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Abstract. A. Némethi and A. Zaharia have defined the explicit set for a complex
polynomial function f: C" — C and conjectured that the bifurcation set of the global
fibration of f is given by the union of the set of critical values and the explicit set of f.
They have proved only the case n =2 and f is Newton non-degenerate. In the present
paper we will prove this for the case n = 2, containing the Newton degenerate case, by
using toric modifications and give an expression of the bifurcation set of f in the words
of Newton polygons.

1. Introduction.

Let f: C" — C be a polynomial function. It is well known that there exists
a finite set I' < C such that f: C"\f~'(I') — C\I" is a locally trivial fibration.
There are many different proofs about the finiteness of I, for instance [V], [BI],
[H-L€] and [N]. We denote by By the smallest set of I” with the above property
and call this the bifurcation set. For the set of critical values 2, of f we have
2r < By, but the equality does not hold in general. This is because the topology
of the global fibration depends on not only the singularities in C" but also the
singularities at infinity. We can easily see the difference of Xy and By in the
example f(x,y)=x(xy—1). In[K], A. G. Kouchnirenko has proved that if f
is convenient and Newton non-degenerate then By =X, and in and [B2],
S. A. Broughton has defined a certain class called tame polynomials and proved
By = Xy for them. After that it was expected to find more large classes with the
property B = Xy. In the beginning of nineties, A. Némethi and A. Zaharia
have defined a finite set Sy called the explicit set and proved By < X, US;.
In particular for n = 2 they have proved that if f: C*> — C is a not convenient
and Newton non-degenerate polynomial then By = X, US,;. The estimations of
this and other classes are described in [N-Z2].

On the other hand we can obtain the information of the fibration by
considering the singularities at infinity corresponding to the projective completion.

2000 Mathematics Subject Classification. Primary 32S05; Secondary 32S15.
Key Words and Phrases. complex polynomial functions, bifurcation set, singularities at infinity,
Newton polygons, toric modifications.



162 M. ISHIKAWA

H. V. Ha and D. T. L¢ have proved that when n =2, ¢ € C is an element of the
bifurcation set of f if and only if the Euler characteristic of f~!(c) is different
from the one of the general fibers [H-Lé]. For partial extensions of this result to
the higher dimensional cases, see [P] and [S-T]. In the case when n =2, V. T.
Le and M. Oka have shown an estimation of the number of the critical values at
infinity of f in the words of the Newton polygon of f [Le-O].

To explain the content of the present paper, we first give the definition of the
explicit set of f. For a given f, let grad f(z) be the gradient vector defined by

grad f(z) = t(%(z),...,?—i(z)),

where z = /(z1,...,z,) and the overlines mean their complex conjugations. We
set

M(f)={ze C"|there exists A€ C such that grad f(z) = Az}.

Then the explicit set Sy of f is defined by

there exists a sequence {zX} = M(f) such that

S, —
/ Jim [|5 = o0 and lim f(z¥) = ¢

In the present paper we study the explicit set of a polynomial function
f: C* = C, which contains the case where f is Newton degenerate. If ¢ is an
element of the explicit set of f, by Curve Selection Lemma (see and [N-Z.2]),
there exists a real analytic curve p: (0,¢) — M(f) such that lim,_|/p(?)|| =
and lim,— f(p(¢)) = ¢. We call this curve the explicit path. To study the exis-
tence of the explicit path we will define a certain inductive algorithm for making
a tower of toric modifications with respect to p(¢). By using this algorithm we
will show that the existence condition of the explicit path is equivalent to the in-
constancy of the Milnor numbers of singularities at infinity after the toric modifi-
cations. Finally we will prove that:

THEOREM 1.1. Let f: C* — C be a polynomial map. Then By =2,USy.

This result follows independently from the study of Lojasiewicz numbers in
[H]. We will prove this from the viewpoint of Newton polygons and toric
modifications. In the last section we will give an expression of the elements of
the bifurcation set of f in the words of Newton polygons (Theorem 6.3), which
is an extended result of the Némethi and Zaharia’s expression in [N-Z1]. As
a corollary we lead the Le and Oka’s estimation of the number of the critical

values at infinity of f [Le-O].
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In Section 2 we study the relation of explicit paths on M(f) and the Newton
polygon of /" and give a first stage of the proof of [Theorem 1.1, that is, for the
case where f is Newton non-degenerate or not convenient. In Section 3 we give
the definitions of toric compactifications and toric modifications, and in Section 4,
for a fixed explicit path on M(f), we give an inductive algorithm for making a
tower of toric modifications. After finite times inductive toric modifications, we
obtain a certain transformed function f¢ of f around the limited point of the
explicit path. In Section 5 we show two theorems about relations between the
explicit path of f, the Newton polygon of f° and the Euler characteristics of
£710) and f~'(e) for a generic &, and complete the proof of MTheorem 1.1.
Finally in Section 6 we give an expression of the elements of the bifurcation set
of f in the words of Newton polygons and estimate the number of the elements.

In this paper we will use the following notations: C* = C\{0}, Z-o=
{neZ|n>0} and R>o={xeR|x > 0}.

2. Explicit paths of f: C> — C and Newton polygons.

Let f:C?>— C be a polynomial function not depending only on one
variable. Let Sy be the explicit set of f, which is defined in Section 1.

DeriNITION 2.1.  Let ¢ be a sufficiently small real positive number and let
p:(0,6) — M(f) be a real analytic curve on M(f) with lim,_o| p(?)|| = 0. If
p(t) satisfies lim, o f(p(t)) = ¢ for some ce C with |c| < o0, we call p(t) an
explicit path.

Now we fix some ce S;. For a convenience we assume 0 e Sy by con-
sidering the polynomial f(x,y) — c.

LEMMA 2.2. If f has a factor x* (or y?), the path p(t) = '(0,1/t) (resp.
p(t) =(1/1,0)) is an explicit path with f(p(¢)) =0. In this case p(t) is on the
singular locus of f and therefore 0 € XN Sy. If f has neither a factor x* nor y?,
both x(t) and y(t) are not constant zero.

PrROOF. When f has either a factor x> or y?, the lemma is obvious. Now
we consider the case where f has neither a factor x> nor y?>. We assume that
x(t) is constant zero and lim, o|y(¢)| = co. When f(0, y) is a polynomial of y,
we have lim,_[f(0, y(¢))| = co. This contradicts lim, o|f(p(2))] < co. When
f(0,y) is constant, since lim,o f(0, y(¢)) =0, f(0,y) is constant zero. Set
f(x,y) =x"g(x,y) where y is a positive integer and ¢g(x,y) is a polynomial
with ¢(0,y) #0. Since f does not have a factor x?, we have y=1. Then
(0f /0x)(0, y) = ¢(0,y) # 0 and (0f/dy)(0,y) =0. By substituting these for the
equation grad f(p(¢)) = A(t)p(t) we have A(¢) # 0, and then y(¢) =0. This is a
contradiction. We can prove y(¢) #0 by the same way. ]
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Let p(t) = "(x(t), y(¢)) be an explicit path. Now we suppose that both x(¢)
and y(¢) are not constant zero. We can describe p(¢) as

(2.1) () = (x(”) _ (af"“ + ayt* ! 4 ayr***2 + higher terms>
. p\t) = — \ btkB 4 py kB + byt 1 higher terms )’

where a,be C*, ke N and (a,f) # (0,0) is a pair of coprime integers. Since
lim, || p(?)|| = oo, either o or f is negative.

Let f(x, ) = > (n @mnx"y" be a given polynomial where m,n > 0. We
define the Newton polygon A(f) of f by the convex hull of the integral points
(m,n) € R* such that a,,, # 0. If A(f) intersects both positive axes we say f is
convenient. Otherwise we say f is not convenient. Let IT ="(p,q) # (0,0) be a
pair of coprime integers, called a primitive covector. For a given I1 we consider
the linear function pX + ¢qY where (X, Y) € 4(f) and denote its minimal value
by d(II; f). We set

AL f) ={(X, Y) e A(f) | pX +qY = d(II; [)}

and call this a boundary face (resp. a boundary vertex) if dimA(II; f) =1 (resp.
dimA(II; f) = 0). We define the partial sum fj;(x,y) by

fn(X, y) = Z am,nxmyn

(m,n) e A(I1;f)

and call this the boundary function of the covector I1. In particular, if A(I7; f) is
a face we call this a face function. 1If f;(x,y) =0 has a non-zero multiple root
we say fr; is degenerate. Otherwise we say fj; is non-degenerate. 1f A(f) pos-
sesses a boundary face whose face function is degenerate we say f is Newton de-
generate, otherwise we say f is Newton non-degenerate.

LemMma 2.3.  Let p(t) be an explicit path of f given by (2.1) such that either o
or [ is negative and lim,_ f(p(¢)) =0. Then the primitive covector P = "(a,p)
and the leading coefficients (a,b) satisfy one of the next conditions:

(i) d(P;f) >0 and A(P;f) is a face;
(i) d(P;f) >0 and A(P;f) is a vertex on the axes;
(i) d(P;f) <0, A(P;f) is a face and (a,b) is a multiple root of
fP(xv y) = 0.

PrOOF. Assume that P = (o, ff) and (a,b) do not satisfy the above condi-
tions. Then we have the following three cases:
(1) d(P;f)>0 and 4(P;f) is a vertex not on the axes;
(2) d(P;f)<0 and 4(P;f) is a vertex;
(3) d(P;f)<0, A(P;f) is a face and (a,b) is not a multiple root of
fP(x7 y) =0.
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Substituting p(¢) for f we have
(2.2) f(p(0)) = fpla,b)t*¥ /) 4 higher terms,
and substituting it for grad f(p(¢)) = A(¢)p(¢) we have

Akd(Pif)=ke o atk ...
(2:3) (B,kdmf)kﬁ b ) = A1) (btkﬁ b )
where A4,Be C are possibly zero. In the case (2), lim,o f(p(f)) = o if
d(P; f) <0 and lim,o f(p(?)) = fp(a,b) #0 if d(P;f)=0. Then these con-
tradict lim,_o f(p(¢)) =0. We consider the cases (1) and (3). Assume that
A(t) =0. This implies that (df/0x)(x(¢), y(¢)) =0 and (9f/dy)(x(¢t), y(t)) = 0.

