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Abstract. A. Némethi and A. Zaharia have defined the explicit set for a complex

polynomial function f : C
n ! C and conjectured that the bifurcation set of the global

fibration of f is given by the union of the set of critical values and the explicit set of f .

They have proved only the case n ¼ 2 and f is Newton non-degenerate. In the present

paper we will prove this for the case n ¼ 2, containing the Newton degenerate case, by

using toric modifications and give an expression of the bifurcation set of f in the words

of Newton polygons.

1. Introduction.

Let f : C
n ! C be a polynomial function. It is well known that there exists

a finite set G HC such that f : C
nn f �1ðGÞ ! CnG is a locally trivial fibration.

There are many di¤erent proofs about the finiteness of G, for instance [V], [B1],

[H-Lê] and [N]. We denote by Bf the smallest set of G with the above property

and call this the bifurcation set. For the set of critical values Sf of f we have

Sf JBf , but the equality does not hold in general. This is because the topology

of the global fibration depends on not only the singularities in C
n but also the

singularities at infinity. We can easily see the di¤erence of Sf and Bf in the

example f ðx; yÞ ¼ xðxy� 1Þ. In [K], A. G. Kouchnirenko has proved that if f

is convenient and Newton non-degenerate then Bf ¼ Sf , and in [B1] and [B2],

S. A. Broughton has defined a certain class called tame polynomials and proved

Bf ¼ Sf for them. After that it was expected to find more large classes with the

property Bf ¼ Sf . In the beginning of nineties, A. Némethi and A. Zaharia

have defined a finite set Sf called the explicit set [N-Z1] and proved Bf JSf USf .

In particular for n ¼ 2 they have proved that if f : C
2 ! C is a not convenient

and Newton non-degenerate polynomial then Bf ¼ Sf USf . The estimations of

this and other classes are described in [N-Z2].

On the other hand we can obtain the information of the fibration by

considering the singularities at infinity corresponding to the projective completion.
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H. V. Hà and D. T. Lê have proved that when n ¼ 2, c A C is an element of the

bifurcation set of f if and only if the Euler characteristic of f �1ðcÞ is di¤erent

from the one of the general fibers [H-Lê]. For partial extensions of this result to

the higher dimensional cases, see [P] and [S-T]. In the case when n ¼ 2, V. T.

Le and M. Oka have shown an estimation of the number of the critical values at

infinity of f in the words of the Newton polygon of f [Le-O].

To explain the content of the present paper, we first give the definition of the

explicit set of f . For a given f , let grad f ðzÞ be the gradient vector defined by

grad f ðzÞ ¼ t

 

qf

qz1
ðzÞ; . . . ;

qf

qzn
ðzÞ

!

;

where z ¼ tðz1; . . . ; znÞ and the overlines mean their complex conjugations. We

set

Mð f Þ ¼ fz A C
n j there exists l A C such that grad f ðzÞ ¼ lzg:

Then the explicit set Sf of f is defined by

Sf ¼ c A C

�

�

�

�

�

�

there exists a sequence fzkgJMð f Þ such that

lim
k!y

kzkk ¼ y and lim
k!y

f ðzkÞ ¼ c

8

<

:

9

=

;

:

In the present paper we study the explicit set of a polynomial function

f : C
2 ! C , which contains the case where f is Newton degenerate. If c is an

element of the explicit set of f , by Curve Selection Lemma (see [M] and [N-Z2]),

there exists a real analytic curve p : ð0; eÞ ! Mð f Þ such that limt!0kpðtÞk ¼ y

and limt!0 f ðpðtÞÞ ¼ c. We call this curve the explicit path. To study the exis-

tence of the explicit path we will define a certain inductive algorithm for making

a tower of toric modifications with respect to pðtÞ. By using this algorithm we

will show that the existence condition of the explicit path is equivalent to the in-

constancy of the Milnor numbers of singularities at infinity after the toric modifi-

cations. Finally we will prove that:

Theorem 1.1. Let f : C
2 ! C be a polynomial map. Then Bf ¼ Sf USf .

This result follows independently from the study of Lojasiewicz numbers in

[H]. We will prove this from the viewpoint of Newton polygons and toric

modifications. In the last section we will give an expression of the elements of

the bifurcation set of f in the words of Newton polygons (Theorem 6.5), which

is an extended result of the Némethi and Zaharia’s expression in [N-Z1]. As

a corollary we lead the Le and Oka’s estimation of the number of the critical

values at infinity of f [Le-O].
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In Section 2 we study the relation of explicit paths on Mð f Þ and the Newton

polygon of f and give a first stage of the proof of Theorem 1.1, that is, for the

case where f is Newton non-degenerate or not convenient. In Section 3 we give

the definitions of toric compactifications and toric modifications, and in Section 4,

for a fixed explicit path on Mð f Þ, we give an inductive algorithm for making a

tower of toric modifications. After finite times inductive toric modifications, we

obtain a certain transformed function f d of f around the limited point of the

explicit path. In Section 5 we show two theorems about relations between the

explicit path of f , the Newton polygon of f d and the Euler characteristics of

f �1ð0Þ and f �1ðeÞ for a generic e, and complete the proof of Theorem 1.1.

Finally in Section 6 we give an expression of the elements of the bifurcation set

of f in the words of Newton polygons and estimate the number of the elements.

In this paper we will use the following notations: C
� ¼ Cnf0g, Zb0 ¼

fn A Z j nb 0g and Rb0 ¼ fx A R j xb 0g.

2. Explicit paths of f : C
2 ! C and Newton polygons.

Let f : C
2 ! C be a polynomial function not depending only on one

variable. Let Sf be the explicit set of f , which is defined in Section 1.

Definition 2.1. Let e be a su‰ciently small real positive number and let

p : ð0; eÞ ! Mð f Þ be a real analytic curve on Mð f Þ with limt!0kpðtÞk ¼ y. If

pðtÞ satisfies limt!0 f ðpðtÞÞ ¼ c for some c A C with jcj < y, we call pðtÞ an

explicit path.

Now we fix some c A Sf . For a convenience we assume 0 A Sf by con-

sidering the polynomial f ðx; yÞ � c.

Lemma 2.2. If f has a factor x2 (or y2), the path pðtÞ ¼ tð0; 1=tÞ (resp.

pðtÞ ¼ tð1=t; 0Þ) is an explicit path with f ðpðtÞÞ1 0. In this case pðtÞ is on the

singular locus of f and therefore 0 A Sf VSf . If f has neither a factor x2 nor y2,

both xðtÞ and yðtÞ are not constant zero.

Proof. When f has either a factor x2 or y2, the lemma is obvious. Now

we consider the case where f has neither a factor x2 nor y2. We assume that

xðtÞ is constant zero and limt!0jyðtÞj ¼ y. When f ð0; yÞ is a polynomial of y,

we have limt!0j f ð0; yðtÞÞj ¼ y. This contradicts limt!0j f ðpðtÞÞj < y. When

f ð0; yÞ is constant, since limt!0 f ð0; yðtÞÞ ¼ 0, f ð0; yÞ is constant zero. Set

f ðx; yÞ ¼ xggðx; yÞ where g is a positive integer and gðx; yÞ is a polynomial

with gð0; yÞ2 0. Since f does not have a factor x2, we have g ¼ 1. Then

ðqf =qxÞð0; yÞ1 gð0; yÞ2 0 and ðqf =qyÞð0; yÞ1 0. By substituting these for the

equation grad f ðpðtÞÞ ¼ lðtÞpðtÞ we have lðtÞ2 0, and then yðtÞ1 0. This is a

contradiction. We can prove yðtÞ2 0 by the same way. r
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Let pðtÞ ¼ tðxðtÞ; yðtÞÞ be an explicit path. Now we suppose that both xðtÞ

and yðtÞ are not constant zero. We can describe pðtÞ as

pðtÞ ¼
xðtÞ

yðtÞ

� �

¼
atka þ a1t

kaþ1 þ a2t
kaþ2 þ higher terms

btkb þ b1t
kbþ1 þ b2t

kbþ2 þ higher terms

� �

;ð2:1Þ

where a; b A C
�, k A N and ða; bÞ0 ð0; 0Þ is a pair of coprime integers. Since

limt!0kpðtÞk ¼ y, either a or b is negative.

Let f ðx; yÞ ¼
P

ðm;nÞ am;nx
myn be a given polynomial where m; nb 0. We

define the Newton polygon Dð f Þ of f by the convex hull of the integral points

ðm; nÞ A R
2 such that am;n 0 0. If Dð f Þ intersects both positive axes we say f is

convenient. Otherwise we say f is not convenient. Let P ¼ tðp; qÞ0 ð0; 0Þ be a

pair of coprime integers, called a primitive covector. For a given P we consider

the linear function pX þ qY where ðX ;Y Þ A Dð f Þ and denote its minimal value

by dðP; f Þ. We set

DðP; f Þ :¼ fðX ;YÞ A Dð f Þ j pX þ qY ¼ dðP; f Þg

and call this a boundary face (resp. a boundary vertex) if dimDðP; f Þ ¼ 1 (resp.

dimDðP; f Þ ¼ 0). We define the partial sum fPðx; yÞ by

fPðx; yÞ :¼
X

ðm;nÞ ADðP; f Þ

am;nx
myn

and call this the boundary function of the covector P. In particular, if DðP; f Þ is

a face we call this a face function. If fPðx; yÞ ¼ 0 has a non-zero multiple root

we say fP is degenerate. Otherwise we say fP is non-degenerate. If Dð f Þ pos-

sesses a boundary face whose face function is degenerate we say f is Newton de-

generate, otherwise we say f is Newton non-degenerate.

Lemma 2.3. Let pðtÞ be an explicit path of f given by (2.1) such that either a

or b is negative and limt!0 f ðpðtÞÞ ¼ 0. Then the primitive covector P ¼ tða; bÞ

and the leading coe‰cients ða; bÞ satisfy one of the next conditions:

(i) dðP; f Þ > 0 and DðP; f Þ is a face;

(ii) dðP; f Þ > 0 and DðP; f Þ is a vertex on the axes;

(iii) dðP; f Þa 0, DðP; f Þ is a face and ða; bÞ is a multiple root of

fPðx; yÞ ¼ 0.

Proof. Assume that P ¼ tða; bÞ and ða; bÞ do not satisfy the above condi-

tions. Then we have the following three cases:

(1) dðP; f Þ > 0 and DðP; f Þ is a vertex not on the axes;

(2) dðP; f Þa 0 and DðP; f Þ is a vertex;

(3) dðP; f Þa 0, DðP; f Þ is a face and ða; bÞ is not a multiple root of

fPðx; yÞ ¼ 0.
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Substituting pðtÞ for f we have

f ðpðtÞÞ ¼ fPða; bÞt
kdðP; f Þ þ higher terms;ð2:2Þ

and substituting it for grad f ðpðtÞÞ ¼ lðtÞpðtÞ we have

AtkdðP; f Þ�ka þ � � �

BtkdðP; f Þ�kb þ � � �

� �

¼ lðtÞ
atka þ � � �

btkb þ � � �

� �

;ð2:3Þ

where A;B A C are possibly zero. In the case (2), limt!0 f ðpðtÞÞ ¼ y if

dðP; f Þ < 0 and limt!0 f ðpðtÞÞ ¼ fPða; bÞ0 0 if dðP; f Þ ¼ 0. Then these con-

tradict limt!0 f ðpðtÞÞ ¼ 0. We consider the cases (1) and (3). Assume that

lðtÞ1 0. This implies that ðqf =qxÞðxðtÞ; yðtÞÞ1 0 and ðqf =qyÞðxðtÞ; yðtÞÞ1 0.

However it is easy to see that this is impossible under the assumption of (1) or

(3). Thus lðtÞ2 0. Put

lðtÞ ¼ l0t
g þ l1t

gþ1 þ l2t
gþ2 þ higher terms;

where g A Z and l0 A C
�. Comparing the valuations of (2.3) we have two

equations

kdðP; f Þ � ka ¼ gþ ka;

kdðP; f Þ � kb ¼ gþ kb:

These equalities imply that a ¼ b. Since a and b are coprime and jxðtÞj2 þ

jyðtÞj2 ! y as t ! 0 by the assumption, we have a ¼ b ¼ �1, and hence the case

(1) does not occur. Assume the case (3). fP takes the form

fPðx; yÞ ¼ Cxrys
Y

l

i¼1

ðxþ AiyÞ
ni ;

where C;Ai A C
�, Ai 0Aj if i0 j, r; s A Zb0 and ni A N . By the assumption, we

may assume aþ Ai0b ¼ 0 for some i0 with ni0 ¼ 1 because ða; bÞ is not a multiple

root. We can assume aþ Alb ¼ 0, nl ¼ 1 and aþ Aib0 0 for i ¼ 1; . . . ; l� 1.

