blass [BIl] who also put it into a much more general frame-
work in [BI2, Section 10]. The notion of constant prediction and the definition
of v§°™' however, are due to Kamo (see [Kal] and [Ka2]), and the notation
05! is due to Kada (see, e.g., [Kad]).

Kamo observed that v$°™' > cov(.#),cov(A") [Kal]. He also proved that

05°™" may be larger than all cardinal invariants in Cichon’s diagram [Kal], and
smaller than the dominating number d [Ka2]. He asked |[Ka3| whether it can
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even be smaller than the unbounding number b. In 1.5 we shall show this is
not possible.

THEOREM. b < ™.

Two comments concerning this result and its proof are in order. Firstly,
shortly before we obtained our result, Kamo (unpublished) proved that an w-
stage iteration of Laver forcing adjoins x € 2“ which is not constantly predicted
by any predictor from the ground model. This shows that v$™' =R, after
adding w, Laver reals with countable support over a model for CH. This was
strong evidence, and also an incentive, for our 1.4 and 1.5. For Zapletal
has proved, assuming a proper class of measurable Woodin cardinals, that the
iterated Laver model is a minimal model for b in the sense that whenever a
cardinal invariant i with a reasonably easy definition has value N, in that model,
then b <i is provable. Now, v$®™' indeed falls into Zapletal’s framework.
However, our result does not follow from Kamo’s and Zapletal’s work because
the latter uses a large cardinal assumption while ours is in ZFC alone. More-
over, it turns out our proof of 1.5 is much simpler than Kamo’s argument
referred to above.

Secondly, Kamo showed that after adding one Laver real, every
new real is still 2-predicted by a ground model predictor. It turns out this
is still true for arbitrary finite stage iterations of Laver forcing, with 2 replaced
by some larger k which depends on the length of the iteration (see [Iheorem
2.5 below). This means in particular that the standard approach to proving
inequalities between cardinal invariants—which would in this case mean exhibit-
ing Borel functions f — x;: 0 — 2% and n+ g, : 22" — »® such that when-
ever f > *g,, then n does not (k-)constantly predict x,—does not work here.
For the latter would mean that given a model M of ZFC and a dominating
real f over M, there is x; not (k-)constantly predicted by any predictor from
M—which fails in the Laver extension of M. Worse still, says
that one cannot get away with using 2 or 3 models, each containing a domi-
nating real over the preceding one (as is usually the case when one model
and one ‘‘generic enough” object over the model are not sufficient, e.g. in
the Bartoszynski-Miller characterization of cov(.#) where two infinitely often
equal reals are needed to get a Cohen real, or in Truss’ add(#4) >
min{b, cov(.#)} where a dominating real over a Cohen real is needed [BJ]). So
the proof of b < v$°™' is hard in a descriptive set-theoretic sense.

In Section 3, we dualize Kamo’s consistency of 05! < b to get
the consistency of ¢5™' > Db, and give an alternative proof of Kamo’s result
as well. The subsequent section dualizes Kamo’s CON (v§°™! < p*°"™!) [Kal] to
CON (5™t > ¢®™Y) " and, again, reproves his consistency. Further results con-
nected with the work reported herein shall appear in [BSh].
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We keep our notation fairly standard. For basics concerning the cardinal
invariants considered here, as well as the forcing techniques, see and [BI2].

Apart from Section 4 (January 2001), the results in this paper were obtained
in Spring 2000.

I am grateful to S. Kamo and M. Kada for discussions on the material of
this paper and for comments on a preliminary version. I also wish to thank
J. Zapletal for pointing out the connection to his work after a talk 1 gave at
the Luminy workshop on set theory (September 2000).

1. The ZFC-results.

The following result is the main combinatorial ingredient for the proof of

below. By [Theorem 2.3, it is optimal.

TueoreM 1.1. Fix kew. Let £/ =2K—1. Assume there are ZFC-models
Myc My c--- < My and reals fy,...,f,—1 € ©” such that f; € M;y, is dominat-
ing over M;. Then there is x €2\ M, which is not k-constantly predicted by
any predictor from M.