However it is easy to see that this is impossible under the assumption of (1) or
(3). Thus A(r) #0. Put

A1) = dot” 4+ A" + 27?4 higher terms,

where ye Z and Ape C*. Comparing the valuations of we have two
equations

kd(P; f) — ko =y + ko,
kd(P; f) —kp =y +kp.

These equalities imply that «=pf. Since o and S are coprime and |x(¢)]*+
19(1)|* — oo as t — 0 by the assumption, we have o« = # = —1, and hence the case
(1) does not occur. Assume the case (3). fp takes the form

/
fe(x,y) = Cx'y* [[(x+ 4)",
i=1
where C,4,€ C*, A; # A;if i #j, r,s€ Z-( and v; e N. By the assumption, we
may assume a + 4;,b = 0 for some iy with v;, = 1 because (a,b) is not a multiple
root. We can assume a+ A,b=0, vy =1 and a+ A;b#0 fori=1,...,/— 1.
Putting G(x,y) = Cx"y* Hf;ll (x+ A4;p)", we have

%
0x

ofe
dy

(p(1)) = G(a, b)r U ++X2) 1 higher terms,

(p(t)) = A,G(a, b)t_k("HJFZIZ11 %) 1 higher terms.

From the leading coefficients of the equation grad f(p(t)) = A(¢)p(¢), we have

() =(3)
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Then aA, = b. On the other hand a + A, =0. Hence we have |4,|* +1 =0,
which is a contradiction. ]

LemMa 2.4.  Suppose that p(t) is in the case (i) or (ii) of Lemma 2.3. Then
0e Bf.

Proor. In these cases f is not convenient and satisfies f(0,0) =0. Then
from Prop. 6 Step 2 we have 0 € By. O

Thus is proved except for the case (iii) of Lemma 2.3.

3. Toric compactifications and toric modifications.

Let f: C? — C be a polynomial function. First we define an admissible
toric compactification with respect to the Newton polygon A(f). Let Q; =
“(pivqi), i=1,2,...,n be primitive covectors such that

(i) either p; or ¢; is negative;

(ii) 4(Q;; f) is a boundary face;

(iii) the indices are assigned in the counter-clockwise orientation.

Let R;="'(r;,8:), i=1,2,...,u be primitive covectors which satisfy the fol-
lowing:

(1) R, = Z(I,O), R, = t(O, 1),

(2) either r; or s; is negative for each R;, i=3,...,u;

(3) {Q;} is contained in {Rj3,...,R,};

(4) the indices are assigned in the counter-clockwise orientation;

(5) the determinants of the matrices (R;,R;i1), i=1,...,u—1, and

(Ry,R;) are 1.

For a convenience, we set R,;1 = R;. For each Cone(R;, R;11), i=2,...,4, an
affine coordinate chart (u;,v;) € C* is defined by the coordinate transformation

Si+1

— Si
y—uivi .

Then the corresponding smooth toric variety X is obtained by gluing these co-
ordinate charts, which can be described as

X =" ﬁE(Ri) = C? ﬁE(Rl-),
i=1 i=3

where E(R;) is the exceptional divisor corresponding to the covector R;. Let
n: X — C? be the associated proper mapping. This is called the admissible toric
compactification associated with {Ry,..., R,}.

Next we consider an admissible toric modification. The admissible toric
modification is usually associated with a polynomial or a local analytic function.
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0
I'(IL; )

Figure 1. The Newton polygon I’ (g) and the boundary face I'(IT;g) of II.

But now we define it for some special functions. Let U = C? be a small neigh-
borhood of (0,0) and let g: U — C be a local function on U given by

90, ) =D anux"y",
(

m,n)

where (m,n) e Z*> with m > —M for some non-negative integer M and n > 0.
We define the Newton polygon I'.(g) of g as a germ by the convex closure of
U<m7n)((m,n) + R%,) where the union is taken for all (m,n) such that a,,, # 0.
I' (g) is, for example, as shown in Figure 1. The Newton boundary I'(g) is the
union of compact faces of I'.(g). For a given primitive covector IT = '(p,q)
with p,¢ > 0 we consider the linear function pX + ¢Y where (X, Y) e I'.(g) and
denote its minimal value by d(I1;g). We set

I'(IT;g):={(X,Y)eI(g)|pX +qY =d(Il;9)}

and call this a boundary face (resp. a boundary vertex) if dim I'(Il;g) = 1 (resp.
dim I"(1T;g) = 0). We define the partial sum gy (x, y) by

gn(x, )= Y dmax"y"
(mn) €T (11:g)

and call this the boundary function of the covector 1. In particular, if I'(I1;g) is
a face we call this a face function. 1If g;(x,y) =0 has a non-zero multiple root
we say gy 18 degenerate. Otherwise we say ¢y 1S non-degenerate.

Let g be a local function given as above and let O, = (p.,¢,), i=1,2,...,5
be primitive covectors such that

(i) both p; and g, are positive;

(i) I'(Q;g) is a boundary face;

(iii) the indices are assigned in the counter-clockwise orientation.
Let R; = “7:,8:), i=1,2,...,4 be primitive covectors which satisfy the fol-
lowing:
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(1) Ri="'(1,0), Ry ="(0,1);
(2) both # and § are positive for each R;, i=2,... ji—I;
(3) {Q;} is contained in {Ry,...,R;1};
(4) the indices are assigned in the counter-clockwise orientation;

(5) the determinants of the matrices (ﬁi,ﬁi+1), i=1,...,4—1, are 1.
For each Cone(R;,Ri+1), i=1,...,ji—1, an affine coordinate chart (u;,v;) € C*
is defined by the coordinate transformation

x = ufivfi+17 y= u@‘ Sit1

Then the corresponding variety Y is obtained by gluing these coordinate charts,
which can be described as

a—1
Y =U[[E®R),
i=2

where E(Ri) is the exceptional divisor corresponding to the covector R;. Let
n: Y — C? be the associated proper mapping. This is called the admissible toric
modification associated with {Ry, ..., R;}.

For further information about toric compactifications and toric modifi-

cations, see [O2].

4. A modification tower according to an explicit path.

Let p(¢) be an explicit path of f given by (2.1) such that either o or f is
negative and lim, . f(p(¢)) =0. Now we assume that P = («,f) and (a,b)
satisfy the condition (iii) of Lemma 2.3. Let R; = ‘(r,8;), i=1,..., be primi-
tive covectors which associate an admissible toric compactification z : ¥; — C>
with respect to A(f). In this case A(P;f) is a face, hence P = R;, for some
ipe Z with 3 <iy<u. We call the coordinates (u ;,v; ;) associated with
Cone(R;,, Rij+1) the supporting toric coordinates of p(t). On this coordinate
chart, p(¢) is changed into the parametrization

) _ (0 ()
q1,i, (1) = ( I,O ) - ( =B (1)*
01, (7) x(2) "y(2)
B <a5f0+1b—'”i0+1 tRosigr1=kPrip+ —|—higher terms)

a Pb**b+kPx | higher terms

B a’ior' b0+ K 1 higher terms
B aPb* 4 higher terms '

From k > 1 we have lim, ¢ ¢1.;,(t) = (0,a#h*). Consider the coordinate change
given by
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— o
X| =Ulj, VI =1U1j—d Bpe,

We denote by O; the origin of the coordinate chart (x1,y;). We call hereafter
(x1,1) the translated coordinates at Oy. Let pi(t) = '(x1(t),y1(?)) be the param-
etrization of ¢ ;(¢) in the translated coordinates (x;,y;). Then p;(¢) is a real
analytic curve which satisfies lim,_p;(z) = (0,0). The polynomial function f
can be extended as a rational function on Y; and its restriction to the supporting
toric coordinate chart (u; j,,v1 ), which we denote by g; ;, is given by

/.

{1]

d(P:f) d(Riy+1:f) Vi i

g,y (U1,iy, V1,iy) = cruy oy [T(oni + 4) "+ wr b iy (g, 01) ¢
=1

where ¢, 4;€ C*, A; # Ay if j#j', 4;,vi; €N and hyj, is a polynomial of
variables (u; j,,v1). Since (a,b) is a multiple root of fp(x,y) =0 we have
aPb* + 4;, =0 for some 1 <jy <, with v, ;, >2. On the translated coordi-
nates (x1,y1), g1.;, i given by a rational function f!(x;,y;) which takes the form

(4.1) ) = Clel(P;f){ylviO’johl(y1) + x1hy(x1,31)},

where £ is a local analytic function of one variable y; with /;(0) # 0 and A is
of two variables (xp,y1).

Now we define the coordinate change inductively. Assume that we have
constructed admissible toric modifications 7; : Y; — Y;_; with center O;_; with
respect to I.(f™!) for i =2,...,0, where fi~'(x;_1,yi_1) is the restriction of the
pull-back (romo---om_1)’f to a neighborhood of O, |, considerd as a func-
tion on a translated coordinate chart (x;_1,y;1).

Let U, be a neighborhood of O, in Y, with the translated coordinate
chart (x,,,). Let f7: U, — C be the restriction of the pull-back z* /' to U,.
This takes the form

(4.2) o (Xos Vo) = CaX9{p2ho(y5) + Xoh (X, ¥o) }s

where ¢, € C*, d,,v, € Z with d, <0, v, > 2, h, is a local analytic function of
one variable y, with A,(0) # 0 and A is of two variables (x,,y,). Let p,(t) =
!(x,(),y+(7)) be the real analytic curve given by (rom o---on,) 'p(¢), which is
written in the translated coordinates (x,,y,) at O,. By the analyticity of p(¢)
and by the properness of momo---om,: Y, — C*, p,(t) is also real analytic
at t=0. Since x, = 0 defines the divisor which contracts to the center O,_; by
Ts, X4(t) 1s not constant zero. If y,(¢) is also not constant zero we can describe

po(t) as

(4.3) (1) = Xo(1) _ agt*% + "a,llk”fx”Jrl + higher terms
. Pall) = ~ \ b, kb 4 baJZk"ﬁ”Jrl + higher terms )’
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where a,,b, € C*, kse N and (o4, f,) # (0,0) is a pair of coprime integers.
From lim,_g p,(¢) = (0,0), both o, and f, are positive.

DrerFINITION 4.1. If the primitive covector P, = ‘(a,,f,) and the leading
coefficients (a,,b,) satisfy that d(P,; f?) <0 and (a,,b,) is a multiple root of
JE(X6,y5) =0, then we say p,(t) is not terminated. Otherwise we say p,(t) is
terminated.