Putting Gðx; yÞ ¼ Cxrys
Q

l�1
i¼1 ðxþ AiyÞ

ni , we have

qfP

qx
ðpðtÞÞ ¼ Gða; bÞt�kðrþsþTl�1

i¼1 niÞ þ higher terms;

qfP

qy
ðpðtÞÞ ¼ AlGða; bÞt�kðrþsþTl�1

i¼1 niÞ þ higher terms:

From the leading coe‰cients of the equation grad f ðpðtÞÞ ¼ lðtÞpðtÞ, we have

Gða; bÞ

AlGða; bÞ

 !

¼ l0
a

b

� �

:
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Then aAl ¼ b. On the other hand aþ Alb ¼ 0. Hence we have jAlj
2 þ 1 ¼ 0,

which is a contradiction. r

Lemma 2.4. Suppose that pðtÞ is in the case (i) or (ii) of Lemma 2.3. Then

0 A Bf .

Proof. In these cases f is not convenient and satisfies f ð0; 0Þ ¼ 0. Then

from [N-Z1] Prop. 6 Step 2 we have 0 A Bf . r

Thus Theorem 1.1 is proved except for the case (iii) of Lemma 2.3.

3. Toric compactifications and toric modifications.

Let f : C
2 ! C be a polynomial function. First we define an admissible

toric compactification with respect to the Newton polygon Dð f Þ. Let Qi ¼
tðpi; qiÞ; i ¼ 1; 2; . . . ; h be primitive covectors such that

(i) either pi or qi is negative;

(ii) DðQi; f Þ is a boundary face;

(iii) the indices are assigned in the counter-clockwise orientation.

Let Ri ¼
tðri; siÞ; i ¼ 1; 2; . . . ; m be primitive covectors which satisfy the fol-

lowing:

(1) R1 ¼
tð1; 0Þ, R2 ¼

tð0; 1Þ;

(2) either ri or si is negative for each Ri; i ¼ 3; . . . ; m;

(3) fQig is contained in fR3; . . . ;Rmg;

(4) the indices are assigned in the counter-clockwise orientation;

(5) the determinants of the matrices ðRi;Riþ1Þ; i ¼ 1; . . . ; m� 1, and

ðRm;R1Þ are 1.

For a convenience, we set Rmþ1 ¼ R1. For each ConeðRi;Riþ1Þ; i ¼ 2; . . . ; m, an

a‰ne coordinate chart ðui; viÞ A C
2 is defined by the coordinate transformation

x ¼ uri
i v

riþ1

i ; y ¼ u si
i v

siþ1

i :

Then the corresponding smooth toric variety X is obtained by gluing these co-

ordinate charts, which can be described as

X ¼ C
�2
am

i¼1

EðRiÞ ¼ C
2
am

i¼3

EðRiÞ;

where EðRiÞ is the exceptional divisor corresponding to the covector Ri. Let

p : X ! C
2 be the associated proper mapping. This is called the admissible toric

compactification associated with fR1; . . . ;Rmg.

Next we consider an admissible toric modification. The admissible toric

modification is usually associated with a polynomial or a local analytic function.
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But now we define it for some special functions. Let U HC
2 be a small neigh-

borhood of ð0; 0Þ and let g : U ! C be a local function on U given by

gðx; yÞ ¼
X

ðm;nÞ

am;nx
myn

;

where ðm; nÞ A Z
2 with m > �M for some non-negative integer M and nb 0.

We define the Newton polygon GþðgÞ of g as a germ by the convex closure of

6ðm;nÞððm; nÞ þ R
2
b0Þ where the union is taken for all ðm; nÞ such that am;n 0 0.

GþðgÞ is, for example, as shown in Figure 1. The Newton boundary GðgÞ is the

union of compact faces of GþðgÞ. For a given primitive covector P ¼ tðp; qÞ

with p; q > 0 we consider the linear function pX þ qY where ðX ;Y Þ A GþðgÞ and

denote its minimal value by dðP; gÞ. We set

GðP; gÞ :¼ fðX ;YÞ A GðgÞ j pX þ qY ¼ dðP; gÞg

and call this a boundary face (resp. a boundary vertex) if dimGðP; gÞ ¼ 1 (resp.

dimGðP; gÞ ¼ 0). We define the partial sum gPðx; yÞ by

gPðx; yÞ :¼
X

ðm;nÞ AGðP;gÞ

am;nx
myn

and call this the boundary function of the covector P. In particular, if GðP; gÞ is

a face we call this a face function. If gPðx; yÞ ¼ 0 has a non-zero multiple root

we say gP is degenerate. Otherwise we say gP is non-degenerate.

Let g be a local function given as above and let Q̂Qi ¼
tðp̂pi; q̂qiÞ; i ¼ 1; 2; . . . ; ĥh

be primitive covectors such that

(i) both p̂pi and q̂qi are positive;

(ii) GðQ̂Qi; gÞ is a boundary face;

(iii) the indices are assigned in the counter-clockwise orientation.

Let R̂Ri ¼
tðr̂ri; ŝsiÞ; i ¼ 1; 2; . . . ; m̂m be primitive covectors which satisfy the fol-

lowing:

Figure 1. The Newton polygon GþðgÞ and the boundary face GðP; gÞ of P.
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(1) R̂R1 ¼
tð1; 0Þ, R̂Rm̂m ¼

tð0; 1Þ;

(2) both r̂ri and ŝsi are positive for each R̂Ri; i ¼ 2; . . . ; m̂m� 1;

(3) fQ̂Qig is contained in fR̂R2; . . . ; R̂Rm̂m�1g;

(4) the indices are assigned in the counter-clockwise orientation;

(5) the determinants of the matrices ðR̂Ri; R̂Riþ1Þ; i ¼ 1; . . . ; m̂m� 1, are 1.

For each ConeðR̂Ri; R̂Riþ1Þ; i ¼ 1; . . . ; m̂m� 1, an a‰ne coordinate chart ðui; viÞ A C
2

is defined by the coordinate transformation

x ¼ ur̂rii v
r̂riþ1

i ; y ¼ uŝsii v
ŝsiþ1

i :

Then the corresponding variety Y is obtained by gluing these coordinate charts,

which can be described as

Y ¼ U
â

mm�1

i¼2

EðR̂RiÞ;

where EðR̂RiÞ is the exceptional divisor corresponding to the covector R̂Ri. Let

p : Y ! C
2 be the associated proper mapping. This is called the admissible toric

modification associated with fR̂R1; . . . ; R̂Rm̂mg.

For further information about toric compactifications and toric modifi-

cations, see [O2].

4. A modification tower according to an explicit path.

Let pðtÞ be an explicit path of f given by (2.1) such that either a or b is

negative and limt!0 f ðpðtÞÞ ¼ 0. Now we assume that P ¼ tða; bÞ and ða; bÞ

satisfy the condition (iii) of Lemma 2.3. Let Ri ¼
tðri; siÞ; i ¼ 1; . . . ; m be primi-

tive covectors which associate an admissible toric compactification p : Y1 ! C
2

with respect to Dð f Þ. In this case DðP; f Þ is a face, hence P ¼ Ri0 for some

i0 A Z with 3a i0a m. We call the coordinates ðu1; i0 ; v1; i0Þ associated with

ConeðRi0 ;Ri0þ1Þ the supporting toric coordinates of pðtÞ. On this coordinate

chart, pðtÞ is changed into the parametrization

q1; i0ðtÞ ¼
u1; i0ðtÞ

v1; i0ðtÞ

� �

¼
xðtÞsi0þ1yðtÞ�ri0þ1

xðtÞ�b
yðtÞa

� �

¼
a si0þ1b�ri0þ1 tkasi0þ1�kbri0þ1 þ higher terms

a�bbat�kabþkba þ higher terms

� �

¼
a si0þ1b�ri0þ1 tk þ higher terms

a�bba þ higher terms

� �

:

From kb 1 we have limt!0 q1; i0ðtÞ ¼ ð0; a�bbaÞ. Consider the coordinate change

given by
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x1 ¼ u1; i0 ; y1 ¼ v1; i0 � a�bba
:

We denote by O1 the origin of the coordinate chart ðx1; y1Þ. We call hereafter

ðx1; y1Þ the translated coordinates at O1. Let p1ðtÞ ¼
tðx1ðtÞ; y1ðtÞÞ be the param-

etrization of q1; i0ðtÞ in the translated coordinates ðx1; y1Þ. Then p1ðtÞ is a real

analytic curve which satisfies limt!0 p1ðtÞ ¼ ð0; 0Þ. The polynomial function f

can be extended as a rational function on Y1 and its restriction to the supporting

toric coordinate chart ðu1; i0 ; v1; i0Þ, which we denote by g1; i0 , is given by

g1; i0ðu1; i0 ; v1; i0Þ ¼ c1u
dðP; f Þ
1; i0

v
dðRi0þ1; f Þ

1; i0

Y

li0

j¼1

ðv1; i0 þ AjÞ
ni0 ; j þ u1; i0h1; i0ðu1; i0 ; v1; i0Þ

( )

;

where c1;Aj A C
�, Aj 0Aj 0 if j0 j 0, li0 ; ni0; j A N and h1; i0 is a polynomial of

variables ðu1; i0 ; v1; i0Þ. Since ða; bÞ is a multiple root of fPðx; yÞ ¼ 0 we have

a�bba þ Aj0 ¼ 0 for some 1a j0a li0 with ni0; j0b 2. On the translated coordi-

nates ðx1; y1Þ, g1; i0 is given by a rational function f 1ðx1; y1Þ which takes the form

f 1ðx1; y1Þ ¼ c1x
dðP; f Þ
1 fy

ni0 ; j0
1 h1ðy1Þ þ x1h

0
1ðx1; y1Þg;ð4:1Þ

where h1 is a local analytic function of one variable y1 with h1ð0Þ0 0 and h 0
1 is

of two variables ðx1; y1Þ.

Now we define the coordinate change inductively. Assume that we have

constructed admissible toric modifications pi : Yi ! Yi�1 with center Oi�1 with

respect to Gþð f
i�1Þ for i ¼ 2; . . . ; s, where f i�1ðxi�1; yi�1Þ is the restriction of the

pull-back ðp � p2 � � � � � pi�1Þ
�
f to a neighborhood of Oi�1, considerd as a func-

tion on a translated coordinate chart ðxi�1; yi�1Þ.

Let Us be a neighborhood of Os in Ys with the translated coordinate

chart ðxs; ysÞ. Let f s
: Us ! C be the restriction of the pull-back p�

s f
s�1 to Us.

This takes the form

f sðxs; ysÞ ¼ csx
ds
s fyns

s hsðysÞ þ xsh
0
sðxs; ysÞg;ð4:2Þ

where cs A C
�, ds; ns A Z with dsa 0, nsb 2, hs is a local analytic function of

one variable ys with hsð0Þ0 0 and h 0
s is of two variables ðxs; ysÞ. Let psðtÞ ¼

tðxsðtÞ; ysðtÞÞ be the real analytic curve given by ðp � p2 � � � � � psÞ
�1
pðtÞ, which is

written in the translated coordinates ðxs; ysÞ at Os. By the analyticity of pðtÞ

and by the properness of p � p2 � � � � � ps : Ys ! C
2, psðtÞ is also real analytic

at t ¼ 0. Since xs ¼ 0 defines the divisor which contracts to the center Os�1 by

ps, xsðtÞ is not constant zero. If ysðtÞ is also not constant zero we can describe

psðtÞ as

psðtÞ ¼
xsðtÞ

ysðtÞ

� �

¼
ast

ksas þ as;1t
ksasþ1 þ higher terms

bst
ksbs þ bs;1t

ksbsþ1 þ higher terms

� �

;ð4:3Þ
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where as; bs A C
�, ks A N and ðas; bsÞ0 ð0; 0Þ is a pair of coprime integers.

From limt!0 psðtÞ ¼ ð0; 0Þ, both as and bs are positive.

Definition 4.1. If the primitive covector Ps ¼
tðas; bsÞ and the leading

coe‰cients ðas; bsÞ satisfy that dðPs; f
sÞa 0 and ðas; bsÞ is a multiple root of

f s
Ps
ðxs; ysÞ ¼ 0, then we say psðtÞ is not terminated. Otherwise we say psðtÞ is

terminated.