PrOOF. Assume without loss all f; are strictly increasing, f;(0) >0 and
filn+1) > fi(n) + k. Define h; € N M;;; by the recursion /;(0) = £;(0) and
hi(n+1) = fi(hi(n)). Without loss we may assume ran(/;,;) < ran(h;) for all i.
Clearly h; > f; for all i. List {s€2*;5# 0} (where 0 denotes the sequence with
constant value 0) as {s;;i </}. Define x €2 as follows:

0 if n¢ {ho(m)+j;mew and j < k}
x(n) si(J) if n is of the form h;(m)+j,i</—1 and j <k,
and h;(m) ¢ ran(h;s )
sy—1(j) if nis of the form h,_y(m)+j,j <k

We also define, for each 7€ 2<” and each i </, a real x;; € 2N M;:

x,0=1"0 (this means x;( is constantly 0 past |¢])

(t(n) if n e ||
0 if n¢ {ho(m)+j;mew and j < k}Ult|
Xi(n) = ¢ s#(j) if nis of the form hy(m)+j,i' <i—1 and j <k,
hy(m) ¢ ran(h;y11), and n ¢ ||
( si—1(j) if n is of the form h;_y(m)+j,j <k, and n ¢ |f|

for i>0. So x=x¢y,. Moreover, the x,; can be thought of as approx-
imations to x with initial segment ¢ in the intermediate models M;.
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Fix a predictor 7€ My. In M;, i </, define g; € o by
go(n) = min{m; for all te2": if there is m' > n such that
n(x.olm' +J) # x.0(m" +j) for all j <k, then m >m'+k} and
gi(n) = min{m; for all e 2" if there is m’ eran(h;_;), m' > n, such that
n(x.;Im' +j) # x.:(m' +j) for all j <k, then m >m'+k}

for i >0. Now, there is ny such that for all i</ and all » > ny we have
fi(n) > gi(n+ k). The following is clear from the way things were set up.

Cramm 1.2. For all i</, all n,n' > ngy, all te2"* such that n and n'
are consecutive members of ran(h;): if there is no m' e ran(h,_1)N[n+k,n" — k|
(m' e n+k,n" —k| in case i = 0) such that n(x,;Im' +j) # x,;(m’" +j) for all j,
then it’s not true that n(x,;[n’' +j) # x,(n" +j) for all j.

Proor. If n,n’ are consecutive members of ran(k;), we must have
n' = fi(n). Since g;(n+k) < fi(n), the claim follows. O

Put s | =0 (the sequence in 2% with constant value 0).

Cram 1.3, For all i, all n,n' > ny, all t as in Claim 1.2: if there is no
m' e [n+k,n" —k| such that n(x,;[m'+j) # x,i(m' +j) for all j, then for all
i <'i, it's not true that n(x,;[n"syTj) # (x,;[n"sy)(n" +j) for all j.

ProorF. We make induction on i: the case i =0 is clear from Claim 1.2.
i—i+1. n and n' are consecutive members of ran(/;.;). So there is
n* > n such that n* and n’ are consecutive members of ran(h;). Let t* :=x; ;1
n*+ke2"**  Note that x; ;[ n’ = x,;41'n’. So we may apply the induction
hypothesis to get the conclusion of the claim for all i’ <i. The case i’ =i,
however, follows from Claim 1.2 (for i+ 1). O

Applying Claim 1.3 to i=/—1, we see that if n,n’ >ny are con-
secutive members of ran(h,_;) and te2™k then there is m'en+k,n']
such that n(x, ,[m’ +j) # x,,(m' +j) for all j. (Using that x;,[n’ = x, i [n’,
we see that if there is no m’ e [n+k,n’ —k] with this property, then, by
the claim, 7(x,,—i1[n"s,—11j) # (xr,-11n"s,21)(n’ +j) for all j. However,
Xpo-1In"s;—1 Mk =x,,n"+k.) This completes the proof of the theorem. []

LemMMmA 1.4. Assume there are ZFC-models Myc M, < --- < M; < --- and
reals fo,..., fi,... € @® such that f; € M, is dominating over M;. Also assume
Ny © Ny are ZFC-models containing {M;;i € w),{fi;i€ w) and f € N is domi-
nating over Ny. Then there is x € 2“ N Ny which is not constantly predicted by
any predictor from M.
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PrOOF. Assume f is strictly increasing with f(0) =0, and the f; are as
in the previous proof. For k € w, let x; € M,i_; be the real from the previous
theorem. Let [; be the intervals of @ defined by consecutive members of ran(f).
Define x €2® by x[ I = xx[Ir. So xe Nj.