Note that if y,(7) =0, p,(¢) is terminated. Now we assume that p,(¢) is
not terminated and consider a toric modification with the center O, for con-
structing the next stage. In this case p,(f) can be described as (4.3). Let R,; =
“re.ir86.i)s 1 =1,...,u, be primitive covectors which associate an admissible toric
modification with respect to I'.(f?). In this case I'(P,; f?) is a face, hence
P, =R,; for some i,eZ with 2<i, <pu,—1. The supporting toric coor-
dinates (u,,; ,05 ;) associated with Cone(R, ;, R, ;+1) is defined by

o To,ig+l B So,ig+1
(4.4) Xo = Usi1.i V511,00 Vo = UsiyiVsil,is

and p,(¢) is changed into the parametrization
ua+1,i0(l‘) ) B (xa([) Sﬂ'~fa+1y0([)—ratig—+l )
UO’-I—I-,l}r(Z) xa(l)iﬁ”ya(t)%

_ ag_o* ig+1 b;ro, ig+1 tko“asa, ig+1_kaﬂaro, ig+l1 _|_ hlgher terms
aPobdst~keteboatkoPo% 4 higher terms

(45)  qonit) = (

- a;m io+1 b;ro, ig+1 tko' —I— higher terms
a;ﬁa b2 + higher terms '

From k, >1 we have lim,¢s+1, (1) = (O,a;ﬁobg‘a). Consider the coordinate
change given by

— o
Xo+1 = Ugt1,iyy  Vot+l = Ustl,i, — agﬁ(rbo’o'

We denote by O, the origin of the coordinate chart (x,.1,y,+1). The curve
Got1,i, (1) 1s written as py.1(f) = (X44+1(?),Vs+1(¢)) in the translated coordiantes
(Xo11,V5+1)- If ys41(2) are not constant zero, we can describe p,.i(f) as

0= (@ Qg1 171041 4 gy g t47+1%+1 71 4 higher terms
1 g g . .
Pot Yo+l ([) ba+llka+lﬁ“1 + ba+l,llk0+lﬁa+l+l + hlgher terms

Comparing this and (4.5), we have

(46) k0-+10(0-+1 = ka‘-
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The pull-back g,11,, ==,/ of f? in the supporting toric coordinates

(ua+17107va+17la) 1S glVel’l by

ga—i-l,ia (urH-l,ioa Ua—l—l,ig)

ly

— d(Pf?) d(Rgiz1:/7) Vig.J

= Cotllhoiy i, Vsyn, [[@os1i, +4)" + i hge i, ¢
Jj=1

where c,11,4;€ C*, A; # A if j#j', 4i,,vi,j€N and hs11;, is a local analytic
function of variables (g4, ,05+1,4,). Since p,(¢) is not terminated, d(F,; /%) <
0 and a b + A; =0 for some 1 <j, </, with v; ; >2. Let f! be the

restriction of g,.1; to the translated coordinates (X,i1,Vs+1). This has the
similar expression as (4.2):

lo a-
fa+1(xa+1aya+1) = C(H—lx;—_:ll {y;.:llha+l(ya+l) + xa-)—lh;-i-l(xa—l—l;yﬁ—l)}»

where dy1 =d(Pr; f7), Vor1 =Vi,j,» o1 1s a local analytic function of one
variable y 1 with /,,1(0) #0 and A/, is of two variables (X541, V541)-

DEerFINITION 4.2, Let f and p(z) be as above. If ps(f) is terminated after
0 — 1 times inductive toric modifications, we say p(¢) has the depth J with respect
to the modification tower 7;: Y; — Y,_1, j=2,...,0.

LemMa 4.3. The depth of p(t) is finite.

ProoOF. Assume that there exists p(¢z) such that the depth is infinite.
Then for any 6 € N, /7 is described as and satisfies d,,v, € Z with d, <0
and v, > 2. Since v, 1s the multiplicity of a multiple factor of a face function
of I'.(f?) we have v, > v,.;. We can assume that there exists some g, such that
Ve = Vg4 fOr any ¢ > g, otherwise v, decreases and after finite steps 17, (f "+ﬁ“ite)
does not have any degenerate faces. When v, = v, for any o > gy, I'.(f°)
must have only one boundary face I'(Q,,1; /) with Q51 = (1,8, ;) and 8, ; > 0.
Hence the primitive covector P, = ‘(o,,[5,) must be given by P, = Q, for any
o >ay. From Figure 2 we have d(Q,y11;/°"") > d(Qy.1;/%). This means
d(Qp tfinite.1; ./ 7€) > 0 after finite steps, hence p,. fnite(Z) is terminated. This
contradicts the assumption. H

Hereafter we assume that p(z) has the depth ¢ with respect to a tower of
toric modifications 7; : Y; — Y;_;, i=2,...,0. We will use the same notations
as above, the expression for ]l <o <o and for] <o<oJ—1. Remark

that ps(f) = “(xs(2), ys(2)) may satisfy ys(t) = 0.
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Y

t(la ﬂ¢7+1,1)
I'+(f°+1)

d(Qes,1; f) d(Qo+1,1; o)

Figure 2. The Newton polygon I5(f?*!) in the case when v, = vy.

5. Proof of the main theorem.

In this section we show two theorems about relations between the explicit
path, the Newton polygon of f° and the Euler characteristics of f~'(0) and
f~1(e) for a generic ee C*. As a result of these theorems we will complete the
proof of [Theorem 1.1.

Let f: C? — C be a polynomial function which is convenient or satisfies
f(0,0) # 0. Note that we already proved in the case when f is a
not convenient function with f(0,0) = 0, see Lemma 2.4. Let p(¢) be an explicit
path of f given by (2.1) such that P = ‘(a, ) and (a,b) satisfy the condition (iii)
of Lemma 2.3. We assume p(¢) is not on the singular locus of f. Suppose that
the depth of p(7) isd. Let f?, 1 <o <J be the pull-backed functions according
to the toric compactification and the inductive toric modifications with respect
to p(¢). Each f? has a description as with d, <0 and v, > 2. Set f =
f°—zand F? = x;%f7 for ze C. Note that for any z € C, I'.(F?) is contained
in RZZO. Since x, = 0 defines the divisor which collapses to a point of ¥;\C?, f°
is regular on U,\{x, = 0} where U, is a small neighborhood of O,.

Lemma 5.1. Suppose that 7 is regular on U,\{x, =0}. Then F§ has only
an isolated singularity at O,. If d, <O then, for a generic e€ C*, F? also has
only an isolated singularity at O,.

Proor. Assume that Fj has a non-isolated singularity at O,. Let
¢(s) € U, be the singular locus with a parameter se [0,1]. Then FJ(p(s)) =0
and (0F]/0x,)(p(s)) = (0F§ /0ys)(p(s)) =0. From v, >2 we have (0F]/0y,) -

(0,y,) #0, hence ¢(s) ¢ {x, =0}. Then from F{ = x,%f° we have f?(p(s)) =0
and (9 7/0x,)(p(s)) = (0f°/0ys)(p(s)) =0. But since f? is regular on U,\
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{x, = 0}, these lead a contradiction. If d, < 0, F7 = 0 passes through the origin
O,. Since ¢ is generic, we can assume that f is regular on U,\{x, = 0}.
Hence by the same way as the case Fy, we can say that F;? has only an isolated
singularity at O,. L]

Fy satisfies F7(0,0) = 0. Also for a generic e e C*, F7 with d, < 0 satisfies
F?(0,0) =0. For each analytic function F7 with F7(0,0) =0, we set I_(F7) :=
{sT|TeI(F?),0<s<1}, which is the cone over the Newton boundary with
vertex at the origin O. For an integral polyhedron 4 c Rzzo, the Newton
number v(4) is defined by

v(4) =2Vol(4) — |[AN{X-axis}| — |4 N{Y-axis}| + 1,

where the second and third terms are the length of the segments and ¢ is defined
by +=11if O € 4 and otherwise + = 0, see [O1]. For such analytic functions F?
with F7(0,0) =0, we define v(F?) := v(I_(F7)).

THEOREM 5.2. Let p(t) be an explicit path of f with depth 6 > 1 such that
lim,—o f(p(t)) =0 and p(¢t) is not on the singular locus of f. Then
(i) ds=0, or
(i) ds <0 and v(FQ) > v(F?) for a generic e€ C*.

First we prepare a few lemmas to prove this theorem. Let p(f) be an
explicit path of f with depth ¢ given by (2.1) such that either « or f§ is negative
and lim,_o f(p(1)) =0. We set xo=x, yo =y, po(t) =p(t), ko =k, Py=P,
=0, f=p and fO=f. For 0 <o <J5—1, p,(t) is not terminated. We
assume that p,(¢) is described as for 1 <o<d—1. Let Ry;="(rs,5.,),
j=1,...,u, be primitive covectors which associate the admissible toric com-
pactification 7: Y} — C?> for =0 or the admissible toric modifications
Mgl : Yor1 — Yy for 1 <o <d—1. For the primitive covector P, = (o, f,),
I'(Py; f7) is a face, hence P, = R, ; for some i, € Z. From we have

(6f“/6x0> B Sa’ia+1xg’a‘ia+l—lyo—_ra,iaJrl _ﬂgx;ﬁa—lyga <5ga+1,ig/aua+l,io )
a.](‘0-/6)/0' aga+17in/ava+l7iu‘ .

By substituting p,(f) given by for the above 2 x 2 matrix, we obtain

Sa,ig+1 " Fa,i +1*1 — o —1
i1 X g ogx; Poy e

Allal‘ky(l_aa)‘*'"' A gl‘_k"“”—}—---
M, = ot ot |
A ot o(1=B) ... Ap ot b ...

where

So.igt1— 1 [y —Fq. i —p,—1p0
Allg = Sgi,1a o b A o = —Ba P bl

AZI,J = _ra,ia+1a§a‘ia+lb;ra‘ia+l_la A22,a = O‘aa;ﬁabgﬂ_l-
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LEMMA 5.3. Let f be as above for 0 <o <o—1. If

<Val((8f°'+l/8xa+1)(pa+1(t)))> <—k0+1%+1 + Cot1 )
Val((afa+l/aya+l)(pa+l(l))) —kot1Bsi1 + Copt

for some integer C,yy, then the equality

(Val((af"/axa)(lﬂa(f)))> _ <—ka% + C,,)
val((0f7/0y.)(ps(t))) —kof; + Co

holds for some integer C,.