Note that if ysðtÞ1 0, psðtÞ is terminated. Now we assume that psðtÞ is

not terminated and consider a toric modification with the center Os for con-

structing the next stage. In this case psðtÞ can be described as (4.3). Let Rs; i ¼
tðrs; i; ss; iÞ, i ¼ 1; . . . ; ms be primitive covectors which associate an admissible toric

modification with respect to Gþð f
sÞ. In this case GðPs; f

sÞ is a face, hence

Ps ¼ Rs; is for some is A Z with 2a isa ms � 1. The supporting toric coor-

dinates ðus; is ; vs; isÞ associated with ConeðRs; is ;Rs; isþ1Þ is defined by

xs ¼ uas
sþ1; is

v
rs; isþ1

sþ1; is
; ys ¼ u

bs
sþ1; is

v
ss; isþ1

sþ1; is
;ð4:4Þ

and psðtÞ is changed into the parametrization

qsþ1; isðtÞ ¼
usþ1; isðtÞ

vsþ1; isðtÞ

� �

¼
xsðtÞ

ss; isþ1ysðtÞ
�rs; isþ1

xsðtÞ
�bsysðtÞ

as

� �

ð4:5Þ

¼
a
ss; isþ1
s b

�rs; isþ1
s tksasss; isþ1�ksbsrs; isþ1 þ higher terms

a�bs
s bas

s t�ksasbsþksbsas þ higher terms

� �

¼
a
ss; isþ1
s b

�rs; isþ1
s tks þ higher terms

a�bs
s bas

s þ higher terms

� �

:

From ksb 1 we have limt!0 qsþ1; isðtÞ ¼ ð0; a�bs
s bas

s Þ. Consider the coordinate

change given by

xsþ1 ¼ usþ1; is ; ysþ1 ¼ vsþ1; is � a�bs
s bas

s :

We denote by Osþ1 the origin of the coordinate chart ðxsþ1; ysþ1Þ. The curve

qsþ1; isðtÞ is written as psþ1ðtÞ ¼ ðxsþ1ðtÞ; ysþ1ðtÞÞ in the translated coordiantes

ðxsþ1; ysþ1Þ. If ysþ1ðtÞ are not constant zero, we can describe psþ1ðtÞ as

psþ1ðtÞ ¼
xsþ1ðtÞ

ysþ1ðtÞ

� �

¼
asþ1t

ksþ1asþ1 þ asþ1;1t
ksþ1asþ1þ1 þ higher terms

bsþ1t
ksþ1bsþ1 þ bsþ1;1t

ksþ1bsþ1þ1 þ higher terms

� �

:

Comparing this and (4.5), we have

ksþ1asþ1 ¼ ks:ð4:6Þ
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The pull-back gsþ1; is ¼ p�
sþ1 f

s of f s in the supporting toric coordinates

ðusþ1; is ; vsþ1; isÞ is given by

gsþ1; isðusþ1; is ; vsþ1; isÞ

¼ csþ1u
dðPs; f

sÞ
sþ1; is

v
dðRs; isþ1; f

sÞ
sþ1; is

Y

lis

j¼1

ðvsþ1; is þ AjÞ
nis ; j þ usþ1; ishsþ1; is

( )

;

where csþ1;Aj A C
�, Aj 0Aj 0 if j0 j 0, lis ; nis; j A N and hsþ1; is is a local analytic

function of variables ðusþ1; is ; vsþ1; isÞ. Since psðtÞ is not terminated, dðPs; f
sÞ <

0 and a�bs
s bas

s þ Ajs ¼ 0 for some 1a jsa lis with nis; jsb 2. Let f sþ1 be the

restriction of gsþ1; is to the translated coordinates ðxsþ1; ysþ1Þ. This has the

similar expression as (4.2):

f sþ1ðxsþ1; ysþ1Þ ¼ csþ1x
dsþ1

sþ1 fy
nsþ1

sþ1hsþ1ðysþ1Þ þ xsþ1h
0
sþ1ðxsþ1; ysþ1Þg;

where dsþ1 ¼ dðPs; f
sÞ, nsþ1 ¼ nis; js , hsþ1 is a local analytic function of one

variable ysþ1 with hsþ1ð0Þ0 0 and h 0
sþ1 is of two variables ðxsþ1; ysþ1Þ.

Definition 4.2. Let f and pðtÞ be as above. If pdðtÞ is terminated after

d� 1 times inductive toric modifications, we say pðtÞ has the depth d with respect

to the modification tower pj : Yj ! Yj�1; j ¼ 2; . . . ; d.

Lemma 4.3. The depth of pðtÞ is finite.

Proof. Assume that there exists pðtÞ such that the depth is infinite.

Then for any s A N , f s is described as (4.2) and satisfies ds; ns A Z with dsa 0

and nsb 2. Since nsþ1 is the multiplicity of a multiple factor of a face function

of Gþð f
sÞ we have nsb nsþ1. We can assume that there exists some s0 such that

ns ¼ nsþ1 for any sb s0, otherwise ns decreases and after finite steps Gþð f
sþfiniteÞ

does not have any degenerate faces. When ns ¼ nsþ1 for any sb s0, Gþð f
sÞ

must have only one boundary face GðQs;1; f
sÞ with Qs;1 ¼

tð1; bs;1Þ and bs;1 > 0.

Hence the primitive covector Ps ¼
tðas; bsÞ must be given by Ps ¼ Qs;1 for any

sb s0. From Figure 2 we have dðQsþ1;1; f
sþ1Þ > dðQs;1; f

sÞ. This means

dðQsþfinite;1; f
sþfiniteÞ > 0 after finite steps, hence psþfiniteðtÞ is terminated. This

contradicts the assumption. r

Hereafter we assume that pðtÞ has the depth d with respect to a tower of

toric modifications pi : Yi ! Yi�1; i ¼ 2; . . . ; d. We will use the same notations

as above, the expression (4.2) for 1a sa d and (4.3) for 1a sa d� 1. Remark

that pdðtÞ ¼
tðxdðtÞ; ydðtÞÞ may satisfy ydðtÞ1 0.
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5. Proof of the main theorem.

In this section we show two theorems about relations between the explicit

path, the Newton polygon of f d and the Euler characteristics of f �1ð0Þ and

f �1ðeÞ for a generic e A C
�. As a result of these theorems we will complete the

proof of Theorem 1.1.

Let f : C
2 ! C be a polynomial function which is convenient or satisfies

f ð0; 0Þ0 0. Note that we already proved Theorem 1.1 in the case when f is a

not convenient function with f ð0; 0Þ ¼ 0, see Lemma 2.4. Let pðtÞ be an explicit

path of f given by (2.1) such that P ¼ tða; bÞ and ða; bÞ satisfy the condition (iii)

of Lemma 2.3. We assume pðtÞ is not on the singular locus of f . Suppose that

the depth of pðtÞ is d. Let f s; 1a sa d be the pull-backed functions according

to the toric compactification and the inductive toric modifications with respect

to pðtÞ. Each f s has a description as (4.2) with dsa 0 and nsb 2. Set f sz ¼

f s � z and F s
z ¼ x�ds

s f s
z for z A C . Note that for any z A C , GþðF

s
z Þ is contained

in R
2
b0. Since xs ¼ 0 defines the divisor which collapses to a point of Y1nC

2, f s

is regular on Usnfxs ¼ 0g where Us is a small neighborhood of Os.

Lemma 5.1. Suppose that f s is regular on Usnfxs ¼ 0g. Then F s
0 has only

an isolated singularity at Os. If ds < 0 then, for a generic e A C
�, F s

e also has

only an isolated singularity at Os.

Proof. Assume that F s
0 has a non-isolated singularity at Os. Let

jðsÞ A Us be the singular locus with a parameter s A ½0; 1�. Then F s
0 ðjðsÞÞ1 0

and ðqF s
0 =qxsÞðjðsÞÞ1 ðqF s

0 =qysÞðjðsÞÞ1 0. From nsb 2 we have ðqF s
0 =qysÞ �

ð0; ysÞ20, hence jðsÞNfxs ¼ 0g. Then from F s
0 ¼ x�ds

s f s we have f sðjðsÞÞ10

and ðqf s=qxsÞðjðsÞÞ1 ðqf s=qysÞðjðsÞÞ1 0. But since f s is regular on Usn

Figure 2. The Newton polygon Gþð f
sþ1Þ in the case when ns ¼ nsþ1.
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fxs ¼ 0g, these lead a contradiction. If ds < 0, F s
e ¼ 0 passes through the origin

Os. Since e is generic, we can assume that f s
e is regular on Usnfxs ¼ 0g.

Hence by the same way as the case F s
0 , we can say that F s

e has only an isolated

singularity at Os. r

F s
0 satisfies F s

0 ð0; 0Þ ¼ 0. Also for a generic e A C
�, F s

e with ds < 0 satisfies

F s
e ð0; 0Þ ¼ 0. For each analytic function F s

z with F s
z ð0; 0Þ ¼ 0, we set G�ðF

s
z Þ :¼

fsT jT A GðF s
z Þ; 0a sa 1g, which is the cone over the Newton boundary with

vertex at the origin O. For an integral polyhedron DHR
2
b0, the Newton

number nðDÞ is defined by

nðDÞ ¼ 2VolðDÞ � jDV fX -axisgj � jDV fY -axisgj þ {;

where the second and third terms are the length of the segments and { is defined

by { ¼ 1 if O A D and otherwise { ¼ 0, see [O1]. For such analytic functions F s
z

with F s
z ð0; 0Þ ¼ 0, we define nðF s

z Þ :¼ nðG�ðF
s
z ÞÞ.

Theorem 5.2. Let pðtÞ be an explicit path of f with depth db 1 such that

limt!0 f ðpðtÞÞ ¼ 0 and pðtÞ is not on the singular locus of f . Then

(i) dd ¼ 0, or

(ii) dd < 0 and nðF d
0 Þ > nðF d

e Þ for a generic e A C
�.

First we prepare a few lemmas to prove this theorem. Let pðtÞ be an

explicit path of f with depth d given by (2.1) such that either a or b is negative

and limt!0 f ðpðtÞÞ ¼ 0. We set x0 ¼ x, y0 ¼ y, p0ðtÞ ¼ pðtÞ, k0 ¼ k, P0 ¼ P,

a0 ¼ a, b0 ¼ b and f 0 ¼ f . For 0a sa d� 1, psðtÞ is not terminated. We

assume that psðtÞ is described as (4.3) for 1a sa d� 1. Let Rs; j ¼
tðrs; j; ss; jÞ,

j ¼ 1; . . . ; ms be primitive covectors which associate the admissible toric com-

pactification p : Y1 ! C
2 for s ¼ 0 or the admissible toric modifications

psþ1 : Ysþ1 ! Ys for 1a sa d� 1. For the primitive covector Ps ¼
tðas; bsÞ,

GðPs; f
sÞ is a face, hence Ps ¼ Rs; is for some is A Z. From (4.4) we have

qf s=qxs
qf s=qys

� �

¼
ss; isþ1x

ss; isþ1�1
s y

�rs; isþ1
s �bsx

�bs�1
s yas

s

�rs; isþ1x
ss; isþ1
s y

�rs; isþ1�1
s asx

�bs
s yas�1

s

 !

qgsþ1; is=qusþ1; is

qgsþ1; is=qvsþ1; is

� �

:

By substituting psðtÞ given by (4.3) for the above 2� 2 matrix, we obtain

Ms :¼
A11;st

ksð1�asÞ þ � � � A12;st
�ksas þ � � �

A21;st
ksð1�bsÞ þ � � � A22;st

�ksbs þ � � �

� �

;

where

A11;s ¼ ss; isþ1a
ss; isþ1�1
s b�rs; isþ1

s ; A12;s ¼ �bsa
�bs�1
s bas

s ;

A21;s ¼ �rs; isþ1a
ss; isþ1
s b�rs; isþ1�1

s ; A22;s ¼ asa
�bs
s bas�1

s :
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Lemma 5.3. Let f s be as above for 0a sa d� 1. If

valððqf sþ1=qxsþ1Þðpsþ1ðtÞÞÞ

valððqf sþ1=qysþ1Þðpsþ1ðtÞÞÞ

� �

¼
�ksþ1asþ1 þ Csþ1

�ksþ1bsþ1 þ Csþ1

� �

for some integer Csþ1, then the equality

valððqf s=qxsÞðpsðtÞÞÞ

valððqf s=qysÞðpsðtÞÞÞ

� �

¼
�ksas þ Cs

�ksbs þ Cs

� �

holds for some integer Cs.