Let 7 be a predictor from M,. Assume the g{‘ € M; are defined as
in the proof of [Theorem 1.1, i <2%—1. So there is m; such that for all
i<2F—1and all n>n, fi(n) > gf(n+k). The sequence of n; is constructed
in Ny and therefore eventually dominated by f. Similarly, the intervals [ =
[f(k), f(k+1)] eventually contain two members of ran(h«_,). Now, if k is
such that f(k) > n; and there are two members of ran(/,«_,) in I, then we
find ne[f(k)+k, f(k+ 1) — k] such that n(x[n+j) # x(n+j) for all j < k by
the previous proof. So we’re done. O

THEOREM 1.5. b < p§™t,

Proor. For indeed, if we had 05" < b, we could find first a model M,
of size v§*™', and then M; (i > 0), f;, No, N1, and f which satisfy the hypotheses
of the previous lemma. Thus we reach a contradiction. ]

2. Finite iterations of Laver forcing.

Recall that Laver forcing L is forcing with trees p < w<® such that
every node below the stem is an w-splitting node, ordered by inclusion. A node
g € p 1s called w-splitting if 6°(n) € p for infinitely many n. In this case we let
succ, (o) = {n;a°{n) € p}, the successor nodes of . The stem of p, denoted by
stem( p), is the unique w-splitting node which is comparable with every node of
p. Given g €p let p, = {r € p;t is comparable with g}, the restriction of p to o.
If stem(p) < g, one has stem(p,) =0. For p,ge L, p<oq means p < g and
stem(p) = stem(g). For simplicity, think of the generic Laver real / as a strictly
increasing function from @ to w. (This means we force with p containing only
strictly increasing o.)

Let kew and f e w® be strictly increasing. A tree 7 < 2<“ is called an
(f,k)-tree if there is A = Al =T such that

(i) all se 4 are splitting nodes,

(i) if sed, 1<]2/DN{reT;sct}| <k,

(ili) if sed and scte2/0NT, then 2/DN{ue T;t cu}| =1,

(iv) if sed, {tos||<f*(s)}NA=,

(v) if teT is a splitting node, then there is se€ 4 such that s < ¢ and

2] < f(Is])-
(Notice (iii) actually follows from (iv) and (v). We state it just for the sake
of clarity.) It is easy to see that AfT witnessing 7' is an (f,k)-tree is unique.
Also if f'<g everywhere and T is both an (f,k)-tree and a (g,k)-tree, 4/ 24

~—
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If 0 € =? is strictly increasing, call T a (g, k)-tree if (i) to (v) are satisfied with f
replaced by o, and 4 < 2<l°l.  (Of course, this means 7 has only finitely many
splitting nodes.) Note that an (f,1)-tree is nothing but a real number.

MAIN Lemma 2.1. Let T be an L-name for an (h,k)-tree where h is
forced to dominate £, the L-generic real, everywhere. Also let pe L and f € »®
be arbitrary. Then there are q < p, g=>"f, and a (g,k + 1)-tree S such that
g+ T cS.

Proor. We may assume that for all g ep with stem(p) < g, there are
a number a, < |o| and a sequence v, € w* such that p, decides hla, to be v,

and for all i e succ,(0), ps-¢y IF h(as) > n; where n; — oo as i — co.
Let p’ < p arbitrary and observe:

CLAaM 2.2. Given g €p’ there are a tree S, =25 and a condition q' < p|.
such that for all i€ succy (o),

q¢/f<l'> I Trml = Sarmi

where m; — oo as i— oo. Furthermore, given t such that |t|>a, and
Tl dy < vy, and A < S, ||| such that <*(|s|) < |t| — 1 for all s€ A and A witnesses
Sy x| is a (z,k)-tree, there are t' 2t with t'(j) > f(j) for all x| <j < |t'| and
A, =S, containing A such that A, witnesses S, is a (t',k)-tree and any node
te€2"-1NS, has at most one extension in A,.

Proor.  Given i € succ, (o), find q' <opyy and a finite tree T' <2<
of height i such that ¢’ |F T[i=T'. By Konig’s lemma (or, alternatively, by a
compactness argument), there are an infinite B < succ, (), a tree S, < 2<%, and
m; for i e B with m; — oo such that T'[m; = S,[m; for all ie B. Now define
q' by stem(q') = g, succy/(g) = B, and ¢, = ¢'. ‘

We may assume there are 4' = T? such that ¢’ || AhT li= A" We may also
suppose there is 4, = S, such that A'[m; = A, m; for all ie B. We must have
A2 4,7 -1 (because A is above 7). Consider t€ S,N2/"~1. To be able to
construct the required 4, and 7’ it suffices to show that 7 has at most k exten-
sions in S, on any level >|¢|.