Proor. The following equality follows from the above computation and
the obvious equalities (3f 7' /0x541)(pot1(t)) = (0got1.i,/Oor1.i,)(gor1.i,(£)) and
(0f 71/ 0or1) (Por1 (1) = (0gor1,4,/ 00,1, ) (G417, (1))

((5f"/(3xa)(pa(t))> M ((afa+l/axa+l)(pa+l(t)))
(0 7/ 0ys)(ps(1)) "N 0per1) (o1 (1) )

where M, is the 2 x 2 matrix defined as above. From the valuations of this
equation we have

<va1((af“/0xa)(pa(r>>>>
val((9f?/dys)(ps(1)))

_ (min{ka 1 -

( ) - k(f—i-lo‘a—i-l + Co*—i—l; _kafxa - ko+1ﬁa+l + Ca-i-l}
min{k,(1 '

%y
- ﬁa) — ko101 + Coy1, —koffy — ka-l—lﬁngl + C(H—l}
By using (4.6) and k, .18, >0, we get
\\ / o+l

(Val((é‘f 7/0%5)(ps(1))) ) _ < —ko0lg = koi1B51 + Co )
val((/7/0s)(ps(1))) —kofy = kot1By1 + Cor1 )

Putting C, = —ks418,41 + Cor1, We complete the proof of the assertion. ]

LemMaA 5.4.  Assume that p(t) is not on the singular locus of f and the depth
0>1. Then the following properties hold.

(i) both (0f'/ox1)(p1(t)) and (0f'/dy1)(p1(f)) are not constant zero.

(ii) pi(2) satisfies the following inequality:

1 1

0 0 :

val( Loy} < vat (Lo (1)) + minf0, k1 (8, — ).
0x| oy

PrOOF. Assume that the assertion (i) does not hold. If (df!'/dx)-

(p1(1)) and (9f'/0y1)(p1(¢)) are both constant zero, p(¢) is on the singular locus

of f, which contradicts the assumption. Then we have (i-In) or (i-2n) below.
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(i-In) If (' /0x1)(p1(2)) =0 and (9f'/0y1)(p1(f)) # 0, we have
((5f/5x)(1?(1))> _ (All,olk(l_“) +oe Ao+ ) < 0 )
(of [oy)(p(t)) Ayg ot o Ay ot *E )N o) (i (1) )
Then
(V&l((@f/@x)(p(l)))) _ (—koc-I—Val((@fl/@yl)(pl(t))))
val((9f /0y)(p(1))) —kp + val((of! /oy1)(p1(1)) )
(i-2n) If (of'/0x1)(p1(£)) £ 0 and (3f'/dy1)(p1(t)) =0, we have

((6f/8x)(p(l))> _ (A117olk(1°‘) +oee Aot F 4 ) <(5f1/9x1)(191(1)))
(@f [oy)(p(1)) ) \ Aap,ot" 1) ... Ayt ™ 4 ... 0 .

Then

(Val((f?f/5X)(p(l)))) _ <k(1 - ) +Val((5f1/0xl)(p1(l))))
val((af/ay)(p(1))) k(1 = ) +val((of ' /ox1)(p1(2)) )

(iin) Assume that the assertion (i) of holds and the assertion (i)
does not hold. Since

((af/f?X)(p(t))) _ (An,otk“‘“) + Alz,ot"‘“+--~) <(0f1/5X1)(p1(t)))
(of /0y)(p(2)) Aoy otF 1P Azz,ofkhr“' @f/oy1)(pr() )

if the inequality val((df'/ox1)(p1(¢))) = val((df'/dy1)(p1(t))) holds, we have

)(

(Val((af/OX)( (t)))) (—ka+Va1((5f1/0y1)(p1(1))))

val((af /ay)(p(r))) —kp +val((of ' /oy1)(p1 (1)) )
((

If val((df'/ox1)(p1(2))) = val((of ' /0y1)(pi1(2))) + k1(By — a1), we also have the
same equality by using [4.6)

For all cases (i-ln), (i-2n) and (iin), note that (val((df/dx)(p(?))),
val((df /oy)(p(2))) = (=ka+ C,—kp + C) for a suitable Ce Z. Thus com-
paring the valuations of the equality grad f(p(t)) = A(¢)p(¢), we have

—ko+ C = val(A(?)) + ka,
—kp + C =val(A(1)) + kp.

This implies o = . Since o and f are coprime and ||p(¢)|| - oo as t — 0 by
the assumption, we have o = ff = —1. Therefore we can assume that the first
coordlnate change correspondmg to the toric compactification is defined by
X =uy zU1 “and y = uy lvl ; ! for some positive integer 4. Then the conjugation
of grad f ( (1)) is given by
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((ﬁf/axxp(t)))
(of /oy)(p(1))
_(< (1) y(r)ﬂ OB )((afl/axo(pl(z)))
Xyt =y ) \ @ o) (m (1)
(a2 e R )((afl/am)(pl(z)))
pattp R e —ab i (@ /oy (p (1) )

where p(t) = '(x(t), y(¢)) and a and b are the leading coefficients of x(z) and y(¢)
respectively. In the cases (i-In) and (iin) we have

((6f/6x)(p(t))> _ ( b~' Bt + higher terms )
(0f /0y)(p(1)) )~ \ —ab 2Byt**1 + higher terms )’

where B is the leading coefficient, and ¢ is the valuation, of (3f'/dy1)(p1(1)).
Comparing the leading coefficients of grad f(p(¢)) = A(t)p(z), we have

b_lBl = ),()Cl,
—Clb_231 = )Lob,

where 4o € C* is the leading coefficient of 4(s). Hence we have |a|* + |b|* = 0,
which is a contradiction. In the case (i-2n) we have

<(8f/8x)(p(t))) B <—(,u + 1)a*2b* A, 12547 4 higher terms>
(of Joy)(p(1)) ) pa " 'hH 411257 + higher terms )’

where A4; is the leading coefficient, and p is the valuation, of (df'/dx1)(p1(1)).
Comparing the leading coefficients of grad f(p(¢)) = A(t)p(z), we have

—(u+ Da+#2btd; = Ja,
,Lta_'“_lb“_l/l] = lob.

Then ula|” + (u+ 1)|b|* = 0, which is a contradiction. This completes the proof
of the assertions (i) and (i) of [Lemma 3.4. ]

Now we consider the local functions f° and f° for a generic ¢ C* on the
translated coordinate chart (xg,ys), which is the terminated stage of a tower of
toric modifications. Let Qs ;, i=1,...,ns be primitive covectors corresponding
to the faces of the Newton boundary I'(f°).

DeFiNITION  5.5. If the primitive covector Qs ,, = '(1,5;,,) satisfies
d(Qs.4,; f°) >0 and the face function fQ (x(;,y(;) takes the form

Bs.ns
(5.1) fQM (x5, 5) = Asxy(X5"" + Bsys),
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stable boundary face T
&5 + Bong

Figure 3. A stable boundary face.

where A;,B; € C* and es € Z, then we call I'(Q;,,;/°) a stable boundary face

(see Figure 3).
In particular we have v(F) > v(F°) for a generic ee C* if I'(f°) has a
boundary face I'(Qs,;f°) which is not stable and satisfies d(Qs,; f°) > 0 for

some 1 <1 <.

LemMA 5.6. We assume that p(t) is not on the singular locus of f. Suppose
that each Qs ;, i=1,...,n; satisfies that d(Qs ;; f°) <0 or A(Qs.;; /) is a stable
face.  Then for ps(t) = "(x5(t),ys(t)) both x5(t) and ys(t) are not constant zero.

PrOOF. Since x5 =0 defines the divisor which collapses to a point of
Y,\C?, it is obvious that xs(¢) #0. Thus we assume y;(f)=0. If both
(0f°/0x5)(x5(¢),0) and (9f°/dys)(xs(t),0) are constant zero, ys; =0 is on the
singular locus of f. Now we suppose that (df°/0xs)(x5(f),0) =0 and
(0f°/0ys)(x5(£),0) £ 0. By (i) we have 0 >2 and

( (0f 1) oxs-1)(ps-1(2)) )
(0f 1/ dys—1)(ps-1(1))

- AZl,U—ltkdil(l_ﬁ(571) 4o A22,a—ll‘_k‘571ﬁ‘5’1 4o (6f5/6y5)(p5([)) '
By considering the valuations, we have

(Val((af(s_l/@xé—l)(lﬂ(s—l(l))) > _ (-ka—l%—l +val((9f°/97s)(ps(1))) >
val((0f°~" /vs-1)(ps-1(2))) —ks—1Ps—1 + val((3f°/0ys)(ps(1)))
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Then from [Lemma 3.3 and 5.4 (i) we have a contradiction. Next we suppose
that (6f‘)/5xa)(xé() 0) %0 and (6f°/3ys)(xs(1),0) = 0. By (i) we

have 0 > 2 and

( (0f =1 /xs-1) (ps-1 (1)) )
(0" /0ys-1)(ps-1(2))

_ Allya_ltkﬁfl(lf%—l) 4. /112#7—1171{5’1%‘5’1 + - (af(s/@x(;)(pa(l))
Aot 0h) 4o Ay g hothor 0 '

By considering the valuations, we have

(Val((ﬁff‘l/GX5—1)(p5—1(l)))) _ (k(s—l(l — %-1) +Val((0f‘f/5Xa)(pa(f)))>'
val((f°/ays-1)(po-1(1))) k-1 (1= Bs1) + val((af°/0xs) (s (1))

Then from [Lemma 5.3 and 5.4 (ii) we have a contradiction. Suppose that
(8f5/8x(5)(x(5() )géO and (0f°/0ys)(x5(1),0) £0. Then we can assume that
I ( f ) intersects the X-axis. As lim,o f(x5(¢),0) =0 by the assumption,
I.(f°) intersects the positive X-axis. By the assumption in the lemma,

Qs né,f‘s) is a stable face and d(Qs ;; f°) <0 for 1 <i<pn;—1. Suppose that
the face function fj is described as [5.0). Since deg, ((0f°/dxs)(xs,0)) =

¢ +p5;—1 and degxo((afa/aya)(Xa,O)) ¢s, we have val((9f°/dxs)(ps(1))) =
Val((af(s/ay(;)(p(;( t))). We can assume ¢ >2 by [Lemma 5.4 (ii) and then the
following equality holds:

((afél/axmwm(z)))
(@7 fovs ) (o (1)