Proof. The following equality follows from the above computation and

the obvious equalities ðqf sþ1=qxsþ1Þðpsþ1ðtÞÞ ¼ ðqgsþ1; is=qusþ1; isÞðqsþ1; isðtÞÞ and

ðqf sþ1=qysþ1Þðpsþ1ðtÞÞ ¼ ðqgsþ1; is=qvsþ1; isÞðqsþ1; isðtÞÞ:

ðqf s=qxsÞðpsðtÞÞ

ðqf s=qysÞðpsðtÞÞ

� �

¼ Ms
ðqf sþ1=qxsþ1Þðpsþ1ðtÞÞ

ðqf sþ1=qysþ1Þðpsþ1ðtÞÞ

� �

;

where Ms is the 2� 2 matrix defined as above. From the valuations of this

equation we have

valððqf s=qxsÞðpsðtÞÞÞ

valððqf s=qysÞðpsðtÞÞÞ

� �

¼
minfksð1� asÞ � ksþ1asþ1 þ Csþ1;�ksas � ksþ1bsþ1 þ Csþ1g

minfksð1� bsÞ � ksþ1asþ1 þ Csþ1;�ksbs � ksþ1bsþ1 þ Csþ1g

� �

:

By using (4.6) and ksþ1bsþ1 > 0, we get

valððqf s=qxsÞðpsðtÞÞÞ

valððqf s=qysÞðpsðtÞÞÞ

� �

¼
�ksas � ksþ1bsþ1 þ Csþ1

�ksbs � ksþ1bsþ1 þ Csþ1

� �

:

Putting Cs ¼ �ksþ1bsþ1 þ Csþ1, we complete the proof of the assertion. r

Lemma 5.4. Assume that pðtÞ is not on the singular locus of f and the depth

db 1. Then the following properties hold:

(i) both ðqf 1=qx1Þðp1ðtÞÞ and ðqf 1=qy1Þðp1ðtÞÞ are not constant zero.

(ii) p1ðtÞ satisfies the following inequality:

val
qf 1

qx1
ðp1ðtÞÞ

� �

< val
qf 1

qy1
ðp1ðtÞÞ

� �

þminf0; k1ðb1 � a1Þg:

Proof. Assume that the assertion (i) does not hold. If ðqf 1=qx1Þ �

ðp1ðtÞÞ and ðqf 1=qy1Þðp1ðtÞÞ are both constant zero, pðtÞ is on the singular locus

of f , which contradicts the assumption. Then we have (i-1n) or (i-2n) below.
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(i-1n) If ðqf 1=qx1Þðp1ðtÞÞ1 0 and ðqf 1=qy1Þðp1ðtÞÞ2 0, we have

ðqf =qxÞðpðtÞÞ

ðqf =qyÞðpðtÞÞ

� �

¼
A11;0t

kð1�aÞ þ � � � A12;0t
�ka þ � � �

A21;0t
kð1�bÞ þ � � � A22;0t

�kb þ � � �

� �

0

ðqf 1=qy1Þðp1ðtÞÞ

� �

:

Then

valððqf =qxÞðpðtÞÞÞ

valððqf =qyÞðpðtÞÞÞ

� �

¼
�kaþ valððqf 1=qy1Þðp1ðtÞÞÞ

�kb þ valððqf 1=qy1Þðp1ðtÞÞÞ

� �

:

(i-2n) If ðqf 1=qx1Þðp1ðtÞÞ2 0 and ðqf 1=qy1Þðp1ðtÞÞ1 0, we have

ðqf =qxÞðpðtÞÞ

ðqf =qyÞðpðtÞÞ

� �

¼
A11;0t

kð1�aÞ þ � � � A12;0t
�ka þ � � �

A21;0t
kð1�bÞ þ � � � A22;0t

�kb þ � � �

� �

ðqf 1=qx1Þðp1ðtÞÞ

0

� �

:

Then

valððqf =qxÞðpðtÞÞÞ

valððqf =qyÞðpðtÞÞÞ

� �

¼
kð1� aÞ þ valððqf 1=qx1Þðp1ðtÞÞÞ

kð1� bÞ þ valððqf 1=qx1Þðp1ðtÞÞÞ

� �

:

(iin) Assume that the assertion (i) of Lemma 5.4 holds and the assertion (ii)

does not hold. Since

ðqf =qxÞðpðtÞÞ

ðqf =qyÞðpðtÞÞ

� �

¼
A11;0t

kð1�aÞ þ � � � A12;0t
�ka þ � � �

A21;0t
kð1�bÞ þ � � � A22;0t

�kb þ � � �

� �

ðqf 1=qx1Þðp1ðtÞÞ

ðqf 1=qy1Þðp1ðtÞÞ

� �

;

if the inequality valððqf 1=qx1Þðp1ðtÞÞÞb valððqf 1=qy1Þðp1ðtÞÞÞ holds, we have

valððqf =qxÞðpðtÞÞÞ

valððqf =qyÞðpðtÞÞÞ

� �

¼
�kaþ valððqf 1=qy1Þðp1ðtÞÞÞ

�kb þ valððqf 1=qy1Þðp1ðtÞÞÞ

� �

:

If valððqf 1=qx1Þðp1ðtÞÞÞb valððqf 1=qy1Þðp1ðtÞÞÞ þ k1ðb1 � a1Þ, we also have the

same equality by using (4.6).

For all cases (i-1n), (i-2n) and (iin), note that ðvalððqf =qxÞðpðtÞÞÞ;

valððqf =qyÞðpðtÞÞÞÞ ¼ ð�kaþ C;�kb þ CÞ for a suitable C A Z. Thus com-

paring the valuations of the equality grad f ðpðtÞÞ ¼ lðtÞpðtÞ, we have

�kaþ C ¼ valðlðtÞÞ þ ka;

�kb þ C ¼ valðlðtÞÞ þ kb:

This implies a ¼ b. Since a and b are coprime and kpðtÞk ! y as t ! 0 by

the assumption, we have a ¼ b ¼ �1. Therefore we can assume that the first

coordinate change corresponding to the toric compactification is defined by

x ¼ u�1
1; iv

�m
1; i and y ¼ u�1

1; iv
�m�1
1; i for some positive integer m. Then the conjugation

of grad f ðpðtÞÞ is given by
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ðqf =qxÞðpðtÞÞ

ðqf =qyÞðpðtÞÞ

� �

¼
�ðmþ 1ÞxðtÞ�m�2

yðtÞm yðtÞ�1

mxðtÞ�m�1
yðtÞm�1 �xðtÞyðtÞ�2

 !

ðqf 1=qx1Þðp1ðtÞÞ

ðqf 1=qy1Þðp1ðtÞÞ

 !

¼
�ðmþ 1Þa�m�2bmt2k þ � � � b�1tk þ � � �

ma�m�1bm�1t2k þ � � � �ab�2tk þ � � �

� �

ðqf 1=qx1Þðp1ðtÞÞ

ðqf 1=qy1Þðp1ðtÞÞ

� �

;

where pðtÞ ¼ tðxðtÞ; yðtÞÞ and a and b are the leading coe‰cients of xðtÞ and yðtÞ

respectively. In the cases (i-1n) and (iin) we have

ðqf =qxÞðpðtÞÞ

ðqf =qyÞðpðtÞÞ

� �

¼
b�1B1t

kþq þ higher terms

�ab�2B1t
kþq þ higher terms

� �

;

where B1 is the leading coe‰cient, and q is the valuation, of ðqf 1=qy1Þðp1ðtÞÞ.

Comparing the leading coe‰cients of grad f ðpðtÞÞ ¼ lðtÞpðtÞ, we have

b�1B1 ¼ l0a;

�ab�2B1 ¼ l0b;

where l0 A C
� is the leading coe‰cient of lðtÞ. Hence we have jaj2 þ jbj2 ¼ 0,

which is a contradiction. In the case (i-2n) we have

ðqf =qxÞðpðtÞÞ

ðqf =qyÞðpðtÞÞ

� �

¼
�ðmþ 1Þa�m�2bmA1t

2kþp þ higher terms

ma�m�1bm�1A1t
2kþp þ higher terms

� �

;

where A1 is the leading coe‰cient, and p is the valuation, of ðqf 1=qx1Þðp1ðtÞÞ.

Comparing the leading coe‰cients of grad f ðpðtÞÞ ¼ lðtÞpðtÞ, we have

�ðmþ 1Þa�m�2bmA1 ¼ l0a;

ma�m�1bm�1A1 ¼ l0b:

Then mjaj2 þ ðmþ 1Þjbj2 ¼ 0, which is a contradiction. This completes the proof

of the assertions (i) and (ii) of Lemma 5.4. r

Now we consider the local functions f d and f d
e for a generic e A C

� on the

translated coordinate chart ðxd; ydÞ, which is the terminated stage of a tower of

toric modifications. Let Qd; i; i ¼ 1; . . . ; hd be primitive covectors corresponding

to the faces of the Newton boundary Gð f dÞ.

Definition 5.5. If the primitive covector Qd;hd ¼
tð1; bd;hdÞ satisfies

dðQd;hd ; f
dÞ > 0 and the face function f d

Qd; hd
ðxd; ydÞ takes the form

f d
Qd; hd

ðxd; ydÞ ¼ Adx
ed
d ðx

bd; hd
d þ BdydÞ;ð5:1Þ

M. Ishikawa176



where Ad;Bd A C
� and ed A Z, then we call GðQd;hd ; f

dÞ a stable boundary face

(see Figure 3).

In particular we have nðF d
0 Þ > nðF d

e Þ for a generic e A C
� if Gð f dÞ has a

boundary face GðQd; {; f
dÞ which is not stable and satisfies dðQd; {; f

dÞ > 0 for

some 1a {a hd.

Lemma 5.6. We assume that pðtÞ is not on the singular locus of f . Suppose

that each Qd; i; i ¼ 1; . . . ; hd satisfies that dðQd; i; f
dÞa 0 or DðQd; i; f

dÞ is a stable

face. Then for pdðtÞ ¼
tðxdðtÞ; ydðtÞÞ both xdðtÞ and ydðtÞ are not constant zero.

Proof. Since xd ¼ 0 defines the divisor which collapses to a point of

Y1nC
2, it is obvious that xdðtÞ2 0. Thus we assume ydðtÞ1 0. If both

ðqf d=qxdÞðxdðtÞ; 0Þ and ðqf d=qydÞðxdðtÞ; 0Þ are constant zero, yd ¼ 0 is on the

singular locus of f . Now we suppose that ðqf d=qxdÞðxdðtÞ; 0Þ1 0 and

ðqf d=qydÞðxdðtÞ; 0Þ2 0. By Lemma 5.4 (i) we have db 2 and

ðqf d�1=qxd�1Þðpd�1ðtÞÞ

ðqf d�1=qyd�1Þðpd�1ðtÞÞ

� �

¼
A11;s�1t

kd�1ð1�ad�1Þ þ � � � A12;s�1t
�kd�1ad�1 þ � � �

A21;s�1t
kd�1ð1�bd�1Þ þ � � � A22;s�1t

�kd�1bd�1 þ � � �

� �

0

ðqf d=qydÞðpdðtÞÞ

� �

:

By considering the valuations, we have

valððqf d�1=qxd�1Þðpd�1ðtÞÞÞ

valððqf d�1=qyd�1Þðpd�1ðtÞÞÞ

� �

¼
�kd�1ad�1 þ valððqf d=qydÞðpdðtÞÞÞ

�kd�1bd�1 þ valððqf d=qydÞðpdðtÞÞÞ

� �

:

Figure 3. A stable boundary face.
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Then from Lemma 5.3 and 5.4 (ii) we have a contradiction. Next we suppose

that ðqf d=qxdÞðxdðtÞ; 0Þ2 0 and ðqf d=qydÞðxdðtÞ; 0Þ1 0. By Lemma 5.4 (i) we

have db 2 and

ðqf d�1=qxd�1Þðpd�1ðtÞÞ

ðqf d�1=qyd�1Þðpd�1ðtÞÞ

� �

¼
A11;s�1t

kd�1ð1�ad�1Þ þ � � � A12;s�1t
�kd�1ad�1 þ � � �

A21;s�1t
kd�1ð1�bd�1Þ þ � � � A22;s�1t

�kd�1bd�1 þ � � �

� �

ðqf d=qxdÞðpdðtÞÞ

0

� �

:

By considering the valuations, we have

valððqf d�1=qxd�1Þðpd�1ðtÞÞÞ

valððqf d�1=qyd�1Þðpd�1ðtÞÞÞ

� �

¼
kd�1ð1� ad�1Þ þ valððqf d=qxdÞðpdðtÞÞÞ

kd�1ð1� bd�1Þ þ valððqf d=qxdÞðpdðtÞÞÞ

� �

:

Then from Lemma 5.3 and 5.4 (ii) we have a contradiction. Suppose that

ðqf d=qxdÞðxdðtÞ; 0Þ2 0 and ðqf d=qydÞðxdðtÞ; 0Þ2 0. Then we can assume that

Gþð f
dÞ intersects the X-axis. As limt!0 f ðxdðtÞ; 0Þ ¼ 0 by the assumption,

Gþð f
dÞ intersects the positive X-axis. By the assumption in the lemma,

GðQd;hd ; f
dÞ is a stable face and dðQd; i; f

dÞa 0 for 1a ia hd � 1. Suppose that

the face function f d
Qd; hd

is described as (5.1). Since degxdððqf
d=qxdÞðxd; 0ÞÞ ¼

ed þ bd; i � 1 and degxdððqf
d=qydÞðxd; 0ÞÞ ¼ ed, we have valððqf d=qxdÞðpdðtÞÞÞb

valððqf d=qydÞðpdðtÞÞÞ. We can assume db 2 by Lemma 5.4 (ii) and then the

following equality holds:

ðqf d�1=qxd�1Þðpd�1ðtÞÞ

ðqf d�1=qyd�1Þðpd�1ðtÞÞ

� �

¼
A11; d�1t

kd�1ð1�ad�1Þ þ � � � A12; d�1t
�kd�1ad�1 þ � � �

A21; d�1t
kd�1ð1�bd�1Þ þ � � � A22; d�1t

�kd�1bd�1 þ � � �

� �

ðqf d=qxdÞðpdðtÞÞ

ðqf d=qydÞðpdðtÞÞ

� �

:

Since valððqf d=qxdÞðpdðtÞÞÞb valððqf d=qydÞðpdðtÞÞÞ, we have

valððqf d�1=qxd�1Þðpd�1ðtÞÞÞ

valððqf d�1=qyd�1Þðpd�1ðtÞÞÞ

� �

¼
�kd�1ad�1 þ valððqf d=qydÞðpdðtÞÞÞ

�kd�1bd�1 þ valððqf d=qydÞðpdðtÞÞÞ

� �

:

Then from Lemma 5.3 and 5.4 (ii) we have a contradiction. r

Lemma 5.7. Suppose pdðtÞ is given by (4.3) such that both ad and bd are posi-

tive. Then the primitive covector Pd ¼
tðad; bdÞ satisfies one of the next conditions:

(i) dðPd; f
dÞ > 0 and GðPd; f

dÞ is a face which is not a stable face;

(ii) dðPd; f
dÞ > 0, GðPd; f

dÞ is a vertex on the X-axis and Gð f dÞ does not

have stable faces.

M. Ishikawa178



Proof. Assume that Pd ¼
tðad; bdÞ does not satisfy the above conditions.

Let ðad; bdÞ be the leading coe‰cients of pdðtÞ as before. Because pdðtÞ is termi-

nated, we have five cases:

(1) dðPd; f
dÞa 0 and GðPd; f

dÞ is a vertex;

(2) dðPd; f
dÞa 0, GðPd; f

dÞ is a face and ðad; bdÞ is not a multiple root of

f d
Pd
ðxd; ydÞ ¼ 0;

(3) dðPd; f
dÞ > 0 and GðPd; f

dÞ is a vertex not on the X-axis.

(4) dðPd; f
dÞ > 0, GðPd; f

dÞ is a vertex on the X-axis and Gð f dÞ has a

stable boundary face;

(5) dðPd; f
dÞ > 0 and GðPd; f

dÞ is a stable boundary face.

Substituting pdðtÞ for f d we have

f dðpdðtÞÞ ¼ f d
Pd
ðad; bdÞt

kddðPd; f
dÞ þ higher terms;

and for the derivatives of f d we have

ðqf d=qxdÞðpdðtÞÞ

ðqf d=qydÞðpdðtÞÞ

� �

¼
AtkddðPd; f

dÞ�kdad þ higher terms

BtkddðPd; f
dÞ�kdbd þ higher terms

 !

;ð5:2Þ

where A and B A C are possibly zero. We consider the case (1). Obviously that

limt!0 f dðpdðtÞÞ ¼ y if dðPd; f
dÞ < 0 and limt!0 f dðpdðtÞÞ ¼ f d

Pd
ðad; bdÞ0 0 if

dðPd; f
dÞ ¼ 0. Both cases contradict the assumption limt!0 f dðpdðtÞÞ ¼ 0. We

prove the non-existence of the case (2). In this case because dðPd; f
dÞa 0 and

limt!0 f dðpdðtÞÞ ¼ 0, we have f d
Pd
ðad; bdÞ ¼ 0. Since ðad; bdÞ is not a multiple

root, ðqf d
Pd
=qxdÞðad; bdÞ0 0 and ðqf d

Pd
=qydÞðad; bdÞ0 0. Hence A;B0 0 and then

we have

valððqf d=qxdÞðpdðtÞÞÞ

valððqf d=qydÞðpdðtÞÞÞ

� �

¼
�kdad þ kddðPd; f

dÞ

�kdbd þ kddðPd; f
dÞ

� �

:

From Lemma 5.3 and 5.4 (ii) we have a contradiction. Next we consider the

cases (3), (4) and (5). In the case (3), since ðqf d
Pd
=qydÞðad; bdÞ0 0, A and B in

(5.2) satisfy A A C and B A C
�. Then the following inequality holds:

val
qf d

qxd
ðpdðtÞÞ

� �

� val
qf d

qyd
ðpdðtÞÞ

� �

b kdðbd � adÞ:

In the case (4) we suppose that the face function on the stable face is described as

(5.1). Then GðPd; qf
d=qxdÞ is the vertex ðed þ bd � 1; 0Þ and GðPd; qf

d=qydÞ is the

vertex ðed; 0Þ. Hence we have the following inequality:

val
qf d

qxd
ðpdðtÞÞ

� �

¼ kdadðed þ bd � 1Þb kdaded ¼ val
qf d

qyd
ðpdðtÞÞ

� �

:
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In the case (5) we also suppose that the face function on the stable face is

described as (5.1). Then GðPd; qf
d=qxdÞ is a face which contains ðed þ b � 1; 0Þ

and GðPd; qf
d=qydÞ is the vertex ðed; 0Þ. Hence we have the following inequality:

val
qf d

qxd
ðpdðtÞÞ

� �

b kdadðed þ bd � 1Þb kdaded ¼ val
qf d

qyd
ðpdðtÞÞ

� �

:

In all cases (3), (4) and (5), we can assume db 2 by Lemma 5.4 (ii). Then by

the same argument as (iin) in the proof of Lemma 5.4, we have

valððqf d�1=qxd�1Þðpd�1ðtÞÞÞ

valððqf d�1=qyd�1Þðpd�1ðtÞÞÞ

� �

¼
�kd�1ad�1 þ C

�kd�1bd�1 þ C

� �

for some integer C. Therefore from Lemma 5.3 and 5.4 (ii) we have a con-

tradiction. r

Proof of Theorem 5.2. We suppose that pðtÞ is not on the singular locus of

f . Since pdðtÞ is terminated, dda 0. We assume that f is not in the case (i),

namely we assume dd < 0. From Lemma 5.1, F d
0 and F d

e have only isolated

singularities at Os. We can assume that Gþð f
dÞ has a boundary face GðPd; {; f

dÞ

with dðPd; {; f
dÞ > 0 which is not stable, otherwise pdðtÞ is described as (4.3) by

Lemma 5.6 and there does not exist such an explicit path pðtÞ by Lemma 5.7.

Comparing GþðF
d
0 Þ and GþðF

d
e Þ we have the inequality nðF d

0 Þ > nðF d
e Þ. r

Let wðMÞ denote the Euler characteristic of a manifold M. As seen in the

proof of Lemma 2.4, if f is not convenient and satisfies f ð0; 0Þ ¼ 0 then 0 A Bf .

Assume the results in Section 2. Then Theorem 1.1 follows from this fact,

Theorem 5.2 and the next theorem.

Theorem 5.8. Let f be a polynomial which is convenient or satisfies

f ð0; 0Þ0 0, and we assume 0 B Sf . Let pðtÞ be an explicit path of f with depth

db 1 such that limt!0 f ðpðtÞÞ ¼ 0. We set a generic e A C
�. Suppose one of the

following:

(i) dd ¼ 0, or

(ii) dd < 0 and nðF d
0 Þ > nðF d

e Þ.

Then wð f �1ð0ÞÞ > wð f �1ðeÞÞ.

Before proving Theorem 5.8, we prepare a useful lemma.

Lemma 5.9. Let h : C
2 ! C be a local analytic function with hð0; 0Þ ¼ 0 and

hð0; yÞ2 0. Assume that h has only an isolated singularity at the origin O. Let

g ¼ xgh where g is a non-negative integer. Denote by FðgÞ (resp. FðxNgÞ) the

Milnor fiber of g (resp. xNg) at O where N is a positive integer. Let Iðf; x;OÞ be

the algebraic intersection number of a divisor f ¼ 0 and x ¼ 0 at O.
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(I) Assume that g ¼ 0. Then for any N A N ,

wðFðxNgÞÞ ¼ wðFðgÞÞ � ðN þ 1ÞIðh; x; 0Þ þN:

(II) Assume that g > 0. Then for any N A N ,

wðFðxNgÞÞ ¼ wðFðgÞÞ �NIðh; x; 0Þ þN:

Before proving this lemma we recall the definition of the complexities of

resolutions of plane curve singularities (see [Lê-O]). Let p : Y ! U be a resolu-

tion map so that the pull-back p�g has normal crossing singularities at any non-

empty intersection of two divisors. To each divisor Ei; i ¼ 1; 2; . . . ; s we give a

vertex vi. If two divisors Ei and Ej have an intersection, we join two vertices by

an edge. Then we obtain a graph GðpÞ. Let dðviÞ be the number of edges meet-

ing at the vertex vi in GðpÞ. The complexity of p is defined by

rðpÞ ¼ 1þ
X

s

i¼1

maxðdðviÞ � 2; 0Þ:

Proof of Lemma 5.9. Let ~RRj ¼
tð~rrj; ~ssjÞ; j ¼ 1; . . . ; ~mm be primitive covectors

which associate an admissible toric modification p : Y ! C
2 with respect to

GþðgÞ and let ~QQi ¼
tð~aai; ~bbiÞ; i ¼ 1; . . . ; ~hh be primitive covectors which correspond

to the faces of the Newton boundary GðgÞ. For i ¼ 1; . . . ; ~hh, each face function

g ~QQi
ðx; yÞ has the factorization

g ~QQi
ðx; yÞ ¼ Cix

AiyBi

Y

~lli

j¼1

ðx
~bbi þ ci; jy

~aaiÞ~nni; j ;

where Ci; ci; j A C
�, ci; j 0 ci; j 0 if j0 j 0, Ai A Z, Bi A Zb0 and ~lli; ~nni; j A N . We set

~nni ¼
X

~lli

j¼1

IðVh;Eð ~QQiÞ; zi; jÞ ¼
X

~lli

j¼1

~nni; j :ð5:3Þ

When ~QQ1 ¼ ~RR2, by adding a primitive covector ~RR between ~RR1 and ~RR2 such that

detð ~RR1;
~RRÞ ¼ detð ~RR; ~RR2Þ ¼ 1, we can assume that ~QQ1 0

~RR2. Also we can assume

that ~QQ~hh 0
~RR~mm�1. Let Eð ~RRjÞ (resp. Eð ~QQiÞ) be the exceptional divisors of the re-

solution of g corresponding to ~RRj (resp. ~QQi) and let mð ~RRj;cÞ (resp. mð ~QQi;cÞ) be

the multiplicity of the pull-back p�c along ~RRj (resp. ~QQi) where c is a germ of an

analytic function at the origin O. Let Vh be the strict transform of h ¼ 0 and let

V 0
h be the union of Vh and the strict transform of x ¼ 0 which is given by the

divisor Eð ~RR1Þ. For 1a ia ~mm, we set

E �ð ~RRiÞ ¼ Eð ~RRiÞn
�

Vh U 6
1aja~mm; j0i

Eð ~RRjÞ
�

;
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E 0�ð ~RRiÞ ¼ Eð ~RRiÞn
�

V 0
h U 6

1aja~mm; j0i

Eð ~RRjÞ
�

:

First we prove the case (II). We define a non-negative integer ey by h ¼

yeyh0ðx; yÞ where h0 is a local analytic function with h0ðx; 0Þ2 0. Since h has

only an isolated singularity, ey ¼ 0 or 1. From Figure 4 we have

Iðh; x;OÞ ¼ degy hð0; yÞ ¼
X

~hh

i¼1

~aai~nni þ ey:ð5:4Þ

We prove this case by using on induction on the complexity rðfÞ where f is a

resolution map of g such that the pull-back f�g has only normal crossing singu-

larities.

(i) Suppose rðfÞ ¼ 1, namely g is Newton non-degenerate. We consider

an admissible toric modification p : Y ! C
2 with respect to GþðgÞ as above.