To this end, let s = ¢ be maximal with se 4,. If |s| >a, or |s| < a, and
v(|s|) = as, s can have at most k extensions on any level >|s| (by (iv) and
because ¢’ forces no bound on A(a,) there can be no s’ > s belonging to A,).

So assume |s| < a, and v,(]s|) < a@;. Then either the set of nodes in S,
extending ¢ form a branch or there is s’ = ¢ belonging to A, and no splitting
occurs between ¢ and s’. Again s’ can have at most k extensions on any level
>|s’|, and we’re done. O
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Let {t,;n € w} be a canonical enumeration of @<, that is, such that
T, © T, Implies n < m,
7, =1Xiy and 7, =1°(j) and i <j imply n < m.
By recursion on n, define nodes o, trees S, = 2<“, conditions p”, numbers j,,
the strictly increasing function ¢[ j,, and finite sets A4, such that
(@) g, S a, if and only if 7, < 14,
(b) stem(p") =ay; in fact if m <n+ 1 and i are such that g, = g, i),
then p"*! <, Por s
(c) there are m; — oo such that for all iesucc,n(an), p) - | T m; =
Sh rmi:
(d) if m<n+1 and i are such that g, = g,,"(Q), then Sy, [ j, = Sus1 1 Ju,
e) A, < S,N2% witnesses S, is a (g,k)-tree and g>*(|s|) <j, — 1 for all
s€ A,
(f) if m<n+1 and i are such that g,. = g, i), then 4,, < 4,,; and
each e 2/~! has at most one extension in A,.1,
(@ g0j)=f(j) for all j> jo
(h) if m<n+1 and i are such that g, = 6,,<i), ¢(j,) is larger than the
level of any splitting node of S,,US,.1.
Basic step n =0. Let gy =stem(p). Applying the claim with p’ = p and
o = 0y, we get S, = Sy and ¢’ = p° satisfying (b) and (c). By an argument like
in the claim find 4y and 7 2 v, such that z2(|s|) < |t| — 1 for all se 4y and 4,
witnesses Sy is a (t,k)-tree. Put jo = |z and let g[ jo=7. So (e) holds.
Recursion step n —n+1. Fix m <n such that 7, = 7,1 [ (|tus1| — 1).
By (c) for m, we can choose g, > g, with |g,.1| = |o,s| +1 such that

szﬂ IF Tr]n = Sl Jn-

So (a) holds. Applying the claim with p'=p and o=o0,.1, we get
Sy = Suy1 and ¢’ = p™*! satisfying (b) and (c). Since p"t! <, Por.,» We must
have S,i10jn = Sm|Jju, ie. (d). Let t=g¢glj, and A =A4,. Then 3(|s|) <
|z| = 1 for all se 4 and A witnesses S,,[|t| is a (z,k)-tree (by (e) for m) so
that we can use the claim to get A, = A, and ' = ¢ |7/| witnessing S, is
a (7/,k)-tree as well as satisfying (f), (g) and (h) (by choosing ¢(j,) large
enough). Extending 7/, if necessary, we may assume (z/)*(|s|) < |t/| — 1 for all
s € Ap1 so that, letting j,. = |7/, we have (e).

This completes the recursive construction. Letting ¢ = {o,;new}U
{ooi;i < lool}, ¢ <op is immediate by (a). (g) entails g >* f. Putting S =
U{Su;new}, gt T =S is also straightforward (use (c)). So it remains to see
S is a (g,k+ 1)-tree. Construct the set of witnesses Ag by recursion on j,.
Assume A7 Nj, has been produced and witnesses | ), _,Sn is a (g1 ju,k+1)-
tree. So consider j,.;. Let m <n be such that g,,°(i> = g,, for some i. By
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(f), each t €271 has at most one extension in A,.;, say s. In case se€S,,
put s into Ag. Since S,, is not branching anymore and S,,; branches to at
most k incompatible nodes beyond s, (ii) above is OK for k+ 1. In case
s ¢ S, there is a maximal s’ s with |s'| > j, belonging to S,, (by (d)). So put
s into A 5 . Again (ii) is satisfied, and (i) is because s’ must be a splitting node
of S, US,41. (v) holds in both cases because we made g(|s|) for new s e 4 (f go
beyond all splitting levels of S,,US,;; (by (h) and because g is strictly increas-
ing), and (iv) holds because we chose j,,; beyond all g*(|s|) for new se 4 5 (by
(e) and because ¢ is strictly increasing). This completes the proof of the main
lemma. [

Let L, denote the finite iteration of L of length k. It generically adds a
sequence </;; j < k) of Laver reals.