B <A11,5—1lk‘”(1_“‘“) oo Ayt 4 > ((5f5/5>€5)(1?5(l)))
Aoy g b 0=Bo) oo Ay 5oy kB o S (019 ) 0ys) (ps(1) )

Since val((df°/0xs)(ps(t))) = val((df°/dys)(ps(t))), we have

<Val((5f‘51/5x51)(1?51(1))) > _ (—k(;loc(;l +val((af° /ays)(ps(1))) >
val((af =" /ays—1)(ps—1(1))) —ks_1fs_1 + val((af°/dys)(ps(1)))

Then from and 5.4 (ii) we have a contradiction. ]

LemMma 5.7.  Suppose ps(t) is given by (4.3) such that both as and S are posi-
tive.  Then the primitive covector Ps = '(as,f5) satisfies one of the next conditions:
(i) d(Ps; f°) >0 and I'(Ps; f°) is a face which is not a stable face;

(i) d(Ps; f0) >0, I'(Ps; f°) is a vertex on the X-axis and I'(f°) does not
have stable faces.
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PrROOF. Assume that Ps = ‘(as,fls) does not satisfy the above conditions.
Let (as,bs5) be the leading coefficients of ps(¢) as before. Because ps(?) is termi-
nated, we have five cases:
(1) d(Ps; f%) <0 and I'(Ps; f9) is a vertex;
(2) d(Ps; f°) <0, I'(Ps; f9) is a face and (as,bs) is not a multiple root of
12 (xs5,5) = 0;
(3) d(Ps; f°) >0 and I'(Ps; /) is a vertex not on the X-axis.
(4) d(Ps; f°) >0, I'(Ps; f°) is a vertex on the X-axis and I'(f°) has a
stable boundary face;
(5) d(Ps; f°) >0 and I'(Ps; f°) is a stable boundary face.
Substituting ps(¢) for f° we have

L2(ps(1)) = £7,(as, bs)1*4F5/") 1 higher terms,

and for the derivatives of f° we have

(5.2) ((Gf‘s/@xa)(%(l))) [ ArkdFsS )~k 4 higher terms
' (f°/0ys)(ps(1)) Btkod(Psif))~kafs 4 higher terms |’

where 4 and B € C are possibly zero. We consider the case (1). Obviously that
lim,o /°(ps(1)) = oo if d(Ps; f°) <0 and lim,_o f(ps(t)) = f3 (as, bs) #0 if
d(Ps; f°) =0. Both cases contradict the assumption lim,_q f°(ps(f)) =0. We
prove the non-existence of the case (2). In this case because d(Ps; f°) <0 and
lim,—o /°(ps(1)) =0, we have f}(a5,b5) =0. Since (as,b5) is not a multiple
root, (0ff /0xs)(as,bs) # 0 and (9ff /0ys)(as,bs) #0. Hence 4,B # 0 and then
we have

(mmwwm@mmm>:<—b%+@ﬂﬂﬁﬁ>
val((3f° /avs) (ps(t)) —ksBs + ksd(Ps; ) )

From and 5.4 (ii) we have a contradiction. Next we consider the
cases (3), (4) and (5). In the case (3), since (8f;,1/8y(5)(a5,b5) #0, A and B in
5.2) satisfy A€ C and Be C*. Then the following inequality holds:

0 )
val (Z% <p5<z>>) ~val (% (P(s(f))> > k(s — ).

In the case (4) we suppose that the face function on the stable face is described as
(5.1). Then I'(Ps; 0f°/0x;5) is the vertex (es 4 s — 1,0) and I'(Ps; 0f°/dy;) is the
vertex (e;,0). Hence we have the following inequality:

0

5
val <i (p(;(t))) = ksas(es + s — 1) = ksases = val (%}5 (pé(t))>.

0Xs
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In the case (5) we also suppose that the face function on the stable face is
described as [5.I). Then I'(Ps;0f°/0x;) is a face which contains (es + f — 1,0)
and I'(Ps; 0f°/0dys) is the vertex (es,0). Hence we have the following inequality:

of? of°

vall =—(ps(1)) | = ksos(es + Bs — 1) > ksases = val{ =—(ps(1)) ).

0Xs 0ys
In all cases (3), (4) and (5), we can assume ¢ > 2 by (ii). Then by
the same argument as (iin) in the proof of [Lemma 3.4, we have

(Val((af(s_l/@xé—l)(m—l(l)))) _ (‘kfi—l%—l + C)
val((9f°!/0ys-1)(ps-1(1))) ks 1B51 +C

for some integer C. Therefore from and 5.4 (ii) we have a con-
tradiction. [

PrOOF OF THEOREM 5.2.  We suppose that p(¢) is not on the singular locus of
f. Since ps(t) is terminated, ds < 0. We assume that f is not in the case (i),
namely we assume ds < 0. From [Cemma 5.1, F{ and F° have only isolated
singularities at O,. We can assume that I".(f°) has a boundary face I'(Ps.; f°)
with d(P;,; f°) > 0 which is not stable, otherwise ps(¢) is described as by
and there does not exist such an explicit path p(z) by [Lemma 5.7.
Comparing I, (FJ) and I',(F°) we have the inequality v(F9) > v(F?). ]

Let y(.#) denote the Euler characteristic of a manifold .#. As seen in the
proof of [Lemma 2.4, if f is not convenient and satisfies f(0,0) =0 then 0 € By.
Assume the results in Section 2. Then follows from this fact,
and the next theorem.

THEOREM 5.8. Let [ be a polynomial which is convenient or satisfies
f£(0,0) # 0, and we assume 0 ¢ 2. Let p(t) be an explicit path of f with depth
0 > 1 such that lim,_o f(p(t)) =0. We set a generic ¢ € C*. Suppose one of the
following:

(i) ds=0, or

(ii) ds <0 and v(FJ) > v(F?).

Then 1(/~'(0)) > x(f ' (¢)).

Before proving [Theorem 3.8, we prepare a useful lemma.

LEMMA 5.9. Let h: C* — C be a local analytic function with h(0,0) = 0 and
h(0,y) #£0. Assume that h has only an isolated singularity at the origin O. Let
g = x’h where 7y is a non-negative integer. Denote by F(g) (resp. F(xNg)) the
Milnor fiber of g (resp. x"Vg) at O where N is a positive integer. Let I(¢$, x; O) be
the algebraic intersection number of a divisor ¢ =0 and x =0 at O.
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(I) Assume that y=0. Then for any N € N,
(T (x"9)) = 1(F(9) = (N + DI(h,x;0) + N
(IT) Assume that y > 0. Then for any N € N,
2(7 (x"g)) = x(7 (9)) — NI(h,x;0) + N.

Before proving this lemma we recall the definition of the complexities of
resolutions of plane curve singularities (see [Lé-O]). Let n: Y — U be a resolu-
tion map so that the pull-back 7*g has normal crossing singularities at any non-
empty intersection of two divisors. To each divisor E;, i=1,2,...,5 we give a
vertex v;. If two divisors E; and E; have an intersection, we join two vertices by
an edge. Then we obtain a graph %(n). Let Jd(v;) be the number of edges meet-
ing at the vertex v; in ¥(n). The complexity of = is defined by

n)=1+ imax(&(vi) —2,0).

PROOF OF LEMMA 5.9. Let R; = /(7,5;), j=1,..., i be primitive covectors
which associate an admissible toric modification 7: Y — C? with respect to
I'.(g) and let Q, = '(&;,,), i=1,...,7 be primitive covectors which correspond
to the faces of the Newton boundary I'(g). For i=1,...,#, each face function
gg,(x,y) has the factorization

{; 3 ~ ~
gQi(x, y) = C,'XAinf H(Xﬁi + Ci,jyai)w‘j,
J=1

where Ci,c;je C, ¢;j #cijif j#j', AieZ, Bie Z- and {71-,\7,-74,- e N. We set

4

(5.3) =Y 1V E(Q));zi) Z

J=1

When Ql R, by adding a primitive covector R between R; and R, such that
det(Rl, R) = det(R,R,) = 1, we can assume that Q; # R,. Also we can assume
that Q,7 # R; 1. Let E(R) (resp. E(Q,)) be the exceptional divisors of the re-
solution of g corresponding to R; (resp. Ql) and let m(R;;y) (resp. m(Q; ) b
the multiplicity of the pull-back n*y along R (resp. Q) where Y 1s a germ of an
analytic function at the origin 0. Let V, be the strict transform of 7 = 0 and let
V; be the union of V}, and the strict transform of x =0 which is given by the
divisor E(R;). For 1 <i<j, we set

E*(zé,->:E(1é,-)\<th U E(R,-)>,

l<j<p,j#i
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Figure 4. Newton polygons /5 (/) in the cases ¢, =0 and 1.
E"(R) = E(E)\(V;: U U E<RJ~>).
1<j<i,j#i

First we prove the case (II). We define a non-negative integer e, by h=
y<ho(x, y) where hy is a local analytic function with /y(x,0) # 0. Since / has
only an isolated singularity, e, =0 or 1. From Figure 4 we have

i
(5.4) I(h,x; 0) = deg, h(0,y) = > ¥ +e.
i=1

We prove this case by using on induction on the complexity p(¢) where ¢ is a
resolution map of g such that the pull-back ¢*g has only normal crossing singu-
larities.

(i) Suppose p(¢) =1, namely g is Newton non-degenerate. We consider
an admissible toric modification 7:Y — C? with respect to I’.(g) as above.
Comparing the Newton polygons Iy (g) and I, (x"g) and the pull-backs 7*g and
n*(xVg), we have

m(Ry; x"g) = m(R;; g) + F;N,
K(E" (R)) = x(E*(Ry)), forj=1,....[
2(E*(Ri-1)) =1~ ey,
Fat =1,
Since {Ql,...,Qﬁ} < {Ry,...,R;}, we also have
m(Ql.;xNg) = m(Qi% g) + %N,

KE™(Q) = 2(EX(Q)) = 4, for i=1,....7.
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The non-degeneracy implies # =7/;. Using a theorem of N. A’Campo (see
[AC]), we have

WF (xg)) = D _m(Qy x"9)x(E"(Q:)) + m(R15x"9)7(E" (Ry-1))

= > (m(Qs;.9) + &N)A(E*(Q)) + (m(R-139) + Fa- 1t N)7(E* (Rz-1))

:Zm(Qm Dx(E*(Q,)) + m(Ra—1;9)x(E*(Ra1))

W (F(g)) — NI(h,x; 0) + N.