Comparing the Newton polygons GþðgÞ and Gþðx
NgÞ and the pull-backs p�g and

p�ðxNgÞ, we have

mð ~RRj; x
NgÞ ¼ mð ~RRj; gÞ þ ~rrjN;

wðE 0�ð ~RRjÞÞ ¼ wðE �ð ~RRjÞÞ; for j ¼ 1; . . . ; ~mm;

wðE �ð ~RR~mm�1ÞÞ ¼ 1� ey;

~rr~mm�1 ¼ 1:

Since f ~QQ1; . . . ;
~QQ~hhgH f ~RR1; . . . ; ~RR~mmg, we also have

mð ~QQi; x
NgÞ ¼ mð ~QQi; gÞ þ ~aaiN;

wðE 0�ð ~QQiÞÞ ¼ wðE �ð ~QQiÞÞ ¼ �~lli; for i ¼ 1; . . . ; ~hh:

Figure 4. Newton polygons GþðhÞ in the cases ey ¼ 0 and 1.
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The non-degeneracy implies ~nni ¼ ~lli. Using a theorem of N. A’Campo (see

[AC ]), we have

wðFðxNgÞÞ ¼
X

~hh

i¼1

mð ~QQi; x
NgÞwðE 0�ð ~QQiÞÞ þmð ~RR~mm�1; x

NgÞwðE 0�ð ~RR~mm�1ÞÞ

¼
X

~hh

i¼1

ðmð ~QQi; gÞ þ ~aaiNÞwðE �ð ~QQiÞÞ þ ðmð ~RR~mm�1; gÞ þ ~rr~mm�1NÞwðE �ð ~RR~mm�1ÞÞ

¼
X

~hh

i¼1

mð ~QQi; gÞwðE
�ð ~QQiÞÞ þmð ~RR~mm�1; gÞwðE

�ð ~RR~mm�1ÞÞ

þN
X

~hh

i¼1

~aaið�~lliÞ þ 1� ey

( )

¼
ð5:4Þ

wðFðgÞÞ �NIðh; x;OÞ þN:

(ii) We assume that the assertion (II) holds for any hðx; yÞ whose res-

olution complexity is less than or equal to n and prove the case rðfÞ ¼ nþ 1.

Let g be an analytic function given by g ¼ xgh where g > 0 and the resolution

complexity of hðx; yÞ is nþ 1. We consider an admissible toric modification

p : Y ! C
2 with respect to GþðgÞ as before. Under the above notation, the

number of the (topological) intersection points of the strict transform Vh and the

divisor E ~QQi
is given by ~lli. Let zi; j; j ¼ 1; 2; . . . ; ~lli be the intersection points,

ðxi; j ; yi; jÞ the translated coordinates at zi; j and let gzi; j be the local function of the

pull-back p�g on the coordinate chart ðxi; j; yi; jÞ. The pull-back p�xN is given by

x
~aaiN
i; j ðyi; j þ ci; jÞ

~rrxðiÞþ1N where ~QQi ¼ ~RRxðiÞ. As ðyi; j þ ci; jÞ
~rrxðiÞþ1N is a unit at zi; j , the

pull-back p�ðxNgÞ can be replaced by x
~aaiN
i; j gzi; j . Let Fðgzi; j Þ (resp. Fðx~aaiN

i; j gzi; j Þ)

be the Milnor fiber of gzi; j (resp. x
~aaiN
i; j gzi; j ) at zi; j . The complexity of gzi; j is at

most n, so by using the assumption of the induction we have

wðFðx~aaiN
i; j gzi; j ÞÞ ¼ wðFðgzi; j ÞÞ � ~aaiN~nni; j þ ~aaiN:ð5:5Þ

Then wðFðxNgÞÞ can be modified as follows:

wðFðxNgÞÞ ¼
X

~hh

i¼1

mð ~QQi; x
NgÞwðE 0�ð ~QQiÞÞ þ

X

~lli

j¼1

wðFðx~aaiN
i; j gzi; j ÞÞ

( )

þmð ~RR~mm�1; x
NgÞwðE 0�ð ~RR~mm�1ÞÞ
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¼
ð5:5Þ X

~hh

i¼1

(

ðmð ~QQi; gÞ þ ~aaiNÞwðE �ð ~QQiÞÞ

þ
X

~lli

j¼1

fwðFðgzi; j ÞÞ � ~aaiN~nni; j þ ~aaiNg

)

þ ðmð ~RR~mm�1; gÞ þ ~rr~mm�1NÞwðE �ð ~RR~mm�1ÞÞ

¼
X

~hh

i¼1

mð ~QQi; gÞwðE
�ð ~QQiÞÞ þ

X

~lli

j¼1

wðFðgzi; j ÞÞ

( )

þmð ~RR~mm�1; gÞwðE
�ð ~RR~mm�1ÞÞ

þ
X

~hh

i¼1

~aaiNð�~lliÞ þ
X

~lli

j¼1

~aaiNð�~nni; j þ 1Þ

( )

þNð1� eyÞ

¼
ð5:3Þ;ð5:4Þ

wðFðgÞÞ �NIðh; x;OÞ þN:

Thus the proof of the assertion (II) is completed. Next we prove the case (I).

Assume that g ¼ 0 (thus g ¼ h). From the Newton polygon GþðgÞ we have the

relations

mð ~RR2; gÞ ¼ Iðg; x;OÞ; wðE 0�ð ~RR2ÞÞ ¼ 0; wðE �ð ~RR2ÞÞ ¼ 1:

Thus

wðFðxNgÞÞ ¼
X

~hh

i¼1

mð ~QQi; x
NgÞwðE 0�ð ~QQiÞÞ þ

X

~lli

j¼1

wðFðx~aaiN
i; j gzi; j ÞÞ

( )

þmð ~RR2; x
NgÞwðE 0�ð ~RR2ÞÞ þmð ~RR~mm�1; x

NgÞwðE 0�ð ~RR~mm�1ÞÞ

¼
ðIIÞ X

~hh

i¼1

ðmð ~QQi; gÞ þ ~aaiNÞwðE �ð ~QQiÞÞ þ
X

~lli

j¼1

fwðFðgzi; j ÞÞ � ~aaiN~nni; j þ ~aaiNg

( )

þ ðmð ~RR~mm�1; gÞ þ ~rr~mm�1NÞwðE �ð ~RR~mm�1ÞÞ

¼
X

~hh

i¼1

mð ~QQi; gÞwðE
�ð ~QQiÞÞ þ

X

~lli

j¼1

wðFðgzi; j ÞÞ

( )

þmð ~RR2; gÞwðE
�ð ~RR2ÞÞ

þmð ~RR~mm�1; gÞwðE
�ð ~RR~mm�1ÞÞ þ

X

~hh

i¼1

~aaiNð�~lliÞ þ
X

~lli

j¼1

~aaiNð�~nni; j þ 1Þ

( )

�mð ~RR2; gÞ þ ~rr~mm�1NwðE �ð ~RR~mm�1ÞÞ
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¼ wðFðgÞÞ þ
X

~hh

i¼1

N �
X

~lli

j¼1

~aai~nni; j

( )

� Iðg; x;OÞ þNð1� eyÞ

¼
ð5:3Þ;ð5:4Þ

wðFðgÞÞ � ðN þ 1ÞIðg; x; 0Þ þN:

Thus the proof of the assertion (I) is completed. r

Let gðx; yÞ, zi; j and gzi; j be as in the case (I) of Lemma 5.9. Under the

same notations as in the proof of Lemma 5.9, observe the following equality

which we have used in the inductive argument:

wðFðgÞÞ ¼
X

~mm

i¼1

mð ~RRi; gÞwðE
�ð ~RRiÞÞ þ

X

~hh

i¼1

X

~lli

j¼1

wðFðgzi; j ÞÞ;ð5:6Þ

where wðE �ð ~RRiÞÞ ¼ 0 unless ~RRi is either ~QQj or ~RR~mm�1.

Proof of Theorem 5.8. Let Rj ¼
tðrj; sjÞ; j ¼ 1; . . . ; m be the primitive

covectors which associate an admissible toric compactification p : Y1 ! C
2 with

respect to Dð feÞ as in Section 3. Let Qi ¼
tðpi; qiÞ; i ¼ 1; . . . ; h be the covec-

tors among fR3; . . . ;Rmg such that DðQi; feÞ is a boundary face of Dð feÞ. Set

D :¼ Dð feÞ and suppose that gðx; yÞ is a polynomial such that DðgÞ ¼ D and

Vg :¼ g�1ð0ÞHC
2 has only isolated singularities. Let Vg be the closure of Vg in

Y1 and fx1; . . . ; xkg be the singular points of Vg. Denote by mðVg; xnÞ the Milnor

number of the local defining function of Vg at xn. Then there exists an integer

yD which depends only on D so that

wðVgÞ ¼ yD þ
X

k

n¼1

mðVg; xnÞ;ð5:7Þ

see [O2].

Now we consider our situation. For simplicity, we put X0 :¼ f �1ð0Þ and

Xe :¼ f �1ðeÞ and denote their closures in Y1 by X0 and Xe respectively. Suppose

that the factorization of the face function is given as

fQi
ðx; yÞ ¼ Cix

AiyBi

Y

li

j¼1

ðxqi þ ci; jy
piÞni; j ;

where Ci; ci; j A C
�, ci; j 0 ci; j 0 if j0 j 0, Ai A Z, Bi A Zb0 and li; ni; j A N . Note

that by the assumption, there is no boundary face DðQi; f Þ of Dð f Þ such that

dðQi; f Þ > 0. Let fzi; jgj¼1;...;li
be the intersections of X0 and the divisor EðQiÞ

where zi; j corresponds to the factor ðxqi þ ci; jy
piÞni; j. zi; j can be a singular point

of X0 if ni; jb 2 and zi; j A Xe if and only if dðQi; f Þ < 0.
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Let Ii;0 (resp. Ii; e) be the number of (topological) intersection points of X0

and EðQiÞ (resp. of Xe and EðQiÞ). Under the above notations, we have Ii;0 ¼

Ii; e ¼ li for Qi with dðQi; f Þ < 0. Put I ¼
P�

Ii;0 where
P� is the sum for Qi

with dðQi; f Þ < 0. Also put N0 ¼
P0

Ii;0 and Ne ¼
P0

Ii; e where
P0 is the sum

for Qi with dðQi; f Þ ¼ 0. By the additivity of the Euler characteristics, we have

wðX0Þ ¼ wðX0Þ þ I þN0;

wðXeÞ ¼ wðXeÞ þ I þNe:

ð5:8Þ

By the assumption, f ðx; yÞ is conveinent or satisfies f ð0; 0Þ0 0. If f ðx; yÞ

is convenient, there are no Qi with dðQi; f Þ ¼ 0 and thus N0 ¼ Ne ¼ 0. If

f ð0; 0Þ0 0, since e is generic, fe is non-degenerate on any face DðQi; feÞ with

dðQi; f Þ ¼ 0. Thus Ne coincides with the sum of the algebraic intersection

numbers of EðQiÞ and Xe for Qi with dðQi; f Þ ¼ 0. Namely

Ne ¼
P0

Xli

j¼1

ni; j:

Thus by the above consideration, we get

wðX0Þ � wðXeÞ ¼
ð5:8Þ

wðX0Þ � wðXeÞ þNe �N0

¼
ð5:7Þ P�

Xli

j¼1

ðmðX0; zi; jÞ � mðXe; zi; jÞÞ þ
P0

Xli

j¼1

ðmðX0; zi; jÞ þ ni; j � 1Þ:

Note that mðX0; zi; jÞ � mðXe; zi; jÞb 0 when dðQi; f Þ < 0. Note also that

mðX0; zi; jÞ þ ni; j � 1b 0 when dðQi; f Þ ¼ 0, and the strict inequality holds if

ni; jb 2. Thus we get the inequality

wðX0Þb wðXeÞ:

If we have some zi; j with dðQi; f Þ ¼ 0 and ni; jb 2, we have wðX0Þ > wðXeÞ. If

we have some zi; j with dðQi; f Þ < 0 such that mðX0; zi; jÞ > mðXe; zi; jÞ, we have

also wðX0Þ > wðXeÞ. Recall that P ¼ tða; bÞ is the primitive covector associated

with the valuations of pðtÞ given by (2.1). We have seen that P ¼ Qi0 for some

1a i0a h. When d ¼ 1 and dd ¼ 0, we must have dðP; f Þ ¼ 0 and fPðx; yÞ is

degenerate by Lemma 2.3. Thus the assertion follows from the above argument.

Recall also that Oi; i ¼ 1; . . . ; d� 1 are the centers of the inductive toric modi-

fications piþ1 : Yiþ1 ! Yi. We may assume that dðP; f Þ < 0 and O1 ¼ zi0; j0 for

some j0. To complete the proof we will show that

mðX0; zi0; j0Þ > mðXe; zi0; j0Þ:ð5:9Þ
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Let F
s

0 (resp. Fs
e ) be the Milnor fiber of F s

0 (resp. F s
e ) at Os. The inequality

(5.9) is equivalent to

wðF1
0 Þ < wðF1

e Þ:

We prove this inequality by induction. The induction starts by Assertion 5.10,

and Assertion 5.11 guarantees the inductive step

wðFs
0 Þ < wðFs

e Þ ) wðFs�1
0 Þ < wðFs�1

e Þ:

This completes the proof of Theorem 5.8, assuming Assertion 5.10 and 5.11

below. r

Assertion 5.10. (I) Suppose db 2. If dd ¼ 0, then wðFd�1
0 Þ < wðFd�1

e Þ.