LemMa 2.3. Let Gy be Ly-generic over V, and let x € 2°NV|Gy]. Then
there are few®NV and an (f,k+ 1)-tree T € V such that x € [T].

PrOOF. Repeatedly applying the previous lemma, we find, by backwards
recursion on j < k, reals f; € V[Gj| and (f;,k+ 1 —j)-trees T; € V|[Gj| such that
/i eventually dominates /;_;, the j-th Laver real (in case j > 0),

xe[Tralc--- <[l < - < [T
This is done in straightforward fashion. The only thing to notice 1is
Main Lemma 2.1 also holds for functions eventually dominating the Laver-
generic. ]

LemMA 2.4. Given f € w® strictly increasing, k € w, an (f,k)-tree T, and j
with 2/ > k, there is a predictor m:2<° — 2 which j-constantly predicts every
x e [T].

ProOF. Let 4 = AT witness T is an (f,k)-tree. Recursively define 7.
Assume s€ A and n|{te T;t < s} has been defined already. Then define n for
all 1e T with s<¢ and |tf| < f(]s|) such that

127U N {ue T; ¢y < u}l
127D N{ue T;t = u}l

n(t) =i if and only if > %
Next define = for all te T with s< ¢, |t| > f(|s]), and t[m ¢ A for all |s| <m <
|t| such that z(z) is the unique i such that #'(i) e T.

To see m j-constantly predicts all of [T], fix xe[T] and let new.
Assume 7(x[n+m) # x(n+m) for all m <j. By the fact T is an (f,k)-tree,
2" N{te T;xI'n<t}| <k. By definition of = and the fact that = mispredicts
x on the interval [n,n+j), we see that 2"V N{te T;x[n+m < t}| < k/2™ for
all 0 <m <j. For m=j, k <2/ contradicts x[n+je T, and we’re done. []
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THEOREM 2.5. Let Gy be Li-generic over V, and let x € 2° N V[Gy|. Given j
with 2/ > k 41, there is a predictor ©:2<° — 2 in V which j-constantly predicts x.

Proor. This is immediate by Lemmata 2.3 and 2.4. ]

By [Theorem 1.1, this result is best possible. Namely, if j is such that
2/ <k+1, then there is x € V[Gy] which is not constantly j-predicted by any
predictor 7 e V.

3. Duality and consistency.

The constant evasion number ¢§™' is the size of the least family F < 2¢
of reals such that for each predictor = there is x € F which is not constantly
predicted by 7 (see also [Kad]). ¢5™' is dual to v$°™' in a natural sense. This
means the dual version of [Theorem 1.5, namely the inequality ¢5™' <, should
be a result of ZFC. Yet, since involved an w-sequence of models,
we have no proof for this.

CoNJECTURE 3.1 (Kada, [Kad]). ™' <b.

However, the other results concerning v5°™" which we have mentioned do dualize.
Namely, ¢$™' < non(.Z),non(./") [Kal], ¢S is consistently smaller than all
cardinal invariants in Cichon’s diagram [BSh], and ¢$™' is consistently larger
than b. To show the latter, define the following p.o. P”. Conditions are triples
(k,o0,F) such that k € w, 6: ®<“ — w is a finite partial function, and F < »® is
finite, and such that the following requirements are met:

|s| <k for all se dom(o),

fInedom(o) for all feF and all n <k,

flk+#glk for all f # g belonging to F,

a(f k)= f(k) for all feF.
The order is given by: (/,7,G) < (k,0,F) if and only if / > k, 120, G2 F, and
for all f € F and all n with k <n </ — 1, either 7(fn) = f(n) or t(fTn+1) =
f(n+1). TItis easy to see < is transitive. P“ adds a generic predictor which 2-
constantly predicts all f € w® from the ground model in a canonical fashion.

Lemma 3.2. P® is o-linked.

Proor. Note that given k,o and Fy, F;, the conditions (k,a,F;) and
(k,o,F)) are compatible: first find / > k such that f[/ #¢g[/ for all f #g¢
in FyUF),. Then extend ¢ to 7 such that f[nedom(z) for all f e FyUF; and
all n with k <n </, guaranteeing that

©(f1/) = f(¢) for all fe FyUF,
for all f e FyUF, and all n with k <n </ — 1, either 7(f[n) = f(n) or
t(ftn+1)=f(n+1).
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It is easy to see this can indeed be done for, given any s e 2%, there can be at
most two f,ge FyUF, with fTk=glk =ys. ]

In fact, the argument above shows P“ is ¢ — 3-linked (i.e. it’s the union
of countably many sets P, such that for all n, any three elements of P, have
a common extension). However, it cannot possibly be o — 4-linked [BSh]. See
also for related results.