(i) We assume that the assertion (II) holds for any A(x,y) whose res-
olution complexity is less than or equal to n and prove the case p(¢) =n+ L.
Let g be an analytic function given by g = x”h where y > 0 and the resolution
complexity of /(x,y) is n+1. We consider an admissible toric modification
n:Y — C* with respect to I'.(g) as before. Under the above notation, the
number of the (topologlcal) intersection pomts of the strict transform V), and the
divisor Es is given by /. Let z; g J=172,. .,Z; be the intersection points,
(x;;,»ij) the translated coordinates at z;; and let g-,; be the local function of the
pull back 7*g on the coordinate chart (Xi 7y Vij)- The pull-back n*xV is given by

(y,, +¢;;) 0" where Q; = Ry, As (yij +ci) 0 is a unit at z;;, the
pull back 7 (x Ng) can be replaced by X ¥ gw Let F(9-,,) (resp. F (xf"]N g-,))
be the Milnor fiber of g.  (resp. x;’ ' gzu) at z;;. The complexity of g, is at
most n, so by using the assumption of the induction we have

(5.5) T (X)) = 2(F(9-,,)) — @GNV j + &N

Then y(Z (xVg)) can be modified as follows:

7 4 i
27 (xNg)) = Z{M(QﬁXNQ)X(E/*(Qi)) + ZX(%(X?JNQ'J))}

i=1 j=1

+ m(Ra_1; x"g)x(E" (Ra-1))
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HF (9) = N1(h,x; 0) + N.

Thus the proof of the assertion (II) is completed. Next we prove the case (I).

Assume that y =0 (thus g = /). From the Newton polygon 7. (g) we have the
relations

m(Ryig) = 1(g,%:0), 7(E*(R)) =0, #(E*(Ry))=1.

(. 4 )
= Z{m(Qﬁg)X(E*(Qi)) + Z%(ﬁ’(gzl-.,))} +m(Ry; g)x(E™(R))

Ui 4
+m(Ra1;9)x(E*(Ri-1)) + Z{&-N(Zﬁ-) + ) @GN(=; + 1)}
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))+§”:N{ Zoc,v,,} I(g,x;,0)+N(1 —e,)

53)[54)
S (# (9) - OV + DI x50) + V.
Thus the proof of the assertion (I) is completed. O

Let g(x, ), z;; and g., be as in the case (I) of [Lemma 5.9. Under the
same notations as in the proof of [Lemma 5.9, observe the following equality
which we have used in the inductive argument:

i 4
(5.6) (7 (9)) = m(Ri;9)x )+ )Y 2(F(g-)

i=1 i=1 j=I

where y(E*(R;)) =0 unless R; is either Qj or Ry .

Proor oF THEOREM 5.8. Let R;='(r;,s;), j=1,...,u be the primitive
covectors which associate an admissible toric compactification 7 : ¥; — C?* with
respect to A(f,) as in Section 3. Let Q; = '(pi,qi), i=1,...,n be the covec-
tors among {Rs,...,R,} such that 4(Q;; f;) is a boundary face of A(f,). Set
A :=A(f,) and suppose that g(x,y) is a polynomial such that A(g) =4 and
V; := g~'(0) = C? has only isolated singularities. Let ¥, be the closure of ¥} in
Y1 and {&y,..., &} be the singular points of V. Denote by u(V,,¢,) the Milnor
number of the local defining function of ¥}, at &,. Then there exists an integer
0, which depends only on 4 so that

k

(57) X(Vg) :0A+Z:u(l7;/aén)v
n=1
see [02].
Now we consider our situation. For simplicity, we put Xp:= f~1(0) and
X, := f~!(¢) and denote their closures in Y; by X, and X, respectively. Suppose
that the factorization of the face function is given as

li
Jo(x,y) = Cx My P [ [(x + € p™)™,
j=1

where Cl',Cl'J € C*, Cij # Cij! if ] 75]'/, Al' € Z, B,’ € ZZO and /j, Vij € N. Note
that by the assumption, there is no boundary face 4(Q;; f) of A(f) such that
d(Qi; f) >0. Let {z;},_; , be the intersections of Xo and the divisor E(Q))
where z; ; corresponds to the factor (x% + ¢; ;y?")"/. z;; can be a singular point
of Xo if v;; >2 and z;; € X, if and only if d(Q;; f) <0
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Let I; o (resp. I;;) be the number of (topological) intersection points of X
and E(Q;) (resp. of X, and E(Q;)). Under the above notations, we have [; o =
I, = ¢ for Q; with d(Q;; f) <0. Put I =) "I, where > is the sum for Q,
with d(Q;; f) < 0. Also put Ng = 3" I,o and N, = 3. I, where Y_° is the sum
for Q; with d(Q;; f) =0. By the additivity of the Euler characteristics, we have

58) x(Xo) = x(Xo) +1 + No,
| X(yﬁ) :X(Xs) +1+ N,.

By the assumption, f(x,y) is conveinent or satisfies f(0,0) #0. If f(x,y)
is convenient, there are no Q; with d(Q;;f) =0 and thus Ny=N,=0. If
£(0,0) # 0, since ¢ is generic, f, is non-degenerate on any face 4(Q;; f;) with
d(Q;; f) =0. Thus N, coincides with the sum of the algebraic intersection
numbers of E(Q;) and X, for Q; with d(Q;; f) =0. Namely

4
0
Ne = Z Z Vij-
j=1

Thus by the above consideration, we get

1(Xo0) — 2(%) Z 4(Xo) — 7(X,) + N, — Ny

/ /

(57) _ _ _

= > E (ﬂ(XO;ZiJ)_:u(Xs;Zi,j))‘l'ZOE (u(Xo,zij) +vij—1).
j=1 j=1

Note that u(Xo,zi;) — u(Xe,zi;) >0 when d(Q;;f) <0. Note also that
w(Xo,zi ;) +vij—1>0 when d(Q;; f) =0, and the strict inequality holds if
v;ij>2. Thus we get the inequality

X(XO) = X(Xa)

If we have some z;; with d(Q;; f) =0 and v;; > 2, we have y(Xo) > y(X.). If
we have some z;; with d(Q;;f) <0 such that u(Xo,z;;) > p(X,,zi;), we have
also y(Xp) > x(X;). Recall that P = (o, f) is the primitive covector associated
with the valuations of p(¢) given by (2.1). We have seen that P = Q;, for some
1 <iy<n. When d=1 and ds =0, we must have d(P; ) =0 and fp(x, ) is
degenerate by [Lemma 2.3. Thus the assertion follows from the above argument.
Recall also that O;, i=1,...,0 — 1 are the centers of the inductive toric modi-
fications 7,1y : Yiy1 — Y;. We may assume that d(P; f) <0 and O; =z, ;, for
some jy. To complete the proof we will show that

(5'9) /‘(A_/O:Zio,jo) > ﬂ(yg;ziojjo)'
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Let %, (resp. Z°) be the Milnor fiber of Fj (resp. F7) at O,. The inequality
is equivalent to

2R <1 Z).

We prove this inequality by induction. The induction starts by Assertion 5.10,
and Assertion 5.11 guarantees the inductive step

W F) < 0(F7) = 0f(F7 < y(F°7).

This completes the proof of Theorem 3.8, assuming Assertion 5.10 and 5.11
below. ]

AssErTION 5.10.  (I) Suppose 6 > 2. If ds =0, then y(ZL™") < y(Z°71).
(I1)  Suppose d = 1. If ds <0 and v(F)) > v(F?), then y(F)) < y(%°).

Proor. First we consider the case (I). Thus we assume that J > 2 and
d(Ps_1; f°71) =0, where f°7! is the restriction of the pull-back of f to the
translated coordinate chart centered at O; ;. Recall that FJ~' = x;%1fo-1,
To compare x(F¢~') and y(F°~'), we use an admissible toric modification
ms: Y5 — Y51 with respect to F+(F6H). Let Rs—1j, j=1,...,45_; be the
primitive covectors which associate ns. By assigning the indices as in Section 3,
we can assume that Rs_; 1 = '(1,0), Rs_1,, , = '(0,1) and Ps_; = Rs_1, , where
Ps_; is the primitive covector given by the valuations of ps_i(7). If
I'(Rs_1, ,-;Fg‘l) 1s a face, the factorization of the face function is given by

4
(F()é_l)R(H,,-(xé*l’J@fl) = Cix;—ilyfil H xéa lll +¢i Jy(;o 1l ’)Vi,j’

where Cj,c; ;€ C?, cij#cijp if j#j', Ai,Bie Z-y and ¢;,vi;;eN. Put v;=
Zle vij. Let E(Rs_; ;) be the exceptional divisor corresponding to Ry ; and
we set

E*(Rs15 F{) =E<R(sl,i>\(VFgl U E(Rm,j>>,
I<j<ps 1. j#i

where Vo is the strict transform of Fj o1 Let m(Rs_1,;;F)"!) be the multi-
plicity of the pull-back 7;Fy~" along Rs 1;. Let {z0};_; , be the intersec-
tion points of VFo 1 and E (Ra 1,i) and we denote the restrlctlon of the pull-back

ny F -1 1o a nelghborhood of z;jo by Fijo. We can consider that z;; corre-
sponds to the factor (x; " + ¢ v )™ . We denote m; = m(Rs_1 ;; F~!) and
define an analytic function f;; by Fijo=x"jfi; where (x;;,y;;) is the trans-
lated coordinates at z;;. Note that v;; =1I(x;j, fij;zi;). By using [5.6), we
have (7)) = Jy + Ky where
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4
Jo=>" (miX(E*(Rél,i;Fésl)) + ZX(%(E,,-,O))) ,

j=1

/,
Ky=Y%7>" (mi%(E*(Ro‘l,i;F(fl)) + Zx(f(Fi,j,O)))
j=1
Here =" is the sum for Rs_; ; with d(Rs_1 ;5 f°°') > 0 and Z () is the Milnor
fiber of  at the origin.
Next we consider the pull-back 7} F2~! of F2~! by the same admissible toric
modification 75 : Y5 — Ys5_;. We define

E*(Rs 1.5 F™") = E(Rs_1.,)\ Vs U E(Rs-1) ),
S <y A

where Vpsi is the strict transform of Fo~'. Let m(Rs_1,;; F°~") be the multi-
section points of VFgfi—l and E(Rs_1;) and we denote the restric7tion of the pull-
back 7 F°~! to a neighborhood of z;; . by F; ;.. Note that in I'(F°~!), the face
['(Ps_1; F)~!) changes into a bigger face I'(P;_;; F2~!') which touches the X-axis.
The intersection I'(Ps_1; FO~!')N{X-axis} is exactly the point D := (—ds_1,0).
The other faces corresponding to some Rs_; ; with j > is_; (they are in the right
side of I'(Qs_1; F{™")) disappear in I'(F?~!), see Figure 5. Comparing I" (F™!)
and F+(FE‘H), we can say that if d(Ry_; ;; f) <0 then /; =// and z; ;o = z; ;. for
all j=1,...,4. Then from the equation [5.6), 7(Z° ') can be described as
2(Z°Y) = J, + K, where

&

J=Y (mi;f(E*(Rm FY) + 2x<ﬁ<ﬂ,j,g>>>,

J=1

K, = m(Ps_1; F{ Oy (E*(Ps1; FO7N) +m(Rs—1 4, —1; FO7Y).