(II) Suppose db 1. If dd < 0 and nðF d
0 Þ > nðF d

e Þ, then wðFd
0 Þ < wðFd

e Þ.

Proof. First we consider the case (I). Thus we assume that db 2 and

dðPd�1; f
d�1Þ ¼ 0, where f d�1 is the restriction of the pull-back of f to the

translated coordinate chart centered at Od�1. Recall that F d�1
0 ¼ x�dd�1

d�1 f d�1.

To compare wðF d�1
0 Þ and wðF d�1

e Þ, we use an admissible toric modification

pd : Yd ! Yd�1 with respect to GþðF
d�1
0 Þ. Let Rd�1; j; j ¼ 1; . . . ; md�1 be the

primitive covectors which associate pd. By assigning the indices as in Section 3,

we can assume that Rd�1;1 ¼
tð1; 0Þ, Rd�1;md�1

¼ tð0; 1Þ and Pd�1 ¼ Rd�1; id�1
where

Pd�1 is the primitive covector given by the valuations of pd�1ðtÞ. If

GðRd�1; i;F
d�1
0 Þ is a face, the factorization of the face function is given by

ðF d�1
0 ÞRd�1; i

ðxd�1; yd�1Þ ¼ Cix
Ai

d�1y
Bi

d�1

Y

li

j¼1

ðx
sd�1; i

d�1 þ ci; jy
rd�1; i

d�1 Þni; j ;

where Ci; ci; j A C
2, ci; j 0 ci; j 0 if j0 j 0, Ai;Bi A Zb0 and li; ni; j A N . Put ni ¼

P

li

j¼1 ni; j. Let EðRd�1; iÞ be the exceptional divisor corresponding to Rd�1; i and

we set

E �ðRd�1; i;F
d�1
0 Þ ¼ EðRd�1; iÞn

�

VF d�1
0

6
1ajamd�1; j0i

EðRd�1; jÞ
�

;

where VF d�1
0

is the strict transform of F d�1
0 . Let mðRd�1; i;F

d�1
0 Þ be the multi-

plicity of the pull-back p�
dF

d�1
0 along Rd�1; i. Let fzi; j;0gj¼1;...;li

be the intersec-

tion points of VF d�1
0

and EðRd�1; iÞ and we denote the restriction of the pull-back

p�
dF

d�1
0 to a neighborhood of zi; j;0 by Fi; j;0. We can consider that zi; j corre-

sponds to the factor ðx
sd�1; i

d�1 þ ci; jy
rd�1; i

d�1 Þni; j . We denote mi ¼ mðRd�1; i;F
d�1
0 Þ and

define an analytic function fi; j by Fi; j;0 ¼ xmi

i; j fi; j where ðxi; j; yi; jÞ is the trans-

lated coordinates at zi; j. Note that ni; j ¼ Iðxi; j; fi; j; zi; jÞ. By using (5.6), we

have wðFd�1
0 Þ ¼ J0 þ K0 where

The bifurcation set and the Newton polygons at infinity 187



J0 ¼
P�

miwðE
�ðRd�1; i;F

d�1
0 ÞÞ þ

X

li

j¼1

wðFðFi; j;0ÞÞ

 !

;

K0 ¼
P

b0
miwðE

�ðRd�1; i;F
d�1
0 ÞÞ þ

X

li

j¼1

wðFðFi; j;0ÞÞ

 !

:

Here
P

b0 is the sum for Rd�1; i with dðRd�1; i; f
d�1Þb 0 and FðcÞ is the Milnor

fiber of c at the origin.

Next we consider the pull-back p�
dF

d�1
e of F d�1

e by the same admissible toric

modification pd : Yd ! Yd�1. We define

E �ðRd�1; i;F
d�1
e Þ ¼ EðRd�1; iÞn

�

VF d�1
e

6
1ajamd�1; j0i

EðRd�1; jÞ
�

;

where VF d�1
e

is the strict transform of F d�1
e . Let mðRd�1; i;F

d�1
e Þ be the multi-

plicity of the pull-back p�
dF

d�1
e along Rd�1; i. Let fzi; j; egj¼1;...;l 0

i
be the inter-

section points of VF d�1
e

and EðRd�1; iÞ and we denote the restriction of the pull-

back p�
dF

d�1
e to a neighborhood of zi; j; e by Fi; j; e. Note that in GðF d�1

e Þ, the face

GðPd�1;F
d�1
0 Þ changes into a bigger face GðPd�1;F

d�1
e Þ which touches the X-axis.

The intersection GðPd�1;F
d�1
e ÞV fX -axisg is exactly the point D :¼ ð�dd�1; 0Þ.

The other faces corresponding to some Rd�1; j with j > id�1 (they are in the right

side of GðQd�1;F
d�1
0 Þ) disappear in GðF d�1

e Þ, see Figure 5. Comparing GþðF
d�1
0 Þ

and GþðF
d�1
e Þ, we can say that if dðRd�1; i; f Þ < 0 then li ¼ l

0
i and zi; j;0 ¼ zi; j; e for

all j ¼ 1; . . . ; li. Then from the equation (5.6), wðFd�1
e Þ can be described as

wðFd�1
e Þ ¼ Je þ Ke where

Je ¼
P�

miwðE
�ðRd�1; i;F

d�1
0 ÞÞ þ

X

li

j¼1

wðFðFi; j; eÞÞ

 !

;

Ke ¼ mðPd�1;F
d�1
0 ÞwðE �ðPd�1;F

d�1
e ÞÞ þmðRd�1;md�1�1;F

d�1
e Þ:

Figure 5. Newton polygons GþðF
d�1
0 Þ and GþðF

d�1
e Þ:
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Here Fi; j; e is the restriction of p�
dF

d�1
e to a neighborhood of zi; j; e. By the upper

semi-continuity of the Milnor numbers (¼ lower semi-continuity of the Euler

characteristics) and Lemma 5.9, we have J0a Je. Hence the expected strict

inequality wðFd�1
0 Þ < wðFd�1

e Þ follows from

K0 < Ke:ð5:10Þ

For a given face XHR
2
b0, let ConeðX;OÞ be the cone over X with vertex at the

origin:

ConeðX;OÞ :¼ fsT jT A X; 0a sa 1g:

Since DðPd�1;F
d�1
e Þ is non-degenerate,

mðPd�1;F
d�1
0 ÞwðE �ðPd�1;F

d�1
e ÞÞ ¼ �2VolðConeðGðPd�1;F

d�1
e Þ;OÞÞ;

see [O2]. Also it is easy to see that mðRd�1;md�1�1;F
d�1
e Þ is the length of the

segment OD. Thus we have

Ke ¼ �nðConeðGðPd�1;F
d�1
e Þ;OÞÞ þ 1;

where nðDÞ is the Newton number of an integral polyhedron DHR
2
b0. To

show the inequality (5.10), we first divide GðF d�1
0 Þ into two parts, GL and GR

where GL is the left upper part of GðF d�1
0 Þ relative to the face GðPd�1;F

d�1
0 Þ and

GR is the union of GðPd�1;F
d�1
0 Þ and its right lower part. Thus G�ðF

d�1
0 Þ ¼

ConeðGL;OÞUConeðGR;OÞ, see Figure 6. The inequality (5.10) follows from the

following inequalities:

K0 < �nðConeðGR;OÞÞ þ 1;ð5:11Þ

�nðConeðGR;OÞÞ þ 1a�nðConeðGðPd�1;F
d�1
e Þ;OÞÞ þ 1 ¼ Ke:ð5:12Þ

The last inequality is immediate from the monotonity of the Newton numbers.

From Lemma 5.9 and the inequality wðFð fi; jÞÞa 1,

wðFðFi; j;0ÞÞa�ðmi þ 1Þðni; j � 1Þ:ð5:13Þ

Then, when GðRd�1; i;F
d�1
0 Þ is a boundary face, we have the inequality:

miwðE
�ðRd�1; i;F

d�1
0 ÞÞ þ

Xli

j¼1

wðFðFi; j;0ÞÞ

a�mili �
Xli

j¼1

ðmi þ 1Þðni; j � 1Þ

¼ �ðmi þ 1Þni þ li ¼ �mini � ðni � liÞ
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a�mini ¼ �2VolðConeðGðRd�1; i;F
d�1
0 Þ;OÞÞ:

The strict inequality holds if there exists some j with ni; jb 2. Therefore we have

the strict inequality for i ¼ id�1. Thus we get

K0 < �2VolðConeðGR;OÞÞ þ jConeðGR;OÞV fX -axisgj

¼ �nðConeðGR;OÞÞ þ 1aKe:

This proves (5.11).

Now we consider the case (II), that is, db 1, dd < 0 and nðF d
0 Þ > nðF d

e Þ.

The proof is exactly parallel to the previous case. Let pdþ1 : Ydþ1 ! Yd be an

admissible toric modification with respect to GþðF
d
0 Þ. Let Rd; j ; j ¼ 1; . . . ; md be

the primitive covectors which associate pdþ1. By assigning the indices as in

Section 3, we can assume that Rd;1 ¼
tð1; 0Þ, Rd;md ¼

tð0; 1Þ and Pd ¼ Rd; id where

Pd is the primitive covector given by the valuations of pdðtÞ. Let GL be the union

of the boundary faces GðRd; i;F
d
0 Þ such that dðRd; i; f

dÞ < 0 and let GR be the

closure of GðF d
0 ÞnGL. Note that in GðF d

e Þ, there exists a unique face Xe which

is not contained in the faces in GL. This face corresponds to the face of

Gð f d
e Þ which ends at the origin. We may assume that GðRd; i 0

d
;F d

e Þ ¼ Xe and

GðRd; j;F
d
0 ÞHGL if and only if j < i 0d. By the assumption, we have the strict

inequality

nðConeðXe;OÞÞ < nðConeðGR;OÞÞ:

From the equation (5.6), wðFd
0 Þ can be described as wðFd

0 Þ ¼ J0 þ K0 where J0
(resp. K0) is the sum of

Figure 6. Partition of G�ðF
d�1
0 Þ into ConeðGL;OÞ and ConeðGR;OÞ:
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mðRd; i;F
d
0 ÞwðE

�ðRd; i;F
d
0 ÞÞ þ

Xli

j¼1

wðFðFi; j;0ÞÞ

over i < i 0d (resp. over ib i 0d) where fzi;1; . . . ; zi;lig ¼ EðRd; iÞVVF d
0
and Fi; j;0 is the

restriction of p�
dF

d
0 to a neighborhood of zi; j. For wðFd

e Þ, we have a similar

partition wðFd
e Þ ¼ Je þ Ke where Je is the sum of

mðRd; i;F
d
e ÞwðE

�ðRd; i;F
d
e ÞÞ þ

Xli

j¼1

wðFðFi; j; eÞÞ

over i < i 0d and, by the case of equality in (5.13), Ke is given by

Ke ¼ �2VolðConeðGe;OÞÞ þ jConeðGe;OÞV fX-axisgj ¼ �nðConeðGe;OÞÞ þ 1:

By the upper semi-continuity of the Milnor numbers, we have J0a Je. On the

other hand,

K0a�nðConeðGR;OÞÞ þ 1 < �nðConeðGe;OÞÞ þ 1 ¼ Ke:

Thus we conclude that wðFd
0 Þ < wðFd

e Þ. r

Assertion 5.11. Let s be an integer with 1a sa d� 1. If F sþ1
0 and F sþ1

e

have only isolated singularities at Osþ1 and their Milnor fibers satisfy wðFsþ1
0 Þ <

wðFsþ1
e Þ, then wðFs

0 Þ < wðFs
e Þ.

Proof. The proof of Assertion 5.11 is completely parallel to that of As-

sertion 5.10. Let psþ1 : Ysþ1 ! Ys be an admissible toric modification with

respect to GþðF
s
0 Þ which is associated with covectors Rs; i; i ¼ 1; . . . ; ms. Sup-

pose Ps ¼ Rs; is . Let GL be the union of the boundary faces GðRs; i;F
s
0 Þ such

that dðRs; i; f
sÞ < 0 and let GR be the closure of GðF s

0 ÞnGL. We may assume

that GðRs; j;F
s
0 ÞHGL if and only if j < i 0s and also assume is < i 0s. Let

fzi; jgj¼1;...;li
be the intersection points of the strict transform of F s

0 ¼ 0 and

EðRs; iÞ as before. By using (5.6), the Euler characteristics wðFs
0 Þ and wðFs

e Þ

can be decomposed into wðFs
0 Þ ¼ J0 þ K0 and wðFs

e Þ ¼ Je þ Ke respectively.