We proceed to show a strong version of “P® does not add a dominating
real.”

LEMMA 3.3.  Given a P®-name h for a real in w®, there is H € 0 such that
whenever x £* H, then |+ 3%n (x(n) > h(n)).

Proor. Given k, o, and ¢ = {¢,,...,d, |} S wF, define
Hk767¢;(n) =min{m; ~3(k,0,F) e P” ([F|=inVfeF 3 <i (fTk=4¢)
A (k,0,F) It h(n) > m)}.

Clearly H=H, , ;€ (w+1)”. The point, however, is

CLAamMm 34. H e w?®.

Proor. Assume not. Then there are ny and (k,0,F™)eP®, mew,
such that [F™| =i, for all /'€ F™ there is j <i with fTk =¢;, and (k,0, F™) |t
h(ng) >m. Let F™ ={f";j<i} where f"[k=¢; Using a standard com-
pactness argument to prune the collection of F"’s, if necessary, we may assume
without loss that for all j < i, either

(#;) there is g; € @ such that f" —g; as m — oo, or

(+;) there are 4 >k and y; € ’ such that f[/; =, for all m, and the

values f"(¢) are all distinct.
For j satisfying (+;) choose g; >y, arbitrarily. Let G = {g;;j <i}. Extend
(k,0,G) to (/,7,G) such that /> ¢ for all j which satisfy (4;) and such that
prediction is correct everywhere, that is, 7(g;[n) = g;(n) for all j and all n with
k<n</.

Find (/',7',G') < (/,7,G) forcing a value to A(ng), say (¢',7',G") I h(ng) =
m. Next choose my( such that

moy > m,

S+ 1 =g /" +1 for all j which satisfy (),

J;"Tn ¢ dom(z’) for all j which satisfy (+;) and all 4 <n</.
Then define 79 = 7’ such that for all j which satisfy (4;) and all n with 4 <
n</', f" tnedom(ry) and to(f;" ['n) = f;""(n). Tt is straightforward to check

J
that (¢',79, F™) e P and (', 79, F™) < (k,q, F™). Furthermore, (/',79,G") <
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(/',7',G") is trivial. This means (', 7o, F™) and (/’, 79, G") force contradictory
statements about the value of A(ng), yet, by the argument of 3.2, they are com-
patible. This contradiction completes the proof of the claim. O

Now choose H e w® such that H >* HkM; for all k, o, and ¢. Fix
xew® with x £*H. A standard argument shows x is indeed forced not to
be eventually dominated by A4, and we’re done with the lemma. ]

COROLLARY 3.5. P? preserves unbounded families.

Before stating and proving the main result of this section, let us introduce
the constant prediction and evasion numbers for the Baire space w®. This is
done in exactly the same fashion as for the Cantor space 2“: say 7 : @w<®
k-constantly predicts f € w® if for almost all intervals I of length k, n(f i) =
f(i) for some iel. Let v®™' be the size of the least family of predictors IT
such that for all /' € @® there are k and = € II such that n k-constantly predicts
f, and let ¢®°™! be the size of the least F = w® such that for each predictor =
there is f € F which is not k-constantly predicted by = for any k. Clearly,
econst < e%onst and Dgonst < Dconst. Furthermore, econst < COV(%) and Dconst >
non(.#) [Kal], and v5°™' < p®°™' [Kal] and v®"™' < d are both consistent.

—

THEOREM 3.6. (a) €' > b is consistent; in fact, given k < A = 1~" regular
uncountable, there is a p.o. P forcing ¢°™' = 1= ¢ and b = k.

(b) (Kamo, [Ka2]) v®™' < b is consistent; in fact, given k regular uncount-
able and /.= A” > k, there is a p.o. P forcing v°°™' =k and d = 1 = .

Note that Kamo’s original proof of (b) uses a countable support iteration of
Miller’s rational perfect set forcing, and thus works only in case x = ¥; and
2 =N, (In fact, in light of Zapletal’s result that the iterated Miller model
is a minimal model for d, Kamo’s p®™! = N, in the latter model follows
from our result.) (a) answers another question of Kamo’s [Ka2].