Y Y

L(Ps_y; Fy ™)

Figure 5. Newton polygons I (F{!) and I3 (F°71).
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Here F;; , is the restriction of 7; F*~! to a neighborhood of z; ;.. By the upper
semi-continuity of the Milnor numbers (= lower semi-continuity of the Euler
characteristics) and [Lemma 5.9, we have Jy <J,. Hence the expected strict
inequality (%" < y(Z°!) follows from

(510) Ky < K..

For a given face = c Rzzo, let Cone(Z, O) be the cone over = with vertex at the
origin:
Cone(=,0):={sT|TeZ,0<s<1}.
Since A(Ps_1;F°~!) is non-degenerate,
m(Ps_1; FSVy(E*(Ps_1; FO~1)) = =2 Vol(Cone(I'(P5s_1; F°™1), 0)),

see [02]. Also it is easy to see that m(Rs_1 , ,—1;F°7") is the length of the
segment OD. Thus we have

K, = —v(Cone(I'(Ps_1; F°1),0)) + 1,

where v(4) is the Newton number of an integral polyhedron 4 — RZZO. To
show the inequality [5.10), we first divide I'(F{~!) into two parts, /7 and Ig
where 17, is the left upper part of I'(FJ~!) relative to the face I'(P;_1; FJ~!) and
Ik is the union of I'(P;_1;F~!) and its right lower part. Thus I" (F™!) =
Cone(I7, O)UCone(Ig, O), see Figure 6. The inequality follows from the
following inequalities:

(5.11) Ky < —v(Cone(Ig, 0)) + 1,
(5.12)  —v(Cone(Ig, 0)) + 1 < —v(Cone(I'(Ps_1; F*1),0)) +1 =K.

The last inequality is immediate from the monotonity of the Newton numbers.
From and the inequality y(7(f;;)) <1,

(5.13) 2(F (Fijo)) < —(mi+ 1) (vi; = 1).

Then, when I'(Rs_1 ;; F¢™') is a boundary face, we have the inequality:
/
mig(E*(Ro-1,i 59 ") + ) 2(F (Fij0)
=1

/
< —ml; — Z(mz +1)(vi; — 1)
=

= —(mi + I)Vl‘ + 4= —my; — (V,‘ — 4)
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Y
> FL F+(F6s_1)
I'r
r_(F
0 D X

Figure 6. Partition of I"(F¢~!) into Cone(7,0) and Cone(I%, O).

< —myy; = —2Vol(Cone(F(R5_17,-;FéH), 0)).

The strict inequality holds if there exists some j with v; ; > 2. Therefore we have
the strict inequality for i =i5 ;. Thus we get

Ky < —=2Vol(Cone(I, O)) + |Cone(Ir, O) N { X-axis}|
= —v(Cone(I},0)) + 1 < K.

This proves [5.11).

Now we consider the case (II), that is, 6 > 1, ds <0 and v(F{) > v(F?).
The proof is exactly parallel to the previous case. Let @5, : Y51 — Y5 be an
admissible toric modification with respect to I (F¢). Let Rs;, j=1,...,u5 be
the primitive covectors which associate n;.;. By assigning the indices as in
Section 3, we can assume that Rs; = /(1,0), R;,, = '(0,1) and Ps = R, where
Ps is the primitive covector given by the valuations of ps(¢). Let /7 be the union
of the boundary faces I’ (R(57,-;F05) such that d(Rs ;[ 9) <0 and let I be the
closure of I'(F{)\IL. Note that in I'(F?), there exists a unique face =, which
is not contained in the faces in I;. This face corresponds to the face of
I(f°) which ends at the origin. We may assume that I'(Rj, ,g;Fg‘S) =%, and
I'(Rs;; FY) = I if and only if j<il. By the assumption, we have the strict
inequality

v(Cone(&,, 0)) < v(Cone(Ig, 0)).

From the equation [5.6), x(#;) can be described as y(%’) = Jo + Ko where Jg
(resp. Kp) is the sum of
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p
m(Rs. i3 )2 (E* (R, F9)) + Y (7 (Fij0))
=1
over i < ij (resp. over i > i5) where {z;1,...,2; 4} = E(Rs,;) N Vs and Fij o is the

restriction of 7;F¢ to a neighborhood of z;;. For y(%°), we have a similar
partition y(Z°) = J, + K, where J, is the sum of

4
m(Rs. i FOX(E*(Ro s ) + > 2(F (Fij.0)
j=1

over i < ig and, by the case of equality in (5.13), K is given by
K, = —2Vol(Cone(I;, 0)) + |Cone(I;, O) N { X-axis}| = —v(Cone(I;, 0)) + 1.

By the upper semi-continuity of the Milnor numbers, we have Jy < J,. On the
other hand,

Ky < —v(Cone(Ig, 0)) +1 < —v(Cone([;, 0)) + 1 = K..

Thus we conclude that y(%°) < ¥(Z°). O

ASSERTION 5.11.  Let o be an integer with 1 <o <5 —1. If F/*' and F°*!
have only isolated singularities at O, and their Milnor fibers satisfy X(%GH) <
A Z7H), then x(F7) < 1(Z7).

&

ProOF. The proof of Assertion 5.11 is completely parallel to that of As-
sertion 5.10. Let 7,1 : Y, — Y, be an admissible toric modification with
respect to Iy (Fy) which is associated with covectors R, ;, i=1,...,4; Sup-
pose P, =R, ;. Let I; be the union of the boundary faces I'(R, ;; Fy) such
that d(R, ;; f?) <0 and let Ik be the closure of I'(F)\Iz. We may assume
that I'(R,;; Fy) < Ip if and only if j<i and also assume i, <i. Let
{zij}j=1. ., be the intersection points of the strict transform of Fj =0 and
E(R;;) as before. By using [5.6), the Euler characteristics y(%,”) and y(Z°)
can be decomposed into y(#°)=Jo+ Ky and y(Z£°)=J.+ K. respectively.
The inequality Ky < K, follows by the monotonity of the Newton numbers as
before. For i < i/, the intersection points of the strict transform of F7 =0 and
the divisor E(R,, ;) coincide with {z; j}jzl ;- We denote the restriction of the

.....

pull-back =)  Fy (resp. n,,,F) to a neighborhood of z;; by F;o (resp.

o+1

F;;.). By the assumption y(%’™) < x(#°"") and Lemma 5.9, we have

W F(F, j,.0) <x(F(F,j,..) for some j, with z; ; = O,11. Thus we get the
strict inequality Jy < J,. ]
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6. Bifurcation set in the words of Newton polygons.

In this section we present the elements of the bifurcation set of a polynomial
f by using inductive toric modifications and estimate the number of the elements.

ExaMPLE 6.1 (Kouchnirenko, [K]). If f is a convenient and Newton non-
degenerate polynomial, then Sy = §. Namely By = 2r. This is obvious from
and 2.3.

Assume that f has both variables x and y. A face 4 of A(f) is called a bad
face if the supporting line is different from coordinate axes and it passes through
the origin. There exist at most two bad faces. Let B be the set of bad faces.
For 4 € B, let f,(x, y) be the face function on 4 and define a set 2(4) < C by

2(4) = {f4(x0,7) € C|(x0,7) € (C*)* and grad f;(xo, ) = 0}.

ExaMPLE 6.2. (Némethi & Zaharia, [N-Z1]). Let f be a not convenient and
Newton non-degenerate polynomial, not depending only on one variable, such
that f(0,0) =0. Then

By = 2, U{0} AUQS =(4).

We give a proof of this assertion by using the previous results.

Proor. By the definition of the bifurcation set we have By =2 2y. Also we
have By 2 2, U{0} from [Lemma 2.4. Let ceS;. Suppose that the primitive
covector P = (o, 8), given by (2.1), satisfies d(P; f —c) > 0. If ¢ # 0, there does
not exist such primitive covectors. If ¢ =0, by Lemma 2.4, we have 0 € By.
Next we suppose d(P; f —c) <0. In this case the boundary face A(P;f —c)
is independent of ¢. Since there does not exist degenerate boundary faces and
by [Lemma 2.3, P does not associate any explicit paths. Finally we suppose
d(P;f—c)=0. If ¢c= fp(a,b) e Z(A(P;[)), then d(P;f —¢c) =0, fp(x,y)—¢
is degenerate and (a,b) is a multiple root of fp(x,y) —c=0. Considering
an admissible toric compactification 7 :Y; — C? with respect to 4 (f —o),
f1(x1,y1) — c satisfies d; = d(P; f — ¢) = 0 where f! is the restriction of the pull-
back 7*f to a neighborhood of the point corresponding to the face A4(P; f — ¢)

and the multiple root (a,b). Then from we have ce€ B;. On the
other hand if ¢ ¢ X, U{0} ), _y 2(4), from and 24, c¢ 2 USy.
Then we have c ¢ By. L]

Let . be the set of a tower of toric modifications
p: Y, B Y, -2y o0

where 7;: Y; — Y;_1 is an admissible toric modification with center O;_; using
the translated coordinates (x;_1,y;_1). We assume that the pull-back ' of f to
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Y; has a non-ordinary singularity at O;. We use the same notations as in Section
4 and 5. Set F’ = x;%(f" —¢) as before.

PrOPOSITION 6.3.  Fix p e & as above. Suppose that {7 satisfies d, < 0 and
vo 2 2. If v(F7) > v(F7) for a generic ¢€ C”, then ¢, € By.