The inequality K0aKe follows by the monotonity of the Newton numbers as

before. For i < i 0s, the intersection points of the strict transform of F s
e ¼ 0 and

the divisor EðRs; iÞ coincide with fzi; jgj¼1;...;li
. We denote the restriction of the

pull-back p�
sþ1F

s
0 (resp. p�

sþ1F
s
e ) to a neighborhood of zi; j by Fi; j;0 (resp.

Fi; j; e). By the assumption wðFsþ1
0 Þ < wðFsþ1

e Þ and Lemma 5.9, we have

wðFðFis; js;0ÞÞ < wðFðFis; js; eÞÞ for some js with zis; js ¼ Osþ1. Thus we get the

strict inequality J0 < Je. r
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6. Bifurcation set in the words of Newton polygons.

In this section we present the elements of the bifurcation set of a polynomial

f by using inductive toric modifications and estimate the number of the elements.

Example 6.1 (Kouchnirenko, [K]). If f is a convenient and Newton non-

degenerate polynomial, then Sf ¼ q. Namely Bf ¼ Sf . This is obvious from

Lemma 2.2 and 2.3.

Assume that f has both variables x and y. A face D of Dð f Þ is called a bad

face if the supporting line is di¤erent from coordinate axes and it passes through

the origin. There exist at most two bad faces. Let B be the set of bad faces.

For D A B, let fDðx; yÞ be the face function on D and define a set SðDÞHC by

SðDÞ ¼ f fDðx0; y0Þ A C j ðx0; y0Þ A ðC �Þ2 and grad fDðx0; y0Þ ¼ 0g:

Example 6.2. (Némethi & Zaharia, [N-Z1]). Let f be a not convenient and

Newton non-degenerate polynomial, not depending only on one variable, such

that f ð0; 0Þ ¼ 0. Then

Bf ¼ Sf U f0g 6
D AB

SðDÞ:

We give a proof of this assertion by using the previous results.

Proof. By the definition of the bifurcation set we have Bf KSf . Also we

have Bf KSf U f0g from Lemma 2.4. Let c A Sf . Suppose that the primitive

covector P ¼ tða; bÞ, given by (2.1), satisfies dðP; f � cÞ > 0. If c0 0, there does

not exist such primitive covectors. If c ¼ 0, by Lemma 2.4, we have 0 A Bf .

Next we suppose dðP; f � cÞ < 0. In this case the boundary face DðP; f � cÞ

is independent of c. Since there does not exist degenerate boundary faces and

by Lemma 2.3, P does not associate any explicit paths. Finally we suppose

dðP; f � cÞ ¼ 0. If c ¼ fPða; bÞ A SðDðP; f ÞÞ, then dðP; f � cÞ ¼ 0, fPðx; yÞ � c

is degenerate and ða; bÞ is a multiple root of fPðx; yÞ � c ¼ 0. Considering

an admissible toric compactification p : Y1 ! C
2 with respect to Dð f � cÞ,

f 1ðx1; y1Þ � c satisfies d1 ¼ dðP; f � cÞ ¼ 0 where f 1 is the restriction of the pull-

back p�f to a neighborhood of the point corresponding to the face DðP; f � cÞ

and the multiple root ða; bÞ. Then from Theorem 5.8 we have c A Bf . On the

other hand if c B Sf U f0g6
D AB

SðDÞ, from Lemma 2.3 and 2.4, c B Sf USf .

Then we have c B Bf . r

Let S be the set of a tower of toric modifications

r : Ys !
ps

Ys�1 ! � � � !
p2

Y1 IC
2
;

where pi : Yi ! Yi�1 is an admissible toric modification with center Oi�1 using

the translated coordinates ðxi�1; yi�1Þ. We assume that the pull-back f i of f to
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Yi has a non-ordinary singularity at Oi. We use the same notations as in Section

4 and 5. Set F s
e ¼ x�ds

s ð f s � eÞ as before.

Proposition 6.3. Fix r A S as above. Suppose that f s satisfies ds < 0 and

nsb 2. If nðF s
cs
Þ > nðF s

e Þ for a generic e A C
�, then cs A Bf .

We remark here that there exists a unique such cs for each f s if it exists.

Proof. From Theorem 5.8 if nðF s
cs
Þ > nðF s

e Þ for a generic e A C
�, then the

Euler characteristic of f �1ðeÞ is less than of f �1ðcsÞ. r

Now we extend the definition of bad faces to Gþð f
sÞ as follows: A face D

of Gþð f
sÞ is called a bad face if the covector ~QQs; { ¼

tð~pps; {; ~qqs; {Þ of the face D

satisfies ~pps; {; ~qqs; { > 0 and the supporting line passes through the origin. There

exists at most one bad face for each Gþð f
sÞ.

Proposition 6.4. Suppose that there is a bad face D of Gþð f
sÞ. Then

SðDÞHBf .

Proof. Suppose cs A SðDÞ. We may assume cs ¼ f s
D ðas; bsÞ for ðas; bsÞ A

C
�2 where fD is the face function on D. Then ðas; bsÞ is a multiple root of

f s
D ðx; yÞ � cs ¼ 0. Consider an admissible toric modification psþ1 : Ysþ1 ! Ys

with respect to Gð f s � csÞ and let f sþ1 � cs be the restriction of the pull-back

p�
sþ1ð f

s � csÞ to a neighborhood of the point corresponding to the face D and the

multiple root ðas; bsÞ. Then f sþ1 � cs is described as (4.2) and satisfies dsþ1 ¼ 0.

Hence by Theorem 5.8 we have cs A Bf . r

Theorem 6.5. Let f : C 2 ! C be a polynomial not depending only on one

variable. We define C ¼ q if f is convenient and C ¼ f f ð0; 0Þg if f is not con-

venient. Also we define Cs ¼ fcsg if there exists cs such that nðF s
cs
Þ > nðF s

e Þ for a

generic e A C and otherwise we define Cs ¼ q. Then

Bf ¼ Sf UC U 6
r AS

�

Cs 6
D ABs

SðDÞ
�

;ð6:1Þ

where Bs is the set of bad faces of Dð f Þ or Gþð f
sÞ. In the above notation r runs

all modification towers with respect to possible explicit paths of f such that ds < 0.

This theorem generalizes the result of Némethi and Zaharia in Eample 6.2.

We remark that by the condition dd < 0, the algorithm for constructing towers of

toric modifications is independent of the constant term of f . It is enough to

check non-zero multiple factors on boundary faces GðRs; i; f
sÞ with

dðRs; i; f
sÞ < 0 on each stage. If it exists, we have to consider the next stage for
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each non-zero multiple factor. On each stage we should check the inequality

nðF s
cs
Þ > nðF s

e Þ if sb 1, and also check the existence of a bad face of Dð f Þ or

Gþð f
sÞ.

Proof. We prove the inclusion J by deriving a contradiction. Let c be

an element of Bf such that c is not contained in the set of the right hand

side of (6.1), that is, c B Sf and there are no explicit paths pðtÞ such that

limt!0 f ðpðtÞÞ ¼ c. Then, since Bf JSf USf , c B Bf . This is a contradic-

tion. We can easily check the opposite inclusion K by using Proposition 6.3

and 6.4. r

The next corollary is a result of Le and Oka in [Le-O]. We define xð f Þ ¼ 1

if Dð f Þ has a boundary face with dðQi; f Þ > 0 or f has either a factor x2 or y2.

Otherwise we define xð f Þ ¼ 0. Note that xð f Þ is equivalent to eð f Þ in [Le-O].

Corollary 6.6 (Le & Oka, [Le-O]). Let f be a polynomial function with

f ð0; 0Þ ¼ 0. Then

]Sf a
P�

Xli

j¼1

ðni; j � 1Þ þ
P0

Xli

j¼1

ni; j þ xð f Þ;

where
P� (resp.

P0) is the sum for Qi such that DðQi; f Þ is a face with

dðQi; f Þ < 0 (resp. dðQi; f Þ ¼ 0) and li and ni; j are given by the form of the face

function fQi
¼ Cix

AiyBi
Q

li

j¼1ðx
bi þ ci; jy

aiÞni; j .

Proof. Suppose that dðQi0 ; f Þ < 0. If fQi0
is non-degenerate, there does

not exist explicit path. If fQi0
is degenerate, we consider an admissible toric

compactification p : Y1 ! C
2 with respect to Dð f Þ and construct the following

branched tower of toric modifications: Let psþ1 : Ysþ1 ! Ys be an admissible

toric modification in the tower. Let f s be the restriction of the pull-back of

f in Ys to a neighborhood of Os. fs takes the form (4.2). The branches at

psþ1 correspond to the multiple factors of the face functions of Gþð f
sÞ. Let

fns; jgj¼1;...; ss be the multiplicities of the multiple factors. By considering Gð f sÞ,

we can see that

Xss

j¼1

ns; ja ns:

We have three cases to obtain an element of Sf :

(1) When ds0 < 0 and nðF s0
cs0
Þ> nðF s0

e Þ for a generic e AC , from Proposition 6.3

we have cs0 A Sf . By considering ps0 : Ys0 ! Ys0�1, we have the inequality

Xss0�1

j¼1

ns0�1; j < ns0�1:ð6:2Þ
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(2) When Gð f s0Þ has a face GðQs0; {; f
s0Þ with dðQs0; {; f

s0Þ ¼ 0, from

Proposition 6.4 the number of the elements of explicit set corresponding to this

face is at most ns0; { � 1. Hence we also have the inequality (6.2).

(3) When pðtÞ is on the singular locus of f , let ps0ðtÞ ¼
tðxs0ðtÞ; ys0ðtÞÞ and

cs0 ¼ limt!0 f s0ðps0ðtÞÞ. If both xs0ðtÞ and ys0ðtÞ are not constant zero, ns0b 2

by Lemma 5.7. Hence by considering ps0 : Ys0 ! Ys0�1, we also have the

inequality (6.2). If either xs0ðtÞ or ys0ðtÞ is not constant zero, since xs0 ¼ 0

defines the divisor which collapses to a point in Y1nC
2, we can assume that

xs0ðtÞ2 0 and ys0ðtÞ1 0. Suppose f s0 � cs0 takes the form f s0ðxs0 ; ys0Þ � cs0 ¼

y
es0
s0 gðxs0 ; ys0Þ where es0 A Zb0 and gðxs0 ; ys0Þ is a local function with

gðxs0 ; 0Þ2 0. If es0 ¼ 0 then f s0ðxs0 ; 0Þ � cs0 ¼ gðxs0 ; 0Þ2 0. This contradicts

f s0ðxs0ðtÞ; 0Þ1 cs0 . If es0 ¼ 1 then ðqf s0=qxs0Þðxs0 ; 0Þ ¼ gðxs0 ; 0Þ2 0. This

contradicts the assumption that ps0ðtÞ is on the singular locus of f . Hence

f s0ðxs0 ; ys0Þ � cs0 has a factor y2s0 . By considering ps0 : Ys0 ! Ys0�1, we also

have the inequality (6.2).

Let zi0; j be the point in Y1 corresponding to each factor ðxbi0 þ ci0; jy
ai0 Þni0 ; j

and let ]ci0; j be the number of elements of Sf which correspond to branches of

the tower of toric modifications starting from zi0; j. Then the strict inequality

]ci0; j < ni0; j follows from the above inequalities in the cases (1), (2) and (3).

Suppose dðQi1 ; f Þ ¼ 0. The face function fQi1
takes the form fQi1

¼ Ci1x
Ai1 �

yBi1

Qli1

j¼1ðx
bi1 þ ci1; jy

ai1 Þni1 ; j . Then the number of elements of Sf corresponding

to the face DðQi1 ; f Þ is at most
Pli1

j¼1 ni1; j .

Suppose dðQi2 ; f Þ > 0. In this case there may exist an explicit path pðtÞ

with limt!0 f ðpðtÞÞ ¼ 0. If f has either a factor x2 or y2, there exists an explicit

path pðtÞ with limt!0 f ðpðtÞÞ1 0. If f has a boundary face DðQi2 ; f Þ which

satisfies dðQi2 ; f Þ > 0, also there may exist an explicit path pðtÞ with

limt!0 f ðpðtÞÞ ¼ 0. For these cases we need to define xð f Þ. r
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[K] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math., 32

(1976), 1–31.

[Le-O] V. T. Le and M. Oka, Estimation of the Number of the Critical Values at Infinity of a

Polynomial Function f : C
2
! C , Publ. RIMS. Kyoto Univ, 31 (1995), 577–598.
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