ProOF. (a) Let {P,, Q'x;oc < Ay be a finite support iteration of ccc forcing

such that

for even a, IFuQa = P°, the forcing defined above,

for odd «, IF%Qa is a subforcing of Hechler forcing of size < k.
Guarantee that we take care of all small subforcings of Hechler forcing by
a book-keeping argument. Then b >k is straightforward. ¢©™' > 1> ¢>
¢St js clear because we iteratively add predictors which 2-constantly predict all
ground model reals. To show b < x, argue by induction that a family F < »?
of size x such that given any G < w® of size < k there is f € F with f £* ¢ for
all g € G (such a family is added after the first x stages of the iteration, simply use
the family of Cohen reals adjoined in the limit steps up to x) is preserved along



112 J. BRENDLE

the iteration. For the even successor step, this follows from [Lemma 3.3, for
the odd successor step, use the well-known analog of 3.3 for forcing notions of
size < x, and for the limit step, use a standard argument.

(b) First add 4 many Cohen reals. Then make a finite support itera-
tion {P,, Qa; a < k) of the forcing P” defined above. Again, v®°™! = i is clear.
D = ¢ = 4 follows from using standard arguments (the point is that
D =c¢= 41 in the intermediate model, and this is preserved along the iteration
because the analog of 3.3 holds for any P,). O

4. Baire space versus Cantor space.

To dualize Kamo’s consistency of »§™' < p®™t [Kal], use the forcing
P? which is the analog of P in the Cantor space. That is, conditions are of
the form (k,o,F) such that ke w, o:2<“ — 2 is a finite partial function, and
F = 2% is finite satisfying the same requirements as P® in Section 3. Addi-
tionally stipulate dom(g) = 2=,

Given a predictor 7 : w<“ — w, say x € ® strongly evades n if for all k
there is an interval [ of length k such that n(x[i) < x(i) for all i e I. Obviously,
if x strongly evades 7z, then 7 does not constantly predict x.

CRUCIAL LEMMA 4.1.  Given a P*-name 7 : o<® — w for a predictor, there is
a predictor \ : <% — w such that whenever x strongly evades i, then | “m does
not constantly predict x.”

Proor. Given conditions (k,a,F), (/,7,G), say that (/,7,G) is an almost
extension of (k,o,F) if there is Gy = G with |Gy| = |F| such that (k,o,Gy) >
(/,7,G) and for all f e F there is g € Gy such that f[/ =g[/. Note that if
(/,7,G) is an almost extension of (k, o, F), then (k,o,F) and (/,7,G) are com-
patible (use the argument of the proof of Lemma 3.2).

Fix k,o. Let ¢=1{dy...,d_} =2 Define 4
[F|=iand VfeF 3 <i (fTk=¢)}

k.,a,q;: {(k,O',F) EPZ;

CLamM 4.2. Given D < P*> open dense and finitely many conditions
(/()/,TO,GJ), Jj < myg, such that for all (k,o,F)eAkJ?q; there is j such that
(/0] T3, G/ 0) is an almost extension of (k,o,F), there are finitely many conditions
(flj,fl,Gj) e D, j<my, such that

each (£],t],G/) extends some (/()],TO,G])
« for all (k,o,F)e A, ; there is j such that (flj,rlj, Glj) is an almost

k,o,¢
extension of (k,a,F).

Proor. Note first that if there is some number m such that the conditions
of the form (¢, 7, G) where / < m satisfy the conclusion of the claim, then finitely
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many such (/,7,G) are sufficient, and we are done (this is immediate from the
definition of ‘“‘almost extension”).

Therefore, assuming the claim 1s false, we may suppose there are
(k,o,F™) such that for all m, no condition of the form (7,7, G) with £ <m is
simultaneously in D, an extension of some (/01 70, G/ ¢) and an almost extension
of (k,o,F™). Let F"={f";j<i}. Without loss there are f; €2 such that
f"—f; as m— 0. Put F={f;j<i} and consider (k,o,F). Find j<my
such that (/0] ,‘L’O,GJ ) is an almost extension of (k,o,F). Choose a common
extension (/,%7,G). Then find (/*,7*,G*) < (/,%,G) with (/*,7*,G*) e D.
Note that for large enough m, (/*,7*,G*) is an almost extension of (k,a, F")
(because (k,0,F) > (¢*,7*,G*) and f™[/" = f;[/" for large enough m). For
m > /*, this contradicts the choice of F™, and the claim is proved. O

Let {s;;new} list o<®. For each n, put D,={(/,7,G) e P*(/,1,G)
decides 7(s,)}. Clearly this set is open dense. Still keeping k, o, ¢ fixed, and
using the claim we can easily construct conditions (// o’ r}: ko d n’ o ¢) =
(¢7,t), Gl e D,, j<my,, such that - S
for all n, (/n]+1, n+1,Gn+1) extends some (Z/,7/, G}),

for all (k,0,F) €A, , ; there is j <m, such that (4/, 7}, G/) is an almost
extension of (k,a,F).
Define y, , 7(s») = max{a; some (4/,7],G]) forces 7(s,) = a} + 1.