We remark here that there exists a unique such ¢, for each 7 if it exists.

ProoOF. From if v(FZ) > v(F7) for a generic & € C*, then the
Euler characteristic of f~!(¢) is less than of f~!(c,). ]

Now we extend the definition of bad faces to I, (f) as follows: A face 4
of I (f7) is called a bad face if the covector Qw = "(Py.1»45.,) of the face 4
satisfies p, ,,q,, >0 and the supporting line passes through the origin. There
exists at most one bad face for each I'.(f°).

PROPOSITION 6.4.  Suppose that there is a bad face A of I'.(f°). Then
Z(A) c Bf

PrROOF. Suppose ¢, € 2(4). We may assume ¢, = f(as,b,) for (as,b,) €
C** where f, is the face function on 4. Then (a4, b,) is a multiple root of
f7(x,y) —c; =0. Consider an admissible toric modification 7, : Y541 — Y,
with respect to I'(f° —¢,) and let f°*! —¢, be the restriction of the pull-back
n;.1(f7 — ¢5) to a neighborhood of the point corresponding to the face 4 and the
multiple root (a,,b,). Then 7! — ¢, is described as and satisfies d, 1 = 0.
Hence by we have ¢, € By. O

THEOREM 6.5. Let f: C* — C be a polynomial not depending only on one
variable. We define C = J if f is convenient and C = {f(0,0)} if f is not con-
venient. ~ Also we define Cy = {c5} if there exists ¢, such that v(F7) > v(F7) for a
generic ¢ € C and otherwise we define C, = (7. Then

(6.1) B =x,uCU | (Co U Z(A)),

pey AeB,

where B, is the set of bad faces of A(f) or I'.(f?). In the above notation p runs
all modification towers with respect to possible explicit paths of [ such that d, < 0.

This theorem generalizes the result of Némethi and Zaharia in Eample 6.2.
We remark that by the condition ds < 0, the algorithm for constructing towers of
toric modifications is independent of the constant term of f. It is enough to
check non-zero multiple factors on boundary faces I'(R,;;f°) with
d(R;,i; f7) <0 on each stage. If it exists, we have to consider the next stage for
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each non-zero multiple factor. On each stage we should check the inequality
V(F7) > v(F7) if 0> 1, and also check the existence of a bad face of A(f) or

I (f7).

ProOrF. We prove the inclusion < by deriving a contradiction. Let ¢ be
an element of B, such that c¢ is not contained in the set of the right hand
side of [6.1], that is, c¢ 2, and there are no explicit paths p(¢) such that
lim, o f(p(t)) =c. Then, since Br <2,USs, c¢Br. This is a contradic-
tion. We can easily check the opposite inclusion = by using [Proposition 6.3
and 6.4. ]

The next corollary is a result of Le and Oka in [Le-O]. We define &(f) =1
if A(f) has a boundary face with d(Q;; f) > 0 or f has either a factor x? or y°.
Otherwise we define &(f) =0. Note that &(f) is equivalent to ¢(f) in [Le-Ol.

CoroLLARY 6.6 (Le & Oka, [Le-O]). Let f be a polynomial function with
f(0,0) =0. Then

/ l
1S <D (= DAY vy +E(),
=1 =1

where "7 (resp. S0 is the sum for Q; such that A(Qyf) is a face with
d(Qi; f) <0 (resp. d(Qi; f) =0) and /; and v;j are given by the form of the face
function fy, = CixiyB [0, (xP + ¢ jp@) ",

ProOF. Suppose that d(Q;; f) <0. If fQiO is non-degenerate, there does
not exist explicit path. If le_O is degenerate, we consider an admissible toric
compactification 7 : ¥; — C? with respect to A(f) and construct the following
branched tower of toric modifications: Let 7,.;: Y,.; — Y, be an admissible
toric modification in the tower. Let f? be the restriction of the pull-back of
f in Y, to a neighborhood of O,. f, takes the form (4.2). The branches at
n,11 correspond to the multiple factors of the face functions of I'.(f?). Let
{vs.j}i=1...s, be the multiplicities of the multiple factors. By considering I'(f),

we can see that
Sq
Z Voj < Vg
=1

We have three cases to obtain an element of S;:
(1) Whend,, <0and v(Fcfg) > y(F7°) for a generic ¢ € C, from [Proposition 6.3
we have ¢, € Sy. By considering 75, : Y, — Y51, we have the inequality

S5, -1

(6.2) Z Voo—1,j < Vao—1-
=1
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(2) When I'(f”) has a face I'(Qs,.;f%) with d(Qg,..; f”) =0, from
IProposition 6.4 the number of the elements of explicit set corresponding to this
face is at most v, , — 1. Hence we also have the inequality [6.2).

(3) When p(¢) is on the singular locus of f, let p,, (f) = "(x4,(2), s, (?)) and
Cop = lim;—o 7 (pg,(2)). 1f both x,,(¢) and y,,(¢) are not constant zero, v, > 2
by Lemma 57 Hence by considering 7, : Y, — Y;-1, we also have the
inequality [6.2). If either x,,(¢) or y,(f) is not constant zero, since X, =0
defines the divisor which collapses to a point in Y;\C?, we can assume that
X5, (t) #0 and y, (1) =0. Suppose f%° — ¢, takes the form f7(x,,,Vs,) — €5y =
Vo g(Xoe, Ve,) Where e € Zsg and  g(xs,Vs) is a local function with

g(x6,,0) £ 0. If e;, =0 then f(x4,,0) — c5, = g(X4,,0) # 0. This contradicts
S (x6,(2),0) = ¢5y. If €5, =1 then (3f%/0x4,)(Xg,0) = g(x4,,0) £ 0. This
contradicts the assumption that p, (f) is on the singular locus of f. Hence
S (Xsy,Vs,) — €q, has a factor yﬁo. By considering 7, : Y;, — Y5-1, We also
have the inequality [6.2).

Let z;, ; be the point in ¥, corresponding to each factor (x”o 4 ¢;, jy%)"0’
and let fic;,; be the number of elements of Sy which correspond to branches of
the tower of toric modifications starting from z; ;. Then the strict inequality
fici,,j < vi,,; follows from the above inequalities in the cases (1), (2) and (3).

Suppose d(Qi; f) =0. The face function fQ takes the form fQ = C;, xi
yBi H ( W+ y*)"7. Then the number of elements of Sy correspondlng
to the face A(Qiy; f) 1s at most Z Vi

Suppose d(Q;,; f) >0. In thls case there may exist an explicit path p(¢)
with lim, .o f(p(¢)) = 0. If f has either a factor x*> or y?, there exists an explicit
path p(¢) with lim,o f(p(¢)) =0. If f has a boundary face 4(Q;;f) which
satisfies d(Q;,; f) >0, also there may exist an explicit path p(z) with
lim, f(p(¢)) =0. For these cases we need to define &(f). ]

ACKNOWLEDGMENT. The author would like to extremely thank Professor
Mutsuo Oka for his helpful suggestions and support. The author is also grateful
to the members of his seminar in Tokyo Metropolitan University for their helpful
discussions. In the preliminary stage of the present paper, there were many
confusing notations and, especially, the proof of Assertion 5.10 was not clear.
He would like to thank the referee for his precious comments and alternative
proposals for them.

References

[AC] N. A’Campo, La fonction zéta d’une monodromie, Comment. Math. Helv., 50 (1975),
233-248.

[B1] S. A. Broughton, On the topology of polynomial hypersurfaces, Proc. Sympos. Pure
Math., 40, Part I (1983), 167-178.



196

M. ISHIKAWA

S. A. Broughton, Milnor numbers and the topology of polynomial hypersurfaces, Invent.
Math., 92 (1988), 217-241.

H. V. Ha, Nombres de Lojasiewicz et singularités a I'infini des polynomes de deux variables
complexes, C. R. Acad. Sci. Paris, t. 311, Série T (1990), 429-432.

H. V. Ha and D. T. Lé, Sur la Topologie des Polynome Complexes, Acta. Math.
Vietnam., 9 (1984), 21-32.

A. G. Kouchnirenko, Polyédres de Newton et nombres de Milnor, Invent. Math., 32
(1976), 1-31.

V. T. Le and M. Oka, Estimation of the Number of the Critical Values at Infinity of a
Polynomial Function f:C* — C, Publ. RIMS. Kyoto Univ, 31 (1995), 577-598.

D. T. Lé and M. Oka, On Resolution Complexity of Plane Curves, Kodai Math. J., 18
(1995), 1-36.

J. Milnor, Singular Points of Complex Hypersurfaces, Ann. Math. Studies, 61, Princeton
Univ. Press, Princeton (1968).

A. Némethi, Lefschetz theory for complex affine varieties, Rev. Roumaine Math. Pures
Appl., 33 (1988), 233-260.

A. Némethi and A. Zaharia, On the Bifurcation Set of a Polynomial Function and Newton
Boundary, Publ. RIMS Kyoto Univ., 26 (1990), 681-689.

A. Némethi and A. Zaharia, Milnor fibration at infinity, Indag. Math. (N.S.), 3 (3) (1992),
323-335.

M. Oka, On a weak simultaneous resolution of a negligible truncation of the Newton
boundary, Contemp. Math., 90 (1989), 199-210.

M. Oka, Non-degenerate Complete Intersection Singularity, Actualités Math., Hermann
(1998).

A. Parusinski, On the bifurcation set of complex polynomial with isolated singularities at
infinity, Comp. Math., 97 (1995), 369-384.

D. Siersma and M. Tibar, Singularities at infinity and their vanishing cycles, Duke Math.
J., 80 (3) (1995), 771-783.

J.-L. Verdier, Stratifications de Whitney et théoreme de Bertini-Sard, Invent. Math., 36
(1976), 295-312.

Masaharu ISHIKAWA

Graduate School of Mathematical Sciences
The University of Tokyo

3-8-1 Komaba Meguro-ku, Tokyo
153-8914, Japan

E-mail: ishikawa@poisson.ms.u-tokyo.ac.jp



	1. Introduction.
	THEOREM 1.1. ...

	2. Explicit paths of f ...
	3. Toric compactifications ...
	4. A modification tower ...
	5. Proof of the main theorem.
	THEOREM 5.2. ...
	THEOREM 5.8. ...

	6. Bifurcation set in ...
	THEOREM 6.5. ...

	References