Finally unfix (k,0,¢), and let ¥(s,) = max{y, , ;(s.);k <n,dom(g) = 2=
and ¢ < 2.

To see this works, choose x strongly evading . Also fix a condition
(k,o,F), and ko >k such that for all i€ lky,ko+k), we have Y(x[i) <
x(i). Let ¢={fk;keF}. Let n; be such that x|i=s,. Without loss
k<mg, < <mgk1. Put m=mg 1. Find j<m, such that (¢/,7/,G/) =

J J J : .
(/;17](767(;,1”7](707(];,Gn7k7a7(/;) is an almost extension of (k,o,F). Let (/,7,G) be a

common extension. Then

(4,7, G) k a(xTi) <y o 5(xTD) < Wp(xi) < x(0)
for all i e [ko, ko + k), as required. ]
Notice the argument really showed

LEMMA 4.3. Given a P*name 7 : w<® — w for a predictor, there is a pre-
dictor  : ©<“ — w such that whenever x strongly evades \, then | “x strongly
evades 1.”

Call F < w® a strongly evading family if given any predictor 7 : 0<“ — w,
there is f € F which strongly evades .
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COROLLARY 4.4. P? preserves strongly evading families.

We are ready to prove the main result of this section. Part (a) answers
another question of Kamo’s [Ka2|.

THEOREM 4.5. (a) e5™' > ™t js consistent; in fact, given rk < A= i~"
regular uncountable there is a p.o. P forcing ¢™' = 1 = ¢ and ¢ = K.
(b) (Kamo, [Kal]) v$™' < v®°™' is consistent; in fact, given ik regular

uncountable and 1. = 1" >k, there is a p.o. P forcing v§™' =k and
DCOHSt — j‘ = C.

const

Proor. This proof is similar to the one of [Theorem 3.6

(a) Let <P, Q o < Ay be a finite support iteration of ccc forcmg such that

- for even a, Ith = P?,

for odd «, IkaQa is a subforcing of P of size < «.

Guarantee that we take care of all small subforcings of P” by a book-keeping
argument. Then the only thing we need to prove is ¢“™' < k: argue by induc-
tion that a strongly evading family of size x (which is added after the first x
stages of the iteration) is preserved along the iteration. For the even successor
step, this follows from the crucial lemma, for the odd successor step, use the well-
known analog of 4.1 for forcing notions of size < x, and for the limit step, use a
standard argument.

(b) First add 4 many Cohen reals. Then make a finite support iteration
<Pa,Qa;oc < k) of P?. vomt == follows from Lemma 4.1 using standard
arguments. ]

5. Problems.

Apart from Conjecture 3.1 mentioned at the beginning of Section 3, the
following are open.

QuEsTION 5.1 (Kamo [Ka2]). Is v°°™' < non(A") consistent? If yes, is even
0™t < min{d,non(A")} consistent? If no, what about v5°™'? Dually, is ™' >
cov(A") consistent?

In view of Theorem 1.3, the following is of interest as well.

QuestioN 5.2 (Kamo [Kal], [Ka2]). Is v5°™' < non(.#) consistent? Dually,
is €™t > cov(M) consistent?

Recall that v®™!' > non(.#) is a theorem of ZFC [Kal]. In case both questions
have a positive answer, we may even ask

QUESTION 5.3. Is ™' conmsistently smaller than the splitting number s?

Dually, is €™ consistently larger than the reaping number t?
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To appreciate the connection, recall that s < non(.#),non(/") in ZFC. Apart
from Question 5.3, there is no connection between the prediction and evasion
numbers on one hand and s and r on the other hand: v§°™" is consistently larger
than v (either use the model for v$™' > cof(./") of [Kal] and note the forcing
involved 1s P-point preserving, or make a short iteration of g-centered forcing
over a model of M4 and use arguments of [BSh] to see v§°™" stays large), 0™ is
consistently smaller than v (this holds in the model for (b) because
the iterands of the short iteration are Suslin ccc forcing notions [BJ| so that ¢
stays large) and v§°™ is consistently larger than s (e.g. in the Cohen real model).
Dual statements hold for ¢§”™' and ¢®™' as well.
